基于总量控制的中国农业氮肥需求及温室气体减排潜力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮肥应用解决了我国人口吃饭问题,但过量施氮带来了诸多环境问题,因此调控氮肥用量是实现农业、资源和环境可持续发展的重要研究议题。本研究利用农户调查数据和国家统计数据,综合分析了中国农业氮肥的应用现状;通过氮肥肥效反应试验,应用区域氮肥总量控制方法,确定了小麦、玉米、水稻各区域的氮肥总量控制量,并分析其节氮、增产、温室气体减排潜力;通过文献调研方法分析了我国经济作物氮肥总量控制量。在以上研究的基础上,结合氮肥总量控制量和作物种植面积,确定了我国农作物氮肥需求量。主要研究结果如下:
     1.通过对2007-2009年32219个农户调研数据整理分析,结果表明我国小麦、水稻、玉米氮肥用量分别为210kg hm-2、210kg hm-2、220kg hm-2;蔬菜和果树氮肥用量分别为388kg hm-2和555kg hm-2。2007-2009年我国氮肥消费量在各作物间分配比例为:小麦(14%)、水稻(16%)、玉米(19%)、蔬菜(20%)、果树(15%)、油料(5%)、薯类(4%)、茶园(2%)、豆类(1%)、其他作物(4%)。
     2.应用区域氮肥总量控制方法,对全国7个小麦生态亚区的1165个小麦氮肥肥效反应试验数据进行分析研究,结果表明我国小麦氮肥总量控制量为174kg hm-2,对应的小麦产量为6.24Mg hm-2,温室气体排放强度为495kg CO2eq Mg-1grain.7个农业生态亚区的氮肥总量控制量不同,东北春麦区最低,为99kg hm-2,华北雨养冬麦区最高,为193kg hm-2。如果氮肥总量控制量能被农民采用,我国小麦生产可以节约氮肥85万吨,增加小麦产量1160万吨,降低温室气体排放量(CO2eq)1040万吨。
     3.应用区域氮肥总量控制方法,对全国12个玉米生态亚区的1726个玉米氮肥肥效反应试验数据进行分析研究,结果表明我国玉米氮肥总量控制量为174kg hm-2,对应的玉米产量为8.56Mg hm-2,温室气体排放强度为334kg CO2eq Mg-1grain。12个农业生态亚区的氮肥总量控制量不同,东北冷凉春玉米区和东北半湿润春玉米区最低,为150kg hm-2,西北绿洲灌溉春玉米区最高,为219kg hm-2。如果氮肥总量控制量能被农民采用,我国玉米生产可以节约氮肥143万吨,增加玉米产量3190万吨,降低温室气体排放量(CO2eq)1860万吨。
     4.应用区域氮肥总量控制方法,对全国8个水稻生态亚区的1177个水稻氮肥肥效反应试验数据进行分析研究,结果表明我国水稻氮肥总量控制量为167kg hm-2,对应的水稻产量为7.67Mg hm-2,温室气体排放强度为1236kg CO2eq Mg-1grain。8个农业生态亚区的氮肥总量控制量不同,黑龙江寒地单季稻区最低,为114kg hm-2,长江下游单季稻区最高,为224kg hm-2。如果氮肥总量控制量能被农民采用,我国水稻生产可以节约氮肥125万吨,增加水稻产量1536万吨,降低温室气体排放量(CO2eq)1572万吨。
     5.基于我国作物生产情况,应用氮肥总量控制的方法,预测了我国农作物氮肥需求。在保证我国小麦、玉米、水稻分别增产8.5%、13.2%、7.4%的基础上,我国农业氮肥需求量为3133万吨。
The use of nitrogen fertilizer is critical to feeding China's hungry. However, the excessive use of chemical N fertilizers in agriculture, resulting in a large number of environmental problems. Therefore, limiting the N fertilizer rate is urgent to ensure national food security and protect resources and environment. This thesis focuses on the current situation of China's agricultural nitrogen fertilizer application based on the analysis of farmer survey data and statistical data. A regional N management approach was developed based on the cost of the agricultural response to N application rates from large number on-farm experiments to optimize N management across each agroecological subregions in the intensive Chinese smallholder wheat, maize and rice belt. We also compared N rate, grain yield and GHG emissions between the regional N management approach and farmers' N management, and evaluated the potential for increasing grain yields and mitigating GHG emission intensity using this regional N management approach when compared to farmers' practices across each region. The regional optimal N rate of cash crops, vegetables and fruits was also evaluated by data mining method. Then the demand of N fertilizer was forecasted based on regional optimal N rate and crop cultivated area. Main results as below:
     1. We present a new database of N input from a survey of32219farmers during2007to2009. Across all farmers, the N application rate of wheat, rice and maize was210,210and220kg ha-1, respectively. The N application rate of vegetables and fruits was388and555kg ha-1, respectively. The proportion of nitrogen fertilizer consumed by wheat, rice, maize, vegetables, fruits, oil crops, potatos, tea garden, beans and other crops was14%,16%,19%,20%,15%,5%,4%,2%,1%and4%, respectively.
     2. In this study, a regional N management approach was developed based on the cost of the agricultural response to N application rates from1,165on-farm experiments to optimize N management across7agroecological subregions in the intensive Chinese smallholder wheat belt. The calculated regional N rate was174kg N ha-1. The corresponding grain yield averaged6.24Mg ha-1. Calculated GHG emission intensity, weighted by wheat area in each subregion, averaged495kg CO2eq Mg-1grain. This regional N management approach, if widely adopted in China, could reduce fertilizer N consumption85MT, increase Chinese wheat production1160MT, and reduce total GHG emissions1040MT.
     3. In this study, a regional N management approach was developed based on the cost of the agricultural response to N application rates from1,726on-farm experiments to optimize N management across12agroecological subregions in the intensive Chinese smallholder maize belt. The calculated regional N rate was174kg N ha-1and ranged from150kg N ha-1(NE1&NE2) to219kg N ha-1(NW3). The corresponding grain yield averaged8.56Mg ha-1. Calculated GHG emission intensity, weighted by maize area in each subregion, averaged334kg CO2eq Mg-1grain. This regional N management approach, if widely adopted in China, could reduce fertilizer N consumption143MT, increase Chinese maize production3190MT, and reduce total GHG emissions1860MT.
     4. In this study, a regional N management approach was developed based on the cost of the agricultural response to N application rates from1,177on-farm experiments to optimize N management across8agroecological subregions in the intensive Chinese smallholder rice belt. The calculated regional N rate was167kg N ha-1and ranged from114kg N ha-1(NE) to224kg N ha-1(LYR). The corresponding grain yield averaged7.67Mg ha-1. Calculated GHG emission intensity, weighted by rice area in each subregion, averaged1236kg CO2eq Mg-1grain. This regional N management approach, if widely adopted in China, could reduce fertilizer N consumption125MT, increase Chinese maize production1536MT, and reduce total GHG emissions1290MT.
     5. The demand for agricultural N fertilizer was forecasted based on regional optimal N rate and crop cultivated area in this study. The agricultural nitrogen fertilizer demand is expected to31.33million tonnes in China, and increase Chinese wheat, maize, rice production by8.5%,13.2%,7.4%, respectively.
引文
陈清,张福锁.蔬菜养分资源综合管理理论与实践.北京:中国农业大学出版社,2007,1-17,84.
    陈同斌,陈世庆,徐鸿涛,等.中国农用化肥氮磷钾需求比例的研究.地理学报,1998,53:32-41.
    陈新平,张福锁.小麦-玉米轮作体系养分资源综合管理理论与实践.北京:中国农业出版社,2006,55-91.
    崔振岭.华北平原冬小麦-夏玉米轮作体系优化氮肥管理—从田块到区域尺度:[博士学位论文].北京:中国农业大学,2005.
    狄向华,聂祚仁,左铁镛.中国火力发电燃料消耗的生命周期排放清单.中国环境科学,2005,25(5),632-635.
    高恩元.2010年我国化肥需求分析.化肥工业发展调研报告(1996-2010).中国化工信息中心,1996,41-50.
    高峻岭,宋朝玉,黄绍文,等.青岛市设施蔬菜施肥现状与土壤养分状况.山东农业科学,2011,3,68-72.
    高强,冯国忠,王志刚.东北地区春玉米施肥现状调查.中国农学通报,2011,26(14):229-231.
    国家统计局.中国能源统计年鉴.北京:中国统计出版社,2011.
    国家统计局.中国统计年鉴.北京:中国统计出版社,2012.
    何飞飞,任涛,陈清,等.日光温室蔬菜的氮素平衡及施肥调控潜力分析.植物营养与肥料学报,2008,14,692-699.
    黄季煜,陈庆根,王巧军.探讨我国化肥合理使用结构及对策.农业技术经济,1994,36,-40.
    黄景梁.中国化肥现状与发展.化肥工业,1994,3-9.
    姜远茂,张宏彦,张福锁.北方落叶果树养分资源综合管理理论与实践.北京:中国农业大学出版社,2007,1-7.
    金继运,李家康,李书田.粮食作物对化肥的需求分析.磷肥与复肥,2006,21,1-6.
    李家康,林葆,梁国庆,等.对我国化肥施用前景的剖析.植物营养与肥料学报,2011,7(1):1-10.
    李军,黄敬峰,程家安.我国化肥施用量及其可能污染的时空分布特征.生态环境,2003,12:145-149.
    李文彪.内蒙古河套灌区小麦和玉米推荐施肥研究:[博士学位论文],北京:中国农业科学院,2011.
    梁龙,陈源泉,高旺盛,等.华北平原冬小麦-夏玉米种植系统生命周期环境影响评价.农业环境科学学报,2009,28(8),1773-1776.
    鲁如坤.土壤农业化学分析方法.中国农业科技出版,北京,2000,25-163.
    刘忠.中国区域农田养分平衡及流域环境:[博士学位论文].北京:中国农业大学,2008.
    刘候俊,巨晓棠,同延安,等.陕西省主要果树的施肥现状及存在问题.干旱地区农业研究,2002,20,38-44.
    孟庆锋.玉米和小麦高产与养分高效协同实现的技术途径研究:[博士学位论文].北京:中国农业大学,2012.
    闵炬,施卫明.不同施氮量对太湖地区大棚蔬菜产量,氮肥利用率及品质的影响.植物营养与肥料学报,2009,15,151-157.
    彭显龙,刘元英,罗盛国,等.寒地稻田施氮状况与氮素调控对水稻投入和产出的影响.东北农业大学学报,2007,38(4):467-472.
    秦凤贤,朱传第.用LCA方法评价牛奶包装对环境的影响.乳业科学与技术,2006,4,163-165.
    任辉,杨印生,曹利江.食品生命周期评价方法及其应用研究.农业工程学报,2006,1,19-22.
    孙义祥.测土配方施肥中区域配肥关键技术的研究:[博士学位论文].北京:中国农业大学,2010.
    王激清.我国主要粮食作物施肥增产效应和养分利用效率的分析与评价:[博士学位论文].北京:中国农业大学,2007.
    王明新,包永红,吴文良,等.华北平原冬小麦生命周期环境影响评价.农业环境科学学报,2006,25(5),1127-1132.
    王圣瑞.陕西省和北京市主要作物施肥状况与评价:[博士学位论文].北京:中国农业大学,2009.
    王雁峰.中国化肥理论需求趋势分析:[硕士学位论文].北京:中国农业大学,2007.
    武良,张卫峰,陈新平,等.中国农田氮肥投入和生产效率.植物营养与肥料学报,2014(待刊).
    许秀成.应谨慎预测未来化肥需求量.磷肥与复肥,2004,19,7-10.
    袁宝荣,聂祚仁,狄向华,等.中国化石能源生产的生命周期清单(Ⅱ)——生命周期清单的编制结果.现代化工,2006,26(4),59-61.
    岳善超.小麦玉米高产体系的氮肥优化管理:[博士学位论文].北京:中国农业大学,2013.
    张福锁,崔振岭,陈新平.最佳养分管理技术列单.北京:中国农业大学出版社,2010,1-36.
    张明怡,李玉影,刘颖,等.黑龙江省玉米氮肥适宜用量研究.黑龙江农业科学,2010,1,29-30.
    张卫峰.中国化肥供需关系及调控战略研究:[博士学位论文].北京:中国农业大学,2007.
    张毅.长江流域水稻资源型功能肥料的设计与验证:[博士学位论文].北京:中国农业大学,2013.
    赵荣芳.冬小麦-夏玉米轮作中水氮资源的优化管理及其可持续性评价:[博士学位论文].北京:中国农业大学,2006.
    赵佐平,同延安,刘芬,等.渭北旱塬苹果园施肥现状分析评估.中国生态农业学报,2012,20,1003-1009.
    曾宪坤.中国化肥工业的现状和展望.土壤学报,1995,32:117-125.
    中华人民共和国环境保护部.第一次全国污染源普查公报.2010.
    中华人民共和国气候变化初始国家信息通报.北京:中国计划出版社,2004,24-28
    朱兆良.推荐氮肥适宜施用量的方法论台议.植物营养与肥料学报,2006,12,1-4.
    朱兆良.中国土壤氮素研究.土壤学报,2008,45(5),778-783.
    Barning, R. Economic evaluation of nitrogen application in the North China Plain. Ph.D. diss. Univ. of Hohenheim.2008.
    Braschkat, J., Mannheim, T., Horlacher, D., et al. Measurement of ammonia emissions after liquid manure application:I. Construction of a wind tunnel system for measurements under field conditions. Zeitschrift fur Pflanzenernahrung und Bodenkunde,1993,156,393-396.
    Breiling, M., Hoshino, T., Matsuhashi, R. Contributions of Rice Production to Japanese Greenhouse Gas Emissions applying Life Cycle Assessment as a Methodology. (Tokyo, Laboratory for Land Resource Sciences, Department of Biological and Environmental Engineering, Graduate School for Agriculture and Life Sciences, The University of Tokyo).1999.
    Bremner, J.M. Nitrogen-total. In:Sparks, D.L. (Ed.). Methods of Soil Analysis.Part 3. Chemical Methods. SSSA Book Ser.5. SSSA and ASA, Madison, WI,1996, pp.1085-1121.
    Brentrup, F., Kusters, J., Kuhlmann, H., et al. Environmental impact assessment of agricultural production systems using the life cycle assessment methodology:I. Theoretical concept of a LCA method tailored to crop production. European Journal of Agronomy,2004a,20,247-264.
    Brentrup, F., Kusters, J., Lammel, J., et al. Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology Ⅱ. The application to N fertilizer use in winter wheat production systems. European Journal of Agronomy,2004b,20,265-279.
    Brentrup, F., Palliere, C. GHG emission and energy efficiency in European nitrogen fertilizer production and use. IFA Proceedings No.639. International Fertiliser Society, York, United Kingdom.2008.
    Brock, P., Madden, P., Schwenke, G., et al. Greenhouse gas emissions profile for 1 tonne of wheat produced in Central Zone (East) New South Wales:a life cycle assessment approach. Crop and Pasture Science,2012,63,319-329.
    Buckley, G. Fertilizer requirements in 2015 and 2030. FAO.2000.
    Bundy, L., Andraski, T. Soil yield potential effects on performance of soil nitrate tests. Journal of Production Agriculture,1995,8,561-568.
    Cassman, K.G., Dobermann, A., Walters, D.T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio,2002,31,132-140.
    Chen, X., Cui, Z., Vitousek, P.M., Cassman, K.G., et al. Integrated soil-crop system management for food security. Proceedings of the National Academy of Sciences,2011,108,6399-6404.
    Chen, X.P. Optimization of the N fertilizer management of a winter wheat/summer maize rotation system in the Northern China Plain. Ph.D. diss. Univ. of Hohenheim.2003.
    Conley, D.J., Paerl, H.W., Howarth, R.W. Controlling eutrophication:nitrogen and phosphorus. Science, 2009,323:1014-1015.
    Cui, Z., Zhang, F., Chen, X., et al. On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test. Field Crops Research,2008a,105,48-55.
    Cui, Z., Chen, X., Miao, Y., et al. On-farm evaluation of the improved soil Nmin-based nitrogen management for summer maize in North China Plain. Agronomy Journal,2008b,100,517-525.
    Cui, Z.L., Chen, X.P., Zhang, F.S. Current nitrogen management status and measures to improve the intensive wheat-maize system in China. AMBIO.2010,39,376-384.
    Cui, Z.L., Yue, S.C., Wang, G.L., et al. Closing the yield gap could reduce projected greenhouse gas emissions:a case study of maize production in China. Global Change Biology,2013,19, 2467-2477.
    Cui, Z.L., Wang, G.L., Yue, S.C., et al. Closing the N-use efficiency gap to achieve food and environmental security. Environmental Science and Technology,2014 (Accepted).
    Defra. The British survey of fertiliser practice:fertiliser use on farm crops for crop year 2004. York, UK: Defra,2005,14-16.
    Defra. The British survey of fertiliser practice:fertiliser use on farm crops for crop year 2010. York, UK: Defra,2011,79.
    Denmead, O.T. Micrometerological methods for measuring gaseous losses of nitrogen in the field. In: Freney, J.R., Simpson, J.R. (Eds.), Gaseous Loss of Nitrogen from Plant-Soil Systems. Martinus Nijhoff Publishers, The Hague, Netherlands.1983.
    Dobermann, A. and Cassman, K.G. Environmental dimensions of fertilizer nitrogen:What can be done to increase nitrogen use efficiency and ensure global food security? In Mosier, A.R., Syers, J.K., and Freney, J.R. Agriculture and the Nitrogen Cycle. London:Island Press,2005, pp.261-278.
    Dobermann, A., Witt, C., Abdulrachman, S., et al. Estimating indigenous nutrient supplies for site-specific nutrient management in irrigated rice. Agronomy Journal,2003,95,924-935.
    Doney, S.C. The growing human footprint on coastal and open-ocean biogeochemistry. Science,2010, 328,1512-1516.
    Dwyer, L.M., Andersont, A.M., Ma, B.L., et al. Quantifying the nonlinearity in chlorophyll meter response to corn leaf nitrogen concentration. Canadian Journal of Plant Science,1995,75, 179-182.
    Erisman, J.W., Sutton, M.A., Galloway, J., et al. How a century of ammonia synthesis changed the world. Nature Geoscience,2008,1,636-639.
    European fertilizer manufacturers association (EFMA). Forecast of food, farming and fertilizer use in the European union 2001-2011.2004.
    Fang, Q.X., Q. Yu, E.L. Wang, et al. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat-maize double cropping system in the North China Plain. Plant Soil,2006,284,335-350.
    FAO. FAOSTAT Database-Resources. Rome:Food and Agriculture Organization of the United Nations.2014.
    Feng, J., Chen, C., Zhang, Y., et al. Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China:A meta-analysis. Agriculture, Ecosystems & Environment, 2013,164,220-228.
    Forster, P., Ramaswamy, V., Artaxo, P., et al. Changes in atmospheric constituents and in radiative forcing. In:Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.2007.
    Fox, R.H., Piekielek, W.P., Macneal, K.M. Using a chlorophyll meter to predict nitrogen fertilizer needs of winter wheat. Communications in Soil Science and Plant Analysis,1994,25,171-181.
    Gebbers, R., Adamchuk, V.I. Precision agriculture and food security. Science,2010,327,828-831.
    Godfray, H.C.J., Beddington, J.R., Crute, I.R., et al. Food security:The challenge of feeding 9 billion people. Science,2010,327,812-818.
    Goedkoop, M. The Eco-indicator 95. Final report. Bilthoven:RIVM.1995.
    Good, A.G., Beatty, P.H. Fertilizing nature:a tragedy of excess in the commons. PLoS biology,2011,9, e1001124.
    Grassini, P., Cassman, K.G. High-yield maize with large net energy yield and small global warming intensity. Proceedings of the National Academy of Sciences,2012,109,1074-1079.
    Grassini, P., Eskridge, K.M., Cassman, K.G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature Communications,2013,4,1-11.
    Guo, J.H., Liu, X.J., Zhang, Y., et al. Significant acidification in major Chinese croplands. Science, 2010,327,1008-1010.
    Hansen, P.M., Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment,2003,86,542-553.
    He, P., Li, S., Jin, J., et al. Performance of an optimized nutrient management system for double-cropped wheat-maize rotations in North-Central China. Agronomy Journal,2009,6, 1489-1495.
    Heffer, P. Assessment of fertilizer use by crop at the global level 2006/07-2007/08. International Fertilizer Industry Association, Paris, France,2009, p.3.
    Hoben, J.P., Gehl, R.J., Millar, N., et al. Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Global Change Biology,2011,17,1140-1152.
    Hou, P., Gao, Q., Xie, R., et al. Grain yields in relation to N requirement:Optimizing nitrogen management for spring maize grown in China. Field Crop Research,2012,129,1-6.
    Huang, J., Hu, R., Cao, J., et al. Training programs and in-the-field guidance to reduce China's overuse of fertilizer without hurting profitability. Journal of Soil and Water Conservation,2008,63, 165A-167A.
    Huang, T., Gao, B., Christiel, P., et al. Net global warming potential and greenhouse gas intensity in a double cropping cereal rotation as affected by nitrogen and straw management. Biogeosciences Discuss,2013,10,13191-13229.
    IFA. IFA Database. International Fertilizer Industry Association.2014.
    IF A. World agricultural situation and fertilizer demand, Global Fertilizer Supply and Trade 2003/04-2008/09. Available at:IFA Annual Conference.2004.
    Iowa State University-Agronomy Extension. Corn Nitrogen Rate Calculator.2003.
    IPCC. Agriculture, forestry and other land use. In:Eggelston, S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (Eds.),2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan,2006, pp.54.
    IPCC. Energy. In:Eggelston, S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (Eds.),2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan,2006, pp.78.
    Ju, X., Xing, G., Chen, X., et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences,2009,106, 3041-3046.
    Kim, S., Dale, B., Jenkins, R. Life cycle assessment of corn grain and corn stover in the United States. The International Journal of Life Cycle Assessment,2009,14,160-174.
    Klein, C.D., Novoa, R.S.A., Ogle, S., et al. IPCC Guidelines for National Greenhouse Gas Inventories Chapter 11:N2O emissions from managed soils, and CO2 emissions from lime and urea application. 2006.
    Ladha, J.K. Efficiency of fertilizer nitrogen in cereal production:retrospects and prospects. Advances in Agronomy,2005,87,85-156.
    Lal, R. Carbon emission from farm operations. Environment International,2004,30,981-990.
    Le, C., Zha, Y., Li, Y., et al. Eutrophication of lake waters in China:cost, causes, and control. Environmental Management,2010,45,662-668.
    Lee, H.J., Lee, S.H., Chung, J.H. Variation of nitrogen use efficiency and its relationships with growth characteristics in Korean rice cultivars. In:Proc.4th International Crop Science Congress Australia. 2004.
    Lehmann, J., Schroth, G. Nutrient leaching. In:Schroth, G., Sinclair, F. (Eds.), Trees, Crops and Soil fertility-Concepts and Research methods. CAB International, Wallingford, UK.2003.
    Leip, A., Bocchi, S. Contribution of rice production to greenhouse gas emission in Europe. In: Proceedings of the 4th Temperate Rice Conference,2007, pp.25-28.
    Li, Y., Fredrich, K., Pan, J., et al. Fertilizer use patterns in Yunnan Province, China:Implications for agricultural and environmental policy. Agricultural Systems,2012,110,78-89.
    Liu, X., Duan, L., Mo, J., et al. Nitrogen deposition and its ecological impact in China:an overview. Environmental pollution,2011,159,2251-2264.
    Lu, C., Tian, H. Net greenhouse gas balance in response to nitrogen enrichment:perspectives from a coupled biogeochemical model. Global Change Biology,2012,19,571-588.
    Mamo, M., Malzer, G., Mulla, D., et al. Spatial and temporal variation in economically optimum nitrogen rate for corn. Agronomy Journal,2003,95,958-964.
    Matson, P.A., Naylor, R., Ortiz-Monasterio, Ⅰ. Integration of environmental, agronomic, and economic aspects of fertilizer management. Science,1998,280,112-115.
    Mergos, G.J. and Stoforos, C.E. Fertilizer demand in Greece. Agriculture Economics,1997,16: 227-235.
    Millar, N., Robertson, G.P., Grace, P.R., et al. Nitrogen fertilizer management for nitrous oxide (N2O) mitigation in intensive corn (Maize) production:an emissions reduction protocol for US Midwest agriculture. Mitigation and Adaptation Strategies for Global Change,2010,15,185-204.
    Nykanen, H., Alm, J., Lang, K., et al. Emissions of CH4, N2O and CO2 from a virgin fen and a fen drained for grassland in Finland. Journal of Biogeography,1995,22,351-357.
    OECE. Environmental indicators for agriculture:Methods and results. Paris:Organisation for Economic Co-operation and Development. Available:www.oecd.org/greengrowth/sustainable-agriculture/ 1916629.pdf.
    Olsen, S.R., Cole, C.V., Watanabe, F.S., A., D.L. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. USDA Circ.939. U.S.Gov. Print. Office, Washington, DC. 1954.
    Peng, S., Buresh, R.J., Huang, J., et al. Improving nitrogen fertilization in rice by site-specific N management. Agronomy for Sustainable Development,2010,30,649-656.
    Peng, S., Buresh, R.J., Huang, J.L., et al. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crop Reseach,2006,96,37-47
    Peng, S., Tang, Q., Zou, Y. Current status and challenges of rice production in China. Plant Production Science,2009,12,3-8.
    Roos, E., Sundberg, C, Hansson, P. Uncertainties in the carbon footprint of refined wheat products:a case study on Swedish pasta. The International Journal of Life Cycle Assessment,2011,16, 338-350.
    Sawyer, J., Nafziger, E., Randall, G., et al. Concepts and rationale for regional nitrogen rate guidelines for corn. Iowa State University, Extension Publication PM2015, Iowa, USA.2006.
    Smith, P.. Agricultural greenhouse gas mitigation potential globally, in Europe and in the UK:what have we learnt in the last 20 years? Global Change Biology,2012,18,35-43.
    Smith, P., Marrino, D., Cai, Z., et al. Agriculture. In:Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A. (Eds.), Climate Change 2007:Mitigation. Contribution of Working Group Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.2007.
    Soper, R., Huang, P. The effect of nitrate nitrogen in the soil profile on the response of barley to fertilizer nitrogen. Canadian Journal of Soil Science,1963,43,350-358.
    Sutton, M.A., Oenema, O., Erisman, J.W., et al. Too much of a good thing. Nature,2011,472,159-161.
    Tilman, D., Fargione, J., Wolff, B., et al. Forecasting agriculturally driven global environmental change. Science,2001,292,281-284.
    Tilman, D., Cassman, K.G., Matson, P.A., et al. Agricultural sustainability and intensive production practices. Nature,2002,418,671-677.
    Tilman, D., Balzer, C., Hill, J., et al. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences,2001,108,20260-20264.
    UN-FAO. Fertilizer requirements in 2015 and 2030 revisited.2004.
    USDA. Agriculture-Date and statistics. United States Department of Agriculture. Available at: http://www. usda. gov/wps/portal/usda/usdahome?navid=DATA_STATISTICS&navtype=RT &parentnav=AGRICULTURE.2011.
    Van Reeuwijk, L. Procedures for Soil Analysis,3rd ed. ISRIC, Wageningen, the Netherlands.1992.
    Vitousek, P.M., Aber, J.D., Howarth, R.W., et al. Human alteration of the global nitrogen cycle:sources and consequences. Ecological applications,1997,7,737-750.
    Vitousek, P.M., Naylor, R., Crews, T., et al. Nutrient imbalances in agricultural development. Science, 2009,324,1519-1520.
    Walkley, A. A critical examination of a rapid method for determining organic carbon in soils:effect of variations in digestion conditions and of inorganic soil constituent. Soil Science,1947,251-263.
    Wang, G., Dobermann, A., Witt, C., et al. Performance of site-specific nutrient management for irrigated rice in southeast China. Agronomy Journal,2001,93,869-878.
    Wang, S. B., Halbrendt, C. and Johnson, S.R. Grain production and environmental management in China's fertilizer economy. Journal of Environmental Management,1996,47:283-296.
    Wang, W., Lu, J., Ren, T., et al. Evaluating regional mean optimal nitrogen rates in combination with indigenous nitrogen supply for rice production. Field Crop Research,2012,137,37-48.
    Wehrmann, J., Scharpf, H.C. Mineral nitrogen in soil as an indicator for nitrogen fertilizer requirements (Nmin-method). Plant Soil,1979,52,109-126.
    Wehrmann, J., Scharpf, H.C., Kuhlmann, H. The Nmin method-an aid to improve nitrogen efficiency in plant production, In Nitrogen Efficiency in Agricultural Soils ed Jenkinson D S, Smith K A (Netherlands:Elsevier Applied Science),1988, pp.38-45.
    White, J.W. Relative significance of dietary source of nitrate and nitrite. Journal of Agricultural and Food Chemistry,1975,23:886-891.
    Williams, A., Audsley, E., Sandars, D. Environmental burdens of producing bread wheat, oilseed rape and potatoes in England and Wales using simulation and system modelling. The International Journal of Life Cycle Assessment,2010,15,855-868.
    Williams, A.G., Audsley, E., Sandars, D.L. Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities. Final report to Defra on project ISO205. Available on www.agrilca.org and www.defra.gov.uk.2006.
    Wood, S., Henal, J. and Rosegrant, M. The role of nitrogen in sustaining food production and estimating future nitrogen fertilizer needs to meet food demand. In Mosier, A.R., Syers, J.K., and Freney, J.R. Agriculture and the nitrogen cycle. London:Island Press,2005, pp.245-260.
    Wu, L., Chen, X., Cui, Z., et al. Establishing a Regional Nitrogen Management Approach to Mitigate Greenhouse Gas Emission Intensity from Intensive Smallholder Maize Production. Plos One, 2014a. (Accepted).
    Wu, L., Chen, X., Cui, Z., et al. Improving Nitrogen Management via a Regional Management Plan for Smallholder Chinese Rice Production. Environmental Research Letters,2014b. (Submitted).
    Wuebbles, D.J. Nitrous oxide:no laughing matter. Science,2009,326,56-57.
    Xia, Y., Yan, X. Life-cycle evaluation of nitrogen-use in rice-farming systems:implications for economically-optimal nitrogen rates. Biogeosciences,2011,8,3159-3168
    Yang, X., Fang, S., Lant, C.L., et al. Overfertilization in the Economically Developed and Ecologically Critical Lake Tai Region. China Human Ecology,2012,40,1-8.
    Zhang, F., Cui, Z., Fan, M., et al. Integrated soil-crop system management:reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China. Journal of Environmental Quality,2011,40,1051-1057.
    Zhang, F.S., Cui, Z.L., Chen, X.P., et al. Chapter one-Integrated nutrient management for food security and environmental quality in China In Adv. Agron. ed Donald L S (Academic Press),2012, pp. 1-40.
    Zhang, W., Dou, Z., He, P., et al. Improvements in manufacture and agricultural use of nitrogen fertilizer in China offer scope for significant reductions in greenhouse gas emissions. Proceedings of the National Academy of Sciences,2013,110,8375-8380
    Zheng, X.H., Han, S.H., Huang, Y. Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Global Biogeochemical Cycles, 2014,18,1-19.
    Zhu, Z. and Chen, D. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies. Nutrient Cycling in Agroecosystems,2002,63, 117-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700