川西亚高山复合群落中岷江冷杉和四种草本植物生长对CO_2浓度和温度升高的响应及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自工业革命以来,全球范围内大气CO2浓度及其他温室气体浓度逐渐升高,并引发温室效应,导致全球温度上升。CO2浓度和温度升高及由此引起的其他环境问题对自然生态系统及人类社会的影响已成为全球变化研究中的焦点。而高山树线区的复合群落,因其生长在环境异质性高、生长条件相对苛刻的环境中而对外界干扰异常敏感,这使其成为气候变化对植物影响研究的一个理想平台。川西亚高山林草交错区是青藏高原东缘亚高山针叶林和亚高山草甸交错地带,微生境梯度变化剧烈,环境异质性高,是全球变化的敏感地带之一。该地区气候变化对植物生长影响的信息有助于理解北半球中纬度地区植物群落结构和组成在未来气候条件下的变化。
     本文通过人工控制环境生长室系统,模拟未来变化的气候条件,分别研究CO2浓度升高、温度升高及二者同时升高对林线建群种的生长、生理和形态结构的影响,并从生理和形态结构的角度探讨植物生长对气候变化的响应机理。以期通过对川西亚高山林线区主要木本和草本植物的研究,明确气候变化对不同物种影响的差异,为预测未来气候变化条件下群落的动态提供理论依据,也为C循环模型的运行提供基础数据。
     主要研究结果和结论如下:
     1) CO2浓度和温度升高对群落生物量的影响
     CO2浓度升高、温度升高及二者同时升高3种处理下群落的生物量均比对照降低,分别为645.95g/m2、515.83g/m2和584.19g/m2,而对照处理下群落的生物量为769.48g/m2;进一步的研究表明,群落生物量的减少是由群落中不同物种对CO2浓度和温度升高响应的不同、及由此导致的各组分所占群落比例的变化造成的。糙野青茅和甘肃苔草生物量占群落生物量的比例较大,因此,其生物量的大幅降低抵消了冷杉、东方草莓和紫花碎米荠生物量的增加,引起群落生物量的降低。群落中不同组分生物量变化的不同、甚至相反,可能导致群落组成和结构的变化。
     2)乔木和草本植物生长、生理和形态结构对CO2浓度和温度升高的响应
     CO2浓度和温度升高均使乔木物种冷杉幼苗生物量的积累增加,对其生长产生正效应。而且,温度升高促进了CO2浓度对冷杉幼苗的这种正效应。草本植物中,除CO2浓度升高条件下糙野青茅生物量没有显著变化外,CO2浓度升高、温度升高及二者同时升高均使糙野青茅和甘肃苔草的生物量降低。相反,3种处理下,东方草莓和紫花碎米荠的生物量均增加(除东方草莓在温度升高下降低外)。这表明,CO2浓度和温度升高有利于冷杉和非优势草本物种(东方草莓和紫花碎米荠)的生长,而优势草本植物(糙野青茅和甘肃苔草)的生长被抑制。因此,气候变化条件下,优势草本植物和非优势草本植物可能会互相转换。
     CO2浓度升高与CO2浓度和温度同时升高条件下,由于CO2对Rubisco结合位点竞争的增强或叶片中光合系统结构的改变,冷杉和草本植物的光合速率均比对照增加,而水分利用效率的提高则与光合速率和蒸腾速率的变化有关;温度升高使乔木和草本植物的气孔导度和蒸腾速率均增加,但由于冷杉、糙野青茅和甘肃苔草的光合速率没有变化,导致其水分利用效率降低;而东方草莓和紫花碎米荠因光合速率提高而使水分利用效率增加。气候变化下,物种水分利用效率的提高有助于缓解由温度升高或降雨分配变化引起的干旱胁迫,增加其在群落中的竞争力。
     乔木和4种草本植物在CO2浓度升高、温度升高及二者同时升高环境下生长2个生长季后,均出现光合速率下调现象。但是,综合来看,冷杉的光合参数下降幅度小于4种草本植物。通过对Pn-PAR和Pn-Ci响应曲线的模拟计算可知,乔木和草本植物的表观量子产量、羧化速率均降低,这意味着植物在高CO2浓度和温度条件下转化光能的能力和Rubisco酶含量或活性降低;CO2补偿点和光补偿点的升高则意味植物利用CO2和光能的范围缩小。
     乔木和草本植物的N养分吸收和利用效率对C02浓度和温度升高的响应差别较大。CO2浓度升高、温度升高及二者同时升高均增加冷杉的养分吸收量,但养分利用效率在单独CO2浓度升高和单独温度升高情况下均无显著变化;相反,草本植物的N吸收总量在3种处理下降低或不变,但其养分利用效率提高,这可能会部分缓解因N吸收不足导致的生长限制。这表明不同功能类型植物的养分吸收和利用策略对气候变化的响应不同。
     CO2浓度升高、温度升高及二者同时升高均影响冷杉的树冠结构:树冠体积和总叶面积增加、树冠内枝的角度、长度和分布发生改变,使其更有利于接受光能;CO2浓度升高和温度升高使冷杉的根冠比增加。这些变化有利于其对地上和地下资源的获取。相反,糙野青茅和甘肃苔草根冠比和总叶面积在3种处理下均降低,这降低了其获取资源的可能性。因此,植物能够通过结构的改变而影响对资源的获取或利用效率。
     CO2浓度升高使乔木和草本植物的比根长均增加,而根长N吸收率降低,表明植物对地下资源的获取是通过增加资源的投入而扩大占据的空间,从而增加对资源的获得。这可能与CO2浓度升高使土壤中可利用的N减少有关;温度升高及CO2浓度和温度同时升高条件下,冷杉比叶面积增大,而根长N吸收率降低,草本植物的变化与冷杉相反。这表明温度升高对不同植物地上-地下资源投入与获取效率影响具有差异性。
     3)植物生长对CO2浓度和温度升高响应的机理因不同物种而异
     乔木和草本植物的生长对CO2浓度和温度升高的响应机理不同。CO2浓度升高条件下冷杉生物量的增加主要与占有的总空间、总资源吸收、光合和水分利用效率的增加有关,而与N有关的生理特征和形态特征对冷杉的生长不利;CO2浓度和温度同时升高条件下,总资源的增加和单位资源利用效率的提高共同促进冷杉生物量的增加,这使得二者同时升高条件下冷杉幼苗的生物量增加幅度大于单独升高条件下生物量增加的幅度。CO2浓度升高及CO2浓度和温度同时升高条件下,东方草莓和紫花碎米荠的生长被促进,糙野青茅和甘肃苔草的生长因受形态结构的不利影响而受到限制。温度升高通过扩大总的占有空间、增加对资源的吸收,而不是通过提高光合速率及资源的利用效率来促进冷杉的生长。温度升高条件下草本植物(除东方草莓外)则因资源吸收和形态上的不利其生长受到限制。这种生长变化机理上的差异表明,运用碳循环模型对未来气候条件下C循环进行预测时,在不同的模拟情景下、对不同的群落及物种,植物的生理和形态结构指标应加以修正。
The atmosphere CO2 concentration and other greenhouse gas have steadily risen globally after the industrial revolution, and result in the increased temperature due to the global greenhouse effects. The influences of these changes and other environmental problems on natural ecosystem and human society have become a major topic of discussion in global climate change studies. Ecotone at subalpine treeline is highly sensitive to disturbance and environmental change due to high environmental heterogeneity and harsh condition. Many species are at the limits of their distributional ranges at ecotone. So, ecotone can be a suitable platform for climate change research. Subalpine transition zone of forest and grass at Western Sichuan Province is in eastern edge of Qinghai-Tibetan Plateau. It is one of the major concerns in global climate change studies, with sharp environment gradient. The study on effects of climate change on plant growth would be helpful for understanding the change of community structure and components in the future climate.
     In this study, fir(Abies faxoniana) and four herbs with native soil from subalpine tree line ecotone were transferred into enclosed-top chambers for elevated CO2 and temperature treatments. The objective of this study was to determine the effects of CO2 and temperature on growth, physiology and morphology under competitive condition. At the same time, the possible mechanism of growth is discussed in terms of physiology and morphology. With research on fir and 4 herbs under elevated CO2 and temperature, we hope to detect the difference in effects of elevated CO2 and temperature on different species. Therefore, our results intent to provide theoretical evidence for predicting developments of community and basic data for carbon cycle model in future climate.
     The results and conclusions are as follows:
     1) Effects of elevated CO2 aud temperature on biomass of community
     Biomass of community was 645.95g/m2,515.83g/m2 and 584.19g/m2 respectively under elevated CO2, elevated temperature and the combination of elevated CO2 and temperature, which decreased significantly compared to the control (769.48g/m2). Further analysis showed that the different responses of species to elevated CO2 and temperature resulted in change of community components. Decreases in biomass of Deyeuxia scabrescen and Carex kansuensis, which contributed larger proportion to community biomass, offset increases in biomass of fir, Fragaria orientali and Cardamine tangutorum. The difference in biomass response of species to elevated CO2 and temperature, even reverse, resulted in change of community components and structure.
     2) Responses of Arbor and 4 herbs to elevated CO2 and temperature in growth, physiology and morphology
     Elevated CO2, elevated temperature and the combination of elevated CO2 and temperature stimulated the growth of fir. Furthermore, high temperature accelerated the stimulation of elevated CO2 on growth. Except for Deyeuxia scabrescen under elevated CO2, elevated CO2, elevated temperature and the combination decreased the biomass of Deyeuxia scabrescen and Carex kansuensis. On the contrary, biomass of Fragaria orientali and Cardamine tangutorum increased under elevated CO2, elevated temperature and the combination, except for Fragaria orientali under elevated temperature. The above meant that elevated CO2 and temperature was favorable for the growth of fir and some of herbs, but disadvantageous to the other herbs, which suggested that in low temperature ecotone, dominant and subordinate herbs in subalpine ecotone might shift relative to each other in the climate change.
     Elevated CO2 and the combination of elevated CO2 and temperature increased the photosynthesis and water use efficiency of arbor and 4 herbs. Elevated temperature increased stomata conductance and transpiration of arbor and 4 herbs. So, water use efficiency of fir, Deyeuxia scabrescen and Carex kansuensis decreased due to no change in photosynthesis, while increased for Fragaria orientali and Cardamine tangutorum due to increased photosynthesis. Increased water use efficiency of some species under the changed climate would alleviate dry stress caused by elevated temperature or changed precipitation, which might improve the competitive ability.
     Photosynthetic acclimation was observed in arbor and 4 herbs under elevated CO2, elevated temperature and the combination of elevated CO2 and temperature. In addition, the magnitude of reduction in photosynthetic parameter of fir was smaller than that of 4 herbs. Analysis on Pn-PAR and Pn-Ci curve showed that apparent quantum yield and carboxylated efficiency of arbor and 4 herbs decreased under elevated CO2, elevated temperature and the combination. This meant a decline in electron transport, Rubisco content and activity of fir and herbs grown at elevated CO2 and temperature. Increased CO2 compensated point and light compensated point meant that plant decreased their capacity to use the low CO2 concentration and light.
     Elevated CO2, elevated temperature and the combination of elevated CO2 and temperature increased N absorption of fir, but decreased or had no influence on herbs. N use efficiency of fir was not influenced by elevated CO2 and elevated temperature, but enhanced for herbs under elevated CO2, elevated temperature and the combination of elevated CO2 and temperature. High N use efficiency of herbs might alleviate N insufficiency. The above suggested that strategy in absorption and use of nutrient among species was different under elevated CO2 and temperature.
     Crown morphology of fir was influenced by elevated CO2, elevated temperature and the combination of elevated CO2 and temperature, with larger crown volume and leaf area, changed branch angle, length and distribution. Elevated CO2 and elevated temperature both increased root to shoot ratio (RSR). The above changes in morphology were favorable for fir to intercept light and absorb belowground resources. On the contrary, RSR and total leaf area of Deyeuxia scabrescen and Carex kansuensis decreased at elevated CO2, elevated temperature and the combination of elevated CO2 and temperature, which was disadvantageous for capturing resources. So, morphology of plants could regulate the potential to exploit resources.
     Specific root length of arbor and herbs increased at elevated CO2, while N absorption per root length decreased, which suggested that in order to exploit more resources, plants used more investment to occupy larger space. This might be related to less N availability of soil at elevated CO2. Elevated temperature and the combination of elevated CO2 and temperature increased specific leaf area of fir, but decreased N absorption per root length. The reverse was true for herbs. The above showed that elevated temperature had different effects on efficiency of investment and acquisition between fir and herbs.
     3) The mechanism of growth response to elevated CO2 and temperature was different among species
     The mechanism of growth response in arbor and herbs to elevated CO2 and temperature was different. The stimulated growth of fir at elevated CO2 was resulted from larger occupied space, increased total absorbed resources, photosynthesis and water use efficiency, but the physiological and morphological traits related to N were disadvantageous to the growth of fir. The combination of elevated CO2 and temperature stimulated the growth of fir through increased total resources and high use efficiency of resources. Growth of Deyeuxia scabrescen and Carex kansuensis was constrained at elevated CO2 and the combination of elevated CO2 and temperature due to morphology. The increased growth of fir at elevated temperature was resulted from larger occupied space and increased total absorbed resources, but not from increasing use efficiency of resources. Except for Fragaria orientali, herbs growth were constrained at elevated temperature due to the low use efficiency of resources and morphology. The above differences in mechanism of growth response between fir and herbs suggested that the physiological and morphological parameter used in carbon cycle model should be adjusted when predicting the global carbon balance at the different conditions.
引文
1. Aben S.K., Seneweera S.P., Ghannoum O, Conroy J.P. (1999) Nitrogen requirements for maximum growth and photosynthesis of rice, Oryza SativaL.cv. Jarrah grown at 36 and 70 Pa CO2. Australian Journal of Plant Physiology,26, 759-766.
    2. Ackerly D.D., Coleman J.S., Morse S.R., Bazz F.A. (1992) CO2 and temperature effects on leaf area production in two annual plant species. Ecology, 73,1260-1269.
    3. ACIA (2005) Presentation of the Arctic Climate Impact Assessment overview report and international workshop on climate changes in the Arctic and international polar year 2007/2008 in the Arctic. Cambridge, UK: Cambridge University Press
    4. Aerts R., Cornelissen J.H.C., Dorrepaal E. (2006) Plant performance in a warmer" world: General responses of plants from cold, northern biomes and the importance of winter and spring events. Plants and Climate Change,41,65-78
    5. Ainsworth E.A., Davey P.A., Hymus G.J., Osbonre C.P., Rogers A., Blum H., Nosberger J., Long S.P. (2003) Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with Loium perenne grown for 10 years at two nitrogen fertilization levels under Free Air CO2 Enrichment (FACE). Plant Cell and Environment,26,705-714.
    6. Allen L.H. (1994) Carbon dioxide increase: direct impacts on crops and indirect effects mediated though anticipated climatic changes. Soil Science Society of America,17,425-459.
    7. Alonso A., Perez, P., Martinez-Carrasco R. (2009) Growth in elevated CO2 enhances temperature response of photosynthesis in wheat. Physiologia Plantarum,135,109-120.
    8. Amity L.W., Karen E., Jasmine K.J., Jacqueline K.V. (2007) Warming and free-air CO2 enrichment alter demographics in four co-occurring grassland species. New Phytologist,176,5-374.
    9. An Y., Wan S., Zhou X., Subedar A.A., Wallace L.L., Luo Y. (2005) Plant nitrogen concentration, use efficiency and contents in a tallgrass prairie ecosystem under experimental warming. Global Change Biology,11,1133-1144.
    10. Anke L., Wright R.F. (1997) Experimentally increased soil temperature causes release of nitrogen at a boreal forest catchment in southern Norway. Global Change Biology,3,13-21.
    11. Aphalo P.J., Jarvis P.G.(1991) Do stomata respond to relative humidity? Plant, Cell and Environment,14,127-132.
    12. Apple M.E., Lucash M.S., Olszyk D.M., Tingey D.T. (1998) Morphogenesis of Douglas fir buds is altered at elevated temperature but not at elevated CO2. Environmental and Experimental Botany,40,159-172.
    13. Arnone J.A., Zaller J.G., Spehn E., Niklaus P.A., Wells C.E., Korner C.H. (2000) Dynamics of root systems in native grasslands: effects of elevated atmospheric CO2. New Phytologist,147,73-85.
    14. Arp W.J.D., Rake B.G. (1991) Increased photosynthetic capacity of S cirp s olney i after 4 years of exposure to elevated CO2. Plant, Cell and Environment,14, 1004-1008.
    15. Atkin, O.K., Scheurwater I., Pons T. L. (2006) High thermal acclimation potential of both photosynthesis and respiration in two lowland Plantago species in contrast to an alpine congeneric. Global change biology,12,678-682.
    16. Baker J.T., Lauge F., Boote K.J. (1992) Effects of daytime carbon dioxide concentration on dark respiration in rice. Plant, Cell and Environment,15,231-239.
    17. Bassirirad H., Griffin K.L., Reynolds J.F. (1997) Change in root NH4+ AND NO3- absorption rates of loblolly and ponderose pine in response to CO2 enrichment. Plant Soil,190,1-9.
    18. Bassirirad H. (2000) Kinetics of nutrient uptake by roots: responses to global change. New Phytologist,147,155-169.
    19. Bazzaz F.A. (1990) The response of natural ecosystem s to the rising global CO2 levels. Annual Review of Ecology and System atics,21,167-176.
    20. Bell A.D. (1991) Plant form: an illustrated guide to flowering plant morphology. Oxford:Oxford University Press.
    21. Ben-Asher J., Garcia Y., Hoogenboom G. (2008) Effect of high temperature on photosynthesis and transpiration of sweet corn. Photosynthetica,46,595-603.
    22. Beerling D.J., Woodward F.I. (1995) Leaf stable carbon-isotope composition records increased water-use efficiency of C3 plants in response to atmospheric CO2 enrichment. Functional Ecology,9,394-401.
    23. Berry J.A., Bjorkman O. (1980) Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology,31,491-543.
    24. Bert G., Drake Miquel A. (1997) More efficient plants:a consequence of rising atmospheric CO2. Annual Reviews of Plant Physiology and Plant Molecular Biology,48,609-639.
    25. Bigras F.J., Bertrand A. (2006) Response of Picea mariana to elevated CO2 concentration duirng growth, cold hradening and heat hardening:phenology, cold tolerance, photosynthesis and growth. Tree Physiology,26,875-8.
    26. Bloor J.M.G., Barthes L., Leadley P.W. (2008) Effects of elevated CO2 and N on tree-grass interactions:an experim(?)ntal test using Fraxinus excelsior and Dactylis glomerata. Functional Ecology,22,537-546.
    27. Blyakharchuk T. A., Wright H. E., Borodavko P. S. (2004) Late Glacial and Holocene vegetational changes on the Ulagan-mountain plateau, Altai Mountains, Southern Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology,209, 259-279.
    28. Boeck H.J., Lemmens C.M.H.M., Zavalloni C., Gielen B., Malchair S. (2008) Biomass production in experimental grasslands of different species richness during three years of climate warming. Biogeosciences,5,585-594.
    29. Bond W.J., Midgley G.F., Woodward F.I. (2003) The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Global Change Biology,9,973-982.
    30. Bowes G. (1993) Facing the Inevitable: Plants and Increasing Atmospheric CO2. Annual Reviews of Plant Physiology and Plant Molecular Biology,44,309-332
    31. Bozzuto L.M., Wilson B.F. (1988) Branch angle in red maple trees. Canadian Journal of Forest Research,18,643-646.
    32. Bret-Harte M.S., Shaver G.R. and Zoerner J.P. (2001) Developmental plasticity allows Betula nana to dominate tundra subjected to an altered environment. Ecology,82,18-32.
    33. Bridgham S.D., Pastor J.M. and Claugherty C.A. (1995) Nutrient-use efficiency: A litterfall index, a model, and a test along a nutrient-availability gradient in North Carolina Peatlands.The American Naturalist,145,1-21.
    34. Brooker R.W. (2006) Plant-plant interaction and environmental change. New Phytologist,171,71-284.
    35. Bruhn J.N., Wetteroff J.J., Pickens J.B. (2000) Characteristics of harvest disturbance within tree populations in upland Ozark forest of MOFEP. Phytopathology,90,510-514.
    36. Bunce J.A. (1992) Stomatal conductance, photosynthesis and resp iration of temperate deciduous tree seedlings growth outdoors at an elevated concentration of carbon dioxide. Plant, Cell and Environment,15,541-549.
    37. Bunce J.A. (2008) Acclimation of photosynthesis to temperature in Arabidopsis thaliana and Brassica oleracea. Photosynthetica,46,517-524.
    38. Campbell B.D., Laing W.A., Greer D.H., Crush J.R., Clark H., Williamson Y., Given M.D. (1995) Variation in grassland population and species and the implications for community responses to elevated CO2. Journal of Biogeography, 22,315-322.
    39. Carter E.B., Theodorou M.K., Morris P. (1997) Responses of Lotus corniculatus to Environmental Change. I. Effects of Elevated CO2, Temperature and Drought on Growth and Plant Development. New Phytologist,136,245-253.
    40. Ceulemans R., Mousseau M. (1994) Effects of elevated atmospheric CO2 on woody plants. New Phytologist,127,425-442.
    41. Chapin F.S. (1980) The mineral nutrient of wild plants. Annual Review of Ecology and System,11,233-239.
    42. Chen G.Y., Yong Z.H., Liao Y., Zhang D.Y., Chen J., Zhu J.G., Xu D.Q. (2005) Photosynhtetic acclimaiton in rice leaves to free-air CO2 enrichment related to ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1, 5-bisphosphate regeneration limitaiton. Plant Cell Physiology,46,1036-1045.
    43. Clements F.C. (1905) Research methods in ecology. University Publishing Company, Lincoln, Nebraska, USA.
    44. Cluzeau C., Le Goff N., Ottorini J.M. (1994) Development of primary branches and crown profile of Fraxinuesx celsior. Canadian Journaol of Forest Research, 24,2315-2323.
    45. Clymo R.S. (1973) The growth of Sphagnum: some effects of environment. Journal of Ecology,61,849-869.
    46. Coleman J.S., Bazzaz F.A. (1992) Effects of CO2 and Temperature on Growth and Resource Use of Co-Occurring C3 and C4 Annuals. Ecology,73,1244-1259.
    47. Cotrufo M.F., Ineson P., Scott A. (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology,4,43-54.
    48. Cure, J.D., Acock B. (1986) Crop responses to carbon dioxide doubling: A literature survey. Agricultural and forest meteorology,38,127-145.
    49. Curtis P.S. (1996) A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant. Cell and Environment,19,127-137.
    50. Curtis P.S., Wang X.A. (1998) Meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia,113,299-313.
    51. Danielle A., Sage W. R. (2008) Elevated growth temperatures reduce the carbon gain of black spruce. Global Change Biology,14,624-636.
    52. David M., Olszyk, Mark G., Johnson, Tingey D.T., Paul T. (2003) Whole-seedling biomass allocation, leaf area, and tissue chemistry- for Douglas-fir exposed to elevated CO2 and temperature for 4 years. Canadian Journal of Forest Research,33,268-279.
    53. David T., Tingey, R.M., David M. (2003) Elevated CO2 and temperature alter nitrogen allocation in Douglas-fir. Global Change Biology,9,1038-1050.
    54. Delucia E.H., Hamilton J.G., Naidu S.L., Thomas R.B., Andrews J.A., Finzi A., Lavine M., Matamala R., Mohan J.E., Hendry G.R., Schlesinger W.H. (1999) Net primary production of a forest ecosystem with experimental CO2 enrichment. Science,284,1177-117.
    55. Delucia E.H., Sasek. T.W.,Strain B.R. (1985) Photosynthetic z(?)hibition after long term exposure to elevated levels of atmospheric carbon dioxide. Photosynthesis Research,7,175-184.
    56. Deleuze C., Herve J.C., Colin F., Ribeyrolles L. (1996) Modelling crown shape of Picea abies. Spacing effects. Canadian Journal of Forest Research,26, 1957-1965.
    57. Dewar R.C., Medlyn B.E., McMurtrie R.E. (1998) A mechanistic analysis of light and carbon use efficiencies. Plant Cell Environment,21,573-588.
    58. Diaz S., Grime J.P., Harris J. (1993) Evidence of feedback mechanism limiting plant response to elevated carbon dioxide. Nature,364,616-617.
    59. Diehl S., Berger S., Wohrl R. (2005) Flexible nutrient stoichiometry mediates environmental influences, on phytoplakton and its resources. Ecology,86, 2931-2945.
    60. Donald R. Z., Kurt S. P., Peter S. C., Christoph S. V. (2000) Atmospheric CO2, soil-N availability, and allocation of biomass and nitrogen by populus tremuloides. Ecological Applications,10,34-46.
    61. Drake B., Lealey P.W. (1991) Canopy photosynthesis of crops and native plant communities exposed to long-term elevated CO2. Plant, Cell and Environment,14, 853-860.
    62. Drennan P.M., Nobel P.S. (1998) Root growth dependence on soil temperature for Opuntia ficus-indica: influences for air temperature and a doubled CO2 concentration. Functional Ecology,12,959-964.
    63. Eamus D., Jarvis P.G. (1989) The direct effects of increase in the global atmospheric CO2 concentrtion on natural and commercial temperate trees and forests. Advances in Ecological Research,19,1-15.
    64. Elizondo E.B., Gonzalo J.G., Peltola H., Matala J., Kellomaki S. (2006) Sensitivity of growth of Scots pine, Norway spruce and silver birch to climate change and forest management in boreal conditions. Forest Ecology and Managment,232,152-167.
    65. Epron D., Liozon R., Mousseau M. (1996) Effects of elevated CO2 concentration on leaf characteristics and photosynthetic capacity of beech (Fagus sylvatica) during the growing season. Tree physiology,16,425-432.
    66. Farqugar G.D., Von Caemmerer S, Berry J.A.A. (1982) Biochemical model of photosynthetic CO2 fixation in C3 species. Planta,149,178-190.
    67. Ferrar P.J., Slatyer R.O., Vranjic J.A. (1989) Photosynthetic temperature acclimation in Eucalyptus species from diverse habitats and a comparison with Nerium oleander. Plant Physiology,16,199-217.
    68. Ferris R. and Taylor G. (1993) Contrasting effects of elevated CO2 on the root and shoot growth of four native herbs commonly found in chalk grassland, New Phytologist.125,855-866
    69. Field C.B., Matson P.A., Mooney H.A. (1992) Responses of terrestrial ecosystems to a changing atmosphere. Annual Review of Ecology and Systematics,23,201-235.
    70. Fiter A.H., Graves J.D. (1998) Root production, turnover and respiration under two grasssland types along an altitudinal gradient: influence of temperature and solar radiation. Oecologea,114,20-30.
    71. Fritschi F.B., Boote K.J., Sollenberger L.E. (1999) Carbon dioxide and temperature effects on forage establishment: photosynthesis and biomass production. Global Change Biology,5,441-453.
    72. Gamier E. (1991) Above and below-ground resource capture in herbaceous plants: Relationships with growth and biomass allocation. Trends Ecology,6,126-131.
    73. Geroge B. (1993) Facing the inevitable: plants and increasing atmospheric CO2. Annual Review of Plant Physiology and Plant Molecular Biology,44,309-332.
    74. Gersani M, Abramsky Z, Falik O. (1998) Density-dependent habitat selection in plants. Evolutionary Ecology,12,223-234.
    75. Gielen B., Calfapietra C., Claus A. (2002) Crown architecture of Populus spp. was differentially modified by free-air CO2 enrichment (POPFACE). New Phytologist,153,91-99.
    76. Gifford R.M. (1992) Interaction of carbon dioxide with growth-limiting environmental factors in vegetation productivity: implications of the global carbon cycle. Advances in Bioclimatology,1,24-58.
    77. Gavazzi G, Seiler J, Aust W, Zedaker S (2000) The influence of elevated carbon dioxide and water availability on herbaceous weed development and growth of transplanted lobolly pine (Pinus taeda). Environmental and Experimental Botany, 44,185-194.
    78. Goldberg D.E., Fleetwood L. (1987) Competitive effect and response in four annual plants. Journal of Ecology,75,1131-1143.
    79. Gosz J.R. (1993) Ecological functions in a Biome transition zone:translating local response to broad-scale dynamics. Ecological Application,3,347-352.
    80. Goulet J., Messier C., Nikinmaa E. (2000) Effect of branch position and light availability on shoot growth of understory sugar maple and yellow birch saplings. Canadian Journal of Botany,78,1077-1085.
    81. Graham D., Patterson B.D. (1982) Responses of plants to low, nonfreezing temperatures:proteins, metabolism, and acclimation. Annual Review of Plant Physiology,33,347-372.
    82. Griffin K.L., Turnbull M., Murthy R. (2002) Leaf respiration is differentially affe(?)d by leaf vs. stand-level night-time warming. Global Change Biology,8, 479-485.
    83. Gunderson C.A., Norby R.J., Wullschleger S.D. (1993) Foliar gas exchange responses of two deciduous hard woods during three years of growth in elevated CO2: No loss of photosynthetic enhancem ent. Plant, Cell and Environment,16, 797-807.
    84. Gunderson C.A., Wullschleger S.D. (1994) Photosynthetic acclimation in trees to rising atmospheric CO2: a broader perspective. Photosynthetic Research,39, 369-388.
    85. Groninger J.W., Seiler J.R., Zedaker S.M., Berrang P.C. (1996) Effects of CO2 concentration and water availability on growth and gas exchange in greenhouse-grown miniature stands of Loblolly Pine and Red Maple. Functional Ecology,10,708-716.
    86. Hadley P., Batts G.R., Ellis R.H., Morison J.I.L., Pearson S., Wheeler T.R. (1995) Temperature gradient chambers for research on global environment change. II a twin-wall tunnel system for low stature, field grown crops using a split heat pump. Plant, Cell and Environment,18,1055-1063.
    87. Harley P.C., Sharkey T.D. (1991) An improved model of C3 photosynthesis at high CO2: Reversed 02 sensitivity explained by lack of glycerate reentry into the chloroplast. Photosynthetic Research,27,169-178.
    88. Harmens H., Stirling C.M., Marshall C., Farrar J.F. (2000) Is partitioning of dry weight and leaf area within Dactylis glomerata affected by N and CO2 enrichment. Annals of Botany,86,833-839.
    89. Harte J., Shaw R. (1995) Shifting dominance within a montane vegetation community: results of a climate-warming experiment. Science,267,876-880.
    90. Hattenschwiler S, Korner Ch (1998) Biomass allocation and canopy development in spruce model ecosystems under elevated CO2 and increased N deposition. Oecologia,113,104-114.
    91. He J S., Kelly S., Wolfe-Bellin, Bazzaz F.A. (2005) Leaf-level physiology, biomass, and reproduction of phytolacca Americana under conditions of elevated CO2 and altered temperature regimes. International journal of plant sciences,166, 615-622.
    92. Hendrik Poorter, Marta Perez-Soba. (2001) The growth response of plants to elevated CO2 under non-optimal environmental conditions. Oecologia,129,1-20.
    93. Heijmans MMPD, Klees H, Visser W, Berendse F. (2002) Effects of increased N deposition on the distribution of 15N-labelled N between Sphagnum and vascular plants. Ecosystems,5,500-508.
    94. Hilbert D.W., Larigauderie A. and Reynolds J.F. (1991) The influence of carbon-dioxide and daily photon-flux density on optimal leaf nitrogen concentration and root:shoot ratio. Annals of Botany,68,365-376.
    95. Hileman D.R., Huluka G., Kenjige P.K. (1994) Canopy photosynthesis and transpiration of field-grown cotton exposed to free-air CO2 enrichment (FACE) and differential irrigation. Agricultural and Forest Meteorology,70,189-207.
    96. Hikosaka K., Onoda Y., Kinugasa T., Nagashima H., Anten N.P.R.and Hirose T. (2005) Plant responses to elevated CO2 concentration at different scales:leaf, whole plant, canopy, and population. Ecological Research,20,243-253.
    97. Hirose T. (1975) Relations between turnover rate, resource utility and structure of some plant population: a study in the matter budgets. Journal Fac of Science University of Tokyo, Section 3, Botany,54.695-704.
    98. Hollister R., Webber P., Tweedie C. (2005) The response of Alaskan arctic tundra to experimental warming: differences between short- and long-term responses. Global Change Biology,11,525-536.
    99. Idso S.B. (1987) Effects of atmospheric CO2 enrichment on plant growth: The interactive role of air temperature. Agriculture Ecosystems and Environment,20, 1-10.
    100.Idso S.B., Allen S.G., Anderson M.G. and Kimball B.A. (1989) Atmospheric CO2 enrichment enhances survival of Azolla at high temperature. Environmental and Experimental Botany,29,337-341.
    101.Idso S.B., Kimball B.A. (1992) Effects of atmospheric CO2 enrichment on photosynthesis, respiration and growth of sour orange trees. Plant Physiology,99, 341-343.
    102.Idso S.B., Kim ball B.A., Anderson M.G. (1986) Growth response of a succulent plant, A. gave ilmoriana, to elevated CO2. Plant Physiology,80,796-797.
    103.IPCC. Summary for Policy makers of Climate 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press,200.
    104.Jarvis P.G. (1998) European forests and global change - the likely impacts of rising CO2 and temperature. Cambridge University Press,29-78.
    105.Johnson M.G., Rygiewicz P.T., Tingey D.T., Phillips D.L. (2006) Elevated CO2 and elevated temperature have no effect on Douglas-fir fine-root dynamics in nitrogen-poor soil. New Phytologist,170,345-356.
    106.Jonasson S. (1989) Implications of leaf longevity, leaf nutrient re-absorption and translocation for the resource economy of five evergreen plant species. Oikos,56, 121-131.
    107.Jongen M., Jones M.B. (1995) The effects of elevated CO2 concentration on the root growth of Lolium perenne and Trifolium repens grow in a FACE system. Global Change Biology,1,361-371.
    108.Joseph C.V. (2005) Acclimation of peanut (Arachis hypogaea L.) leaf photosynthesis to elevated growth CO2 and temperature. Environmental and Experimental Botany,53,85-98.
    109.Josep P., Iolanda F. (2001) Leaf mineral concentrations of Erica arborea、 Juniperus communis and Myrtus communis growing in the proximity of a natural CO2 spring. Global change biology,7,291-301.
    110.Josep P., Patricia P., Claus B., Carla C. (2007) Response of plant species richness and primary productivity in shrublands along a north-south gradient in Europe to seven years of experimental warming and drought: reductions in primary productivity in the heat and drought year of 2003. Global Change Biology,13, 2563-2581.
    111.Kakani V.G., Raja R. K. (2007) Temperature response of C4 species big bluestem (Andropogon gerardii) is modified by growing carbon dioxide concentration. Environmental and Experimental Botany,61,281-290.
    112.Kakani V.G., Surabhi G.K., Reddy K.R. (2008) Photosynthesis and fluorescence responses of C4 plant Andropogon gerardii acclimated to temperature and carbon dioxide. Photosynthetica,46,420-430.
    113.Kari Kuokkanen, Shanchun Yan. (2003) Effects of elevated CO2 and temperature on the leaf chemistry of birch Betula pendula and the feeding behaviour of the weevil. Agricultural and forest entomology,5,209-217.
    114.Kerr R.A. (1989) Greenhouse skeptic out in the cold. Science,246,1118-1119.
    115.Kellomaki S., Vaisanen H. and Kolstrom T. (1997) Model computations on the effects of elevating temperature and atmospheric CO2 on the regeneration of Scots pine at the timber line in Finland. Climatic Change,37,683-708.
    116.Kellomaki S., Wang K.Y. (2001) Growth and Resource Use of Birch Seedlings under Elevated carbon Dioxide and Temperature. Annual Botany,87,669-682.
    117.Kim H.S., Gitz D.C., Sicher R.C., Baker J.T., Timlin DJ., Reddy V.R. (2007) Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2. Environmental and experimental Botany,61,224-236.
    118.Kimball B.A., Manuey J.R., Nakayama F.S. (1993) Effects of increasing atmospheric on CO2 vegetation. Vegetatio,104/105,65-75.
    119.Kimball B.A., Lamorte R.L., Seay R.S. (1994) Effects of free-air CO2 enrichment on energy balance and evapotranspiration of cotton. Agricultural and forest meteorology,70,259-278.
    120.King D.A. (1994) Influence of light level on the growth and morphology of sapling in a Panamanian forest. American Journal of Botany,81,948-957.
    121.Kleunen M.V., Stephan M.A.,_Sh(?)imid B. (2006) [CO2] and density-dependent competition between grassland species. Global Change Biology,12,2175-2186.
    122.K6rner Ch. (1998) A re-assessment of the high elevation treeline positions and their explanation. Oecologia,115,445-459.
    123.Korner C.C. (2006) Plant CO2 responses:an issue of definition, time and resource supply. New Phytologist,172:393-411.
    124.Kozlowski T.T., Kramer P.J., Pallardy S.G. (1991) Physiological ecology of woody plants. Academic Press, San Diego.
    125.Kozovits A. R. (2003) Competitiveness of young beech (Fagus sylvatica) and spruce (Picea abies) trees under ambient and elevated CO2 and O3 regimes. PHD Thesis (German),63-65.
    126.Kramer P.J. (1981) Carbon dioxide concentration, photosynthesis and dry matter production. BioScience,31,29-33.
    127.Kullman L. (2001) 20th century climate warming and tree-limit rise in the southern Scandes of Sweden. Journal of the human enrionment,30,72-80.
    128.Lal R. (2003) Offsetting global CO2 emissions by restoration of degraded soils and intensification of world agriculture and forestry. Land Degradation and Development,14,309-322.
    129.Lambers H., Chapin F.S., Pons T.L. (1998) Plant Physiological Ecology. NewYork: Springer-Verlag,58-59.
    130.Larcher W. (2003) Physiological plant ecology,4th edition, Springer Verlag, Berlin.
    131.Larigauderie A., Reynolds J. F., Strain B. R. (1994) Root response to CO2 enrichment and nitrogen supply in loblolly pine. Plant Soil,165,21-32.
    132.Lawlor D.W. Keys A.J. (1993) Understanding photosynthetic adaptation to changing climate. In: Fowden L., Mansfield TA. and Sttodart J. ed. Plant Adaption to Environmental stress. London: Chapman&Hall,415-429.
    133.Lawlor D.W., Mitchell R.A.C. (1991) The effects of increasing CO2 on crop photosynthesis and productivity: a review of field studies. Plant, Cell and Environment,14,807-818.
    134.Leegood R. C., Edwards G. E. (1996) Carbon metabolism and photorespiration: temperature dependence in relation to other environmental factors. In: N.R. Baker, Editor, Photosynthesis and the Environment, Kluwer Academic Publishers, The Netherlands, pp.191-221.
    135.Lee J., Usami T., Oikawa T. (2001) High performance of CO2-temperature gradient chamber newly built for studying global warming effect on a plant population. Ecological Research,16,347-358.
    136.Lilley J.M., Bolger T.P., Gifford R.M. (2001) Productivity of Trifolium subterraneaum and Phalaris aquatica under warmer, high CO2 conditions. New Phytologist,150,371-383.
    137.Lloyd J., Farquhar G.D. (1996) The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status. Ⅰ. General principles and forest ecosystems. Functional Ecology,10,4-32.
    138.Liu W.Z. (1998) Dynamic interrelations of crop production, water consumption andwateruse efficiency. Journal of Natural Resources,13, 23-27.
    139.Long S.P. (1991) Modifications of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentration: has its importance been understanded. Plant, Cell and Environment,14,729-739.
    140.Loveys B.R., Scheurwater I., Pons T.L., Fitter A.H., Atkinp O.K. (2002) Plant growth temperature influences the underlying components of relative growth rate: an investigation using inherently fast- and slow-growing plant species. Cell and Environment,25,975-987.
    141.Luomala E.M., Laitinen K., Kellomaki S. et al. (2003) Variable photosynthetic acclimation in consecutive cohorts of Scots pine needles during 3 years of growth at elevated CO2 and elevated temperature. Plant, Cell and Environment,26, 645-660.
    142.Makino A., Harada M., Sato T., Nakano H., Mae T. (1997) Growth and N allocation in rice plants under CO2 enrichment. Plant Physiology,115,199-233.
    143.Maranville J.W., Madhavan S. (2002) Physiological adaptations for nitrogen use efficiency in sorghum. Plant and Soil,245,25-34.
    144.Matala J., Ojansuu R., Peltola H., Raitio H. and Kellomoki S. (2006) Modelling the response of tree growth to temperature and CO2 elevation as related to the fertility and current temperature sum of a site. Ecological Modelling 199,39-52.
    145.Mawson B.T., Svoboda J. Cummins W.R. (1986) Thermal acclimarion of photosynthesis by the Arctic plant Saxifraga cernua. Canadian Journal of Botany, 64,71-76.
    146.McCreary D.D., Lavender D.P., Hermann R.K. (1990) Predicted global warming and Douglas fir chilling temperatures. Annals of Forest Science,47,325-330.
    147.McDonald G.K., Paulsen G.M. (1997) High temperature effects on photosynthesis and water relations of grain legumes. Plant Soil,196,47-58.
    148.McMichael B.L., Burke J.J. (1998) Soil temperature and root growth. HortScience,33,947-950.
    149.Miller A., Tsai C.H., Hemphill D., et al. (1997) Elevated carbon dioxide affects during leaf ontogeny. Plant Physiology,115,1195-1200.
    150.Mo G., Nie D. (1992) Root and shoot weight in a tall-grass prairie under elevated carbon dioxide. Environmental and Experimental Botany,32, 19(?)-201.
    151.Mooney H.A., Winner W.E. (1991) Partitioning response of plants to stress. In: Mooney HA, Winner WE, Pell EJ, Response of plants to multiple stresses, Academic Press, New York pp,129-139.
    152.Morison J.I.L. (1996) Global environmental change impacts on crop growth and production in Europe: Implications of global environmental change for crops in Europe. Aspects of Applied Biology,45,62-74.
    153.Morison J.I.L., Lawlor D.W. (1999) Interactions between increasing CO2 concentration and temperature on plant growth. Plant, Cell and Environment,22, 659-682.
    154.Morison J.I.L. (1985) Sensitivity of stomata and water use efficiency to high CO2. Plant, Cell and Environment,8,467-474.
    155.Morse S. R., Bazzaz F. A. (1994) Elevated CO2 and temperature alter recruitment and size hierarchies in C3 and C4 annuals. Ecology,75,966-975.
    156.Mortensen L.M. (1995) Effects of carbon dioxide concentration on biomass production and partitioning in Betula pubescens Ehrh. seedlings at different ozone and temperature regimes. Environmental Pollution,87,7-343.
    157.Myneni R.B., Keeling C.D., Tucker C.J., Asrar G., Namani R.R. (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature,386, 698-702.
    158.Newbery R.M., Wolfenden J. (1996) Effects of elevated CO2 and nutrient supply on the seasonal growth and morphology of Agrostis capillaris. New Phytologist, 12,403-411.
    159.Ngai J.T., Jefferies R.J. (2004) Nutrient limitation of plant growth and forage quality in Artic coastal marshes. Journal of Ecology,92,1001-1010.
    160.Nijs I.A., Impens I., Behaeghe T. (1989) Leaf and cnaopy responses of Lolium perenne to long-term elevated atmospheirc carbon-dioxide coneentration. Planta, 177,312-320.
    161.Nijs I.A., Teughels H.A., Blum H.B. et al. (1996) Simulation of climate change with infrared heaters reduces the productivity of Lolium perenne L. in summer. Environmental and Experimental Botany,36,271-280.
    162.Norby R.J. Neill E.G. (1991) Leaf area compensation and nutrient interactions in CO2 enriched seedling of 12 year poplar (Liriodendron tulipifera L.) New Phytologist,117,515-528.
    163.Norby R.J. (1994) Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide. Plant and Soil,165,9-20.
    164.Olszyk D.M., Johnson M.G., Tingey D.T., Rygiewicz P.T., Wise C., VanEss E., Benson A., Storm M.J. (2003) Whole seedling biomass allocation, leaf area and tissue chemistry for Douglas-fir exposed to elevated CO2 and temperature for four years. Canadian Journal of Forest Research,117,352-358.
    165.Onoda Y., Hikosaka K., Hirose T. (2004) Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Functional Ecology,18,419-425.
    166.Pearcy R.W., Tumosa N., Williams K. (1981) Relationships between growth, photosynthesis, and competitive interactions for a C3 and a C4 plant. Oecologia, 48,371-376.
    167.Peng S., Huang J., Sheehy J.E., Laza R.C., Visperas R.M., Zhong X., Centeno G.S., Khush G.S., Cassman K.G. (2004) Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy Sciences of U.S.A.,101,9971-9975.
    168.Peng C., Liu J., Dang Q., Jiang H. (2002) TRIPLEX: a generic hybrid model for predicting forest growth and carbon and nitrogen dynamics. Ecological Modelling, 153,109-130.
    169.Penuelas J, Matamala R. (1990) Changes in N and S leaf content, stomatal density and specific leaf area of 14 plant species during the last three centuries of CO2 increase. Journal of Experimental Botany,41,1119-1124.
    170.Penuelas J., Gordon C., Liorens L., Nielsen T. (2004) Nonintrusive field experiments show different plant responses to warming and drought among sites, seasons, and species in a north-south European gradient. Ecosystems,7,598-612.
    171.Poethig, R.S. (1990) Phase change and the regulation of shoot morphogenesis in plants. Science,250,923-930.
    172.Poorter H. (1993) Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio 104/105,77-97.
    173.Poorter H., Van Berkel Y., Baxter R., et al. (1997) The effect of elevated CO2 on the chemical composition and construction cost of leaves of 27 C3 species. Plant Cell Environment,20,472-482.
    174.Pooter H., Navas M.L. (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytologist,157,175-198.
    175.Pooter H., Perez Soba M. (2001) The growth response of plants to elevated CO2 under non-optimal environmental conditions. Oecologia,129,1-20.
    176.Pregitzer K.S., King J.S., Burton R.J. (2000) Response of tree fine roots to temperature. New Phytologist,147,105-115.
    177.Pritchard S.G., Rogers H.H. (2000) Spatial and temporal deployment of crop roots in CO2-enrichded environments. New Phytologist,147,55-71.
    178.Rachel Ferris, Gail Taylor. (1993) Contrasting effects of elevated CO2 on the root and shoot growth of four native herbs commonly found in chalk grassland. New Phyt(?)logist,125,855-866.
    179.Radin J.W., Kimball B.A., Hendrix D.L., et al. (1987) Photosynthesis of cotton plants exposed to elevated levels of carbon dioxide in the field. Photosynthetic Research,12,191-203.
    180.Ramseier D.J.C., Bazzaz F.A. (2005) Carbon dioxide regime, species identity and influence of species initial abundance as determinants of change in stand biomass composition in five-species communities:an investigation using a simplex design and RGRD analysis. Journal of Ecology,93,502-511.
    181.Rawson H.M. (1995) Yield response of two wheat genotypes to carbon dioxide and temperature in field studies using temperature gradient tunnels. Australian Journal of Plant Physiology,22,23-32.
    182.Rawson H.M. (1992) Plant responses to temperature under conditions of elevated CO2. Australian Journal of Botany,40,473-490.
    183.Read J.J., Morgan J.A. (1996) Growth and partitioning in Pascopyrum smithii (C3) and Bouteloua gracilis (C4) as influenced by carbon dioxide and temperature. Annals of Botany,77,487-496.
    184.Rebecca S. M., Erika S. Z,, Nona R. C., Elsa E.C., Harold A. M., Christopher B. (2002) Grassland Responses to Global Environmental Changes. Science,298, 1987-1990.
    185.Reddy K.R., Hodges H.F., McKinion J.M. (1993) Temperature effects on pima cotton leaf growth. Agronomy Journal,85,681-686.
    186.Reddy K.R., Robana R.R., Hodges H.F., et al. (1998) Interactions of CO2 enrichment and temperature on cotton growth and leaf characteristics. Environmental and Experimental Botany,39,117-129.
    187.Reekie, Bazzaz F.A. (1989) Competition and patterns of resources use among seedlings of five tropical trees grown at ambient and elevated CO2. Oecologia,79, 212-222.
    188.Reich P.B., Ellsworth D.S., Uhl C. (1995) Leaf carbon and nutrient assimilation and conservation in species of differing successional status in an oligotrophic Amazonian forest. Functional Ecology,9,65-76.
    189.Rey P., Eymery F., Peltier G. (1990) Effects of CO2 enrichment and of aminoacetonitrile on growth and photosynthesis of photoautrophic calli of Nicltiana plumbaginifotia. Plant Physiologist,93,549-554.
    190.Richard J.N. (1994) Issues and perspectives for investigative root to elevated atmospheric carbon dioxide. Plant and Soil,165,99-20.
    191.Riedo M., Gyalistras D., Fuhrer J. (2001) Pasture responses to elevated temperature and doubled CO2 concentration: assessing the spatial pattern across an alpine landscape, Climate Research,17,19-31.
    192.Rogers G.S., Milham P.J., Thibaud M.C., Conroy J.P. (1996) Interactions between rising CO2 concentration and nitrogen supply in cotton Growth and leaf nitrogen concentration. Australian Journal of Plant Physiology,23,119-125.
    193.Rogers H.H., Runion G.B., Krupa S.V. (1994) Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environmental pollution,83,155-189.
    194.Roumet, H. R. (2000) Response to CO2 enrichment in 27 herbaceous species. Functional Ecology,5,410-421.
    195.Rowland-Bamford A.J., Baker S.J. (1996) Interactions of CO2 enrichment and temperature on carbohydrate accumulation and partitioning in rice. Environmental and Experimental Botany,36,111-124.
    196.Rowland-Bamford A.J., Baker J.T., Allen Jr L.H., Bowes G. (1991) Acclimation of rice to changing atmospheric carbon dioxide concentration. Plant Cell and Environment,14,577-583.
    197.Runion G.B., Davis MA., Pritchard S., Prior G.S.A., Mitchell R.J., Torbert H.A., Rogers H.H. Dute R.R. (2006) Effects of elevated atmospheric carbon dioxide on biomass and carbon accumulation in a model regenerating longleaf pine community. Journal of Environmental Quality,35,1478-1486.
    198.Rustad L.E., Campbell J.L., Marion G.M., Norby R.J., Mitchell M.J., Hartley A.E., Cornelissen J.H.C., Gurevitch J. (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia,126,543-562.
    199.Ryle G.J.A., Powell C.E., Davidson I.A. (1992) Growth of white clover dependent on N2 fixation in elevated CO2 and temperature. Annals of Botany,70, 221-228.
    200.Sage R. F., Sharkey T. D. (1987) The effect of temperature on the occurrence od 02 and CO2 insensitive photosynthesis in field grown plants. Plant Physiology, 84,658-664.
    201.Sage R.F. Santrucek J., Grise D.J. (1995) Temperature effects on the photosynthetic response of C3 plants to long-term CO2 enrichment. Vegetatio, 121,67-77.
    202.Sakai H., Yagi K., Kobayashi K., Kawashima S. (2001) Rice carbon balance under elevated CO2. New Phytologist,150,241-249.
    203.Sardans J., Penuuelas J. Estiarte M. (2008) Warming and drought alter C and N concentration, allocation and accumulation in a Mediterranean shrubland. Global Change Biology,14,2304-2316.
    204.Sattler R. (1978) What is theoretical plant morphology? Acta Biotheoretica,27, 5-20.
    205.Sattler R., Rutishauser R. (1997) The Fundamental Relevance of Morphology and Morphogenesis to Plant Research. Annals of Botany,80,571-582
    206.Saxe H. (2001) Tree and forest functioning in response to global warming. New Phytologist,149,369-400.
    207.Sayed O.H. (1995) Effects of temperature on growth, morphology, and photosynthesis in wheat. Biologia Plantarum,37,49-55.
    208.Shan L. (2000) Water use efficiency. In: Zou C.L., ed. Present biology. Beijing: Chinese Zhigong Press,399-400.
    209.Sharkey T.D. (1985) Photosynthesis in intact leaves of C3 plants:physics, physiology and rate limitations. Botanical Review,51,53-105.
    210.Stirling C.M., Davey P.A., Williams T.G., Long S.P. (1997) Acclimation of photosynthesis to elevated CO2 and temperature in five British native species of contrasting functional type. Global Change Biology,3,237-246.
    211.Stitt M. (1991) Rising CO2 levels and hteri potential significance for crabon flow in photosynthetic cells. Plnat Cell and Environment,14,741-762.
    212.Stulan L, Denhertogj (1993) Root growth and functioning under atmospheric CO2 enrichment. Vegetation,104/105,99-115.
    213.Suding K.N., LeJeune K.D., Seastedt T.R. (2004) Competitive impacts and responses of an invasive weed: dependencies on nitrogen and phosphorus availability. Oecologia,141,526-535.
    214.Teeri J.A. (1988) Interaction of temperature and other environmental variables influencing plant distribution. Symposia of the Society for Experimental Biology, 42,77-90.
    215.Temperton V., Lard P.M., Jarvis P. (2003) Does elevated atmospheric carbon dioxide affect internal nitrogen allocation in the temperate trees Alnus glutinosa and Pinus syvestris? Global Change Biology,9,286-294.
    216.Teskey R.O. (1997) Combined effects of elevated CO2 and air temperature on carbon assimilation of Pinus faeda trees. Plant, Cell and Environment,20, 373-380.
    217.Thomas Kudernatscha, Anton Fischera. (2008) Short-term effects of temperature enhancement on growth and reproduction of alpine grassland species. Basic and Applied Ecology,9,263-274.
    218.Timlin D., Lutfor S.M., Baker J., Reddy V. R. (2006) Whole Plant Photosynthesis, Development, and Carbon Partitioning in Potato as a Function of Temperature. American Society of Agronomy,98,1195-1203.
    219.Tingey D., Mckane R., Olszyk D., Johnson M., Rygiewicz P., Lee H. (2003) Elevated CO2 and temperature alter nitrogen allocation in Douglas-fir. Global Change Biology,9,1038-1050.
    220.Tissue D.T., Thomas R.B., Strain B.R. (1997) Atmospheric CO2 enrichment increases growth and photosynthesis of Pinus taeda: a 4 year experiment in the field. Plant, Cell and Environment,20,1123-1134.
    221.Tjoelker M.G., Reichp P.B., Oleksyn J. (1999) Changes in leaf nitrogen and carbohydrates underlie temperature and CO2 acclimation of dark respiration in five boreal tree species. Plant, Cell and Environment,22,767-778.
    222.Tolley L.C., Strain B.R. (1984) Effects of CO2 enrichment and water stress on growth of Liquidam ber sty racif lua and Pinus taeda seedlings. Canadian Journal of Botany,62,2135-2139.
    223.Tolvanen A., Henry G.H.R. (2001) Responses of carbon and nitrogen concentration in high artic plants to experimental warming. Canadian Journal of Botany,79,711-718.
    224.Traboulsi M.A. (1999) Response of plant roots and pastureland soils to increasing CO2 concentration. Thesis for doctoral degree,88-92.
    225.Tremmel D.C., Bazzaz F.A. (1993) How Neighbor Canopy Architecture Affects Target Plant Performance. Ecology,74,2114-2124.
    226.Tuba Z., Szente K., Koch J. (1994) Response of photosynthesis, stomatal conductance, water use efficiency and production to long-term elevated CO2 in winter wheat. Journal of Plant Physiology,144,661-669.
    227.Usami T., Lee J., Oikawa T. (2001) Interactive effects of increased temperature and CO2 on the growth of Quercus myrsinae-folia saplings. Plant, Cell and Environment,24,1007-1019.
    228.Van Cleve K., Oechel W.C., Horn J.L. (1990) Response of black spruce (Picea mariana) ecosystems to soil temperature modification in interior Alaska. Canadian Journal of Forestry Research,20,1530-1535.
    229.Vitousek P. (1982) Nutrient cycling and nutrient use efficiency. The American Naturalist,119,553.
    230.Walther G.R. (2003) Plants in a warmer world, Perspect. Plant Ecology,6, 169-185.
    231.Wan S., Hui D.F., Wallace L.L. (2005) Direct and indirect effects of experimental warning on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycles,19,20-14.
    232.Wang K.Y., Kellomaki S., Zha T.S., Peltola H. (1995) Annual and seasonal variation of sap flow and conductance of pine trees grown in elevated carbon dioxide and temperature. Journal of Experimental Botany,56,155-165.
    233.Wang Y.P., Jarvis P.G., Taylor C.M.A. (1991) Absorption and its relation to above-ground dry matter production of Sitka spruce. Journal of Applied Ecology, 28,547-560.
    234.Wayne P. M. and Bazzaz F.A. (1995) Seedling density modifi(?) the growth responses of yellow birch maternal families to elevated carbon dioxide, Global Change Biology,1,315-324.
    235.Wayne P. M., Carnelli A. L., Connolly J., Bazzaz F. A. (1999) The density dependence of plant responses to elevated CO2. Journal of Ecology,87,183-192.
    236.Weintraub M.N., Schimel J.P. (2005) Nitrogen cycling and the spread of shrubs control changes in the carbon balance of artic tundra ecosystems. Bioscience,55, 408-415.
    237.Welker J.M., Molar U., Parsons A. N. (1997) Response of Dryas octopetala to ITEX manipulations: a synthesis with circumpolar comparisons. Global Change Biology,3,61-73.
    238.Wilcox H.E., Ganmore-Neumann R. (1975) Effects of temperature on root morphology and ectendomycorrhizal development in Pinus resinosa Ait. Canadian Journal of Forest Research,5,171-175.
    239.Wisley B.J. (1996) Plant response to elevated atmospheric CO2 among terrestrial biomass. Oikvs,76,201-206.
    240.WMO. Press Release No.805 [R/OL]. [2007-12-29]. http://www.wmo.int/pages /mediacentre/press_releases/pr_805_en.html
    241.Woodward F.I. (1988) Temperature and the distribution of plant species and vegetation. Symposia of the Society for Experimental Biology,42,59-76.
    242.Woodward F. L. (2002) Potential impacts of global elevated CO2 concentrations on plants, Current Opinion in Plant Biology,5,207-211.
    243.Wright I.J., Wearoby M. (2000) Cross-species relationship between seedling relative growth rate, nitrogen productivity and root vs leaf function in 28 Australian woody species. Functional Ecology,14,97-107.
    244.Xu D.Q., Terashima K., Crang R.F.E., Chen X.H., Hesketh J.D. (1994) Stomatal and nonstomatal acclimation to a CO2 enriched atmospheric. Biotronics,23,1-9.
    245.Xu C.G., Gertner G.Z. andScheller R.M. (2007) Potential effects of interaction between CO2 and temperature on forest landscape response to global warming. Global Change Biology,13,1469-1483.
    246.Zavaleta E.S. (2006) Shrub establishment under experimental global changes in a California grassland. Plant Ecology,184,53-63.
    247.Zhang Z.B., Shan L. (1997) Research development in estimation models of crop water use efficiency and transpiration and evaporation. Agricultural Research in the Arid Areas,15,73-78.
    248.程栋梁(2007)植物生物量分配模式与生长速率的相关规律研究.博士论文(兰州大学).
    249.崔兴国(2002)植物蒸腾作用与光合作用的关系.衡水师专学报,4,55-56.
    250.管东生(1998)香港桃金娘群落植物的养分分配、季节动态和生物循环.生 态学报,18,386-391.
    251.国家气候中心(2007)全球气候变化的最新科学事实和研究进展.IPCC第一工作组第四次评估报告初步解读.环境保护,6,27-30.
    252.郭建平,高素华(2003)高CO2和土壤干旱对沙地优势植物C,N固定及分配的影响.自然科学进展,13,1275-1279.
    253.韩梅,吉成均,左闻韵,贺金生(2006)CO2浓度和温度升高对11种植物叶片解剖特征的影响.生态学报,26,326-333.
    254.韩士杰,周玉梅(2001)红松幼苗对CO2浓度升高的生理生化反应.应用生态学报,12,27-30.
    255.贺金生,王勋陵,陈伟烈(1994)试用多元分析方法研究植物形态结构与生态环境的关系.应用生态学报,5,378-384.
    256.何平(2001)温室效应与植物光合作用:CO2浓度升高对植物光合机理影响
    的分析.中南林学院学报,21,1-4.
    257.蒋高明,韩兴国(1997)大气CO2浓度升高对植物的直接影响--国外十余年来模拟实验研究之主要手段及基本结果.植物生态学报,21,489-502.
    258.柯世省,金则新(2002)七子花幼苗光合特性的温度响应.热带亚热带植物学报,10,328-334.
    259.李伏生,康绍忠(2002)CO2浓度、氮和土壤水分对春小麦养分利用效率的影响.中国农业科学,35,953-958.
    260.李吉跃(1997)全球CO2浓度变化与植物水分关系.世界林业研究,5,16-25.
    261.廖建雄,王根轩(2000)CO2和温度升高及干旱对小麦叶片化学成分的影响.植物生态学报,24,744-747.
    262.廖轶,陈根云,张道允,肖元珍,朱建国,许大全(2003)冬小麦光合作用对开放式空气CO2浓度增高(FACE)的非气孔适应.植物生理分子生物学学报,229,494-500.
    263.廖轶,陈根云,张海波,蔡时青,朱建国,韩勇,刘钢,许大全(2002)水稻叶片光合作用对开放式空气CO2浓度增高(FACE)的响应适应.应用生态学报,13,1205-1209.
    264.林伟宏(1998)植物光合作用对大气二氧化碳浓度升高的反应.生态学报,18,121-128.
    265.刘东焕,赵世伟,高荣孚,张佐双,姜闯道,刘玉军(2002)植物光合作用对高温的响应.植物研究,22,205-212.
    266.刘娟娟,李吉跃,庞静,姜枫(2008)CO2体积分数倍增对4种植物幼苗气体交换及水分利用效率的影响.东北林业大学学报,36,25-28.
    267.刘增文,李雅素(2003)刺槐人工林养分利用效率.生态学报,23,444-449.
    268.彭长连,林植芳,孙梓健(1998)水稻光合作用对加富CO2的响应.植物生理学报,24,272-278.
    269.乔匀周,王开运,张远彬(2007)CO2浓度升高对两个种植密度下红桦生长和 养分含量的影响.生态学杂志,26,301-306.
    270.石培礼(1999)亚高山林线生态交错带的植被生态学研究.博士学位论文(中国科学院).
    271.苏永红,朱高峰,冯起,常宗强,司建华(2008)额济纳荒漠河岸胡杨林叶片气孔导度与微环境因子关系的模拟研究.西北植物学报,28,1434-1439.
    272.王开运,杨万勤,宋光煜,胡庭兴(2004)川西亚高山森林群落生态系统过程.四川科学技术出版社.
    273.王健锋,雷瑞德(2002)生态交错带研究进展.西北林学院学报,17,24-28.
    274.王建林,于贵瑞,房全孝,姜德锋,齐华,王秋凤(2008)不同植物叶片水分利用效率对光和CO2的响应与模拟.生态学报,28,525-533.
    275.王金锡(1982)川西高山森林演替与冷云杉林的天然更新.甘孜林业科技,2,2-13.
    276.王平,王天慧,周道玮,张红香(2007)植物地上竞争与地下竞争研究进展.生态学报,27,2489-2499.
    277.王绍武,董光荣(2002)中国西部环境特征及其演变(第一卷).北京:科学出版社,171-216.
    278.王为民,王晨,李春俭,林伟宏(2000)大气二氧化碳浓度升高对植物生长的影响.西北植物学报,20,676-683.
    279.王修兰,徐师华(1996)小麦对CO2浓度倍增的生理反应.作物学报,22,340-344.
    280.王晓春(2003)中国东北亚高山林线对全球气候变化的响应.博士论文(东北林业大学).
    281.汪杏芬,李世仪,白克智(1998)CO2倍增对植物生长和土壤微生物生物量碳、氮的影响.植物学报,40,1169-1172.
    282.王玉涛,马志波,马钦彦,郝晓东,刘兴良(2006)北京地区4种阔叶树光合作用对CO2浓度及温度变化的响应.河北农业大学学报,29,39-43.
    283.韦兰英,上官周平(2006)黄土高原白羊草、沙棘和辽东栎细根比根长特性.生态学报,26,4164-4170.
    284.韦妙彩,林植芳,孔国辉(1996)提高二氧化碳对两种亚热带树苗生物量及叶片特性的影响.植物生态学报,20,510-516.
    285.吴宁,刘照光(1998)青藏高原东部亚高山森林草甸植被地理格局的成因探讨.应用与环境生物学报,4,290-297.
    286.邬荣领,胡建军,韩一凡,刘红霞(2002)表型可塑性对木本植物树冠结构与发育的影响.林业科学,38,141-156.
    287.项文化,田大伦,闫文德,罗勇(2004)白栎光合特性对二氧化碳浓度增加和温度升高的响应.浙江林学院学报,21,247-253.
    288.邢雪荣,韩兴国,陈灵芝(2000)植物养分利用效率研究综述.应用生态学报,11,785-790.
    289.徐德应(1994)大气CO2增长和气候变化对森林的影响研究进展.世界林业研究,2,26-32.
    290.徐振锋,胡庭兴,张力,张远彬,鲜骏仁,王开运(2009)模拟增温对川西亚高山林线交错带绵穗柳生长、叶物候和叶性状的影响.应用生态学报,20,7-11.
    291.许大全(1994)光合作用及有关过程对长期高CO2浓度的响应.中国农业科技导报,2,81-87.
    292.杨金艳,杨万勤,开运(2002)木本植物对CO2浓度和温度升高的相互作用的响应.植物生态学报,27,304-310.
    293.杨振林,石培礼(2007)高山树线交错带的景观格局与生态过程.地理科学进展,26,44-55.
    294.余峥,胡庭兴,王开运,张远彬(2006)植物光合作用对大气[CO2]和温度升高的响应及其适应机制的研究进展.27,30-35.
    295.曾小平,赵平,孙谷畴(2006)气候变化对陆生植物的影响.应用生态学报,17,2445-2450.
    296.张道允,许大全(2007)植物光合作用对CO2浓度增高的适应机制.植物生理与分子生物学报,33,463-470.
    297.张小全,徐德应(2002)温度对杉木中龄林针叶光合生理生态的影响.林业科学,38,27-33.
    298.张远彬,王开运,乔匀周(2007)研究高寒区植物生长过程对气候变化响应的封顶式生长室系统.应用与环境生物学报,13,601-60.
    299.赵平,彭少麟,曾小平(2001)全球变化背景下大气CO2浓度升高与森林群落结构和功能的变化.广西植物,21,287-294.
    300.赵天宏,王美玉,张巍巍,张鑫(2006)大气CO2浓度升高对植物光合作用的影响.生态环境,15,1096-1100.
    301.郑凤英,彭少麟(2001)植物生理生态指标对大气CO2浓度倍增响应的整合分析.植物学报,43,1101-1109.
    302.周青,黄晓华,戴玉锦(2002)CO2倍增对植物的生态生理效应.自然杂志,24,20-25.
    303.周玉梅,韩士杰,张军辉(2001)CO2含量升高对水曲柳幼苗净光合与水分利用的影响.东北林业大学学报,29,29-31.
    304.左闻韵,贺金生,韩梅,吉成均,Dan F.B. Flynn,方精云(2005)植物气孔对大气CO2浓度和温度升高的反应—基于在CO2浓度和温度梯度中生长的10种植物的观测.生态学报,25,565-574.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700