陕西地区栓皮栎种群区域变异性与遗传多样性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以陕西境内处于分布区不同位置(秦岭北坡半干旱核心区、巴山湿润核心区和
    黄土高原分布边缘区)的栓皮栎种群为研究对象,通过野外实地考察、调查计测和室内
    实验相结合,运用种群统计学和分子生态学等的原理和方法,从生境因子、表型变异与
    分子动态等方面沿生境梯度系统地研究了栓皮栎种群的径级结构、种群增长、种群构型
    的区域变异性、种群性状分化与地理变异性以及种群的遗传多样性规律,将生态对策和
    生态分化有机联系起来探讨栓皮栎种群的适应性变异和进化策略,结果表明:
    栓皮栎种群的径级随着生境梯度的变化,径级结构也呈现出一定的区域变异性。种
    群补充更新能力主要靠根和伐桩的萌生苗,萌生苗更新量的变化,有助于种群通过“瓶
    颈效应”,保证栓皮栎有较充分的幼苗后续资源。
    种群的年龄和种群密度是影响栓皮栎蓄积量的主导因子,种群结构参数与生境因子
    的最优组合可以使栓皮栎种群蓄积量最大。
    栓皮栎的冠形体积、叶面积指数、总分枝率、逐步分枝率、分形维数对树冠特性的
    影响较大,而冠层厚度对树冠特性的影响呈现出负相关。秦岭北坡的栓皮栎种群中,种
    群综合性生长指标对树高的影响最大。在黄龙山区的栓皮栎种群中,树冠特性指标对胸
    径和栓皮厚度的影响较大,在其它两个地区树冠特性对树高和胸径的影响相差不大。
    不同地区栓皮栎种群的分枝分形维数、分枝角度、叶倾角存在较大的差异。从栓皮
    栎分布中心到分布边缘,其侧枝分枝分形维数、分枝角度和叶倾角都呈现出逐渐增大的
    趋势。不同地区栓皮栎的逐步分枝率和总体分枝率也是不同的,同一植株的不同层次,
    分枝率也呈现出层次性差异。
    栓皮栎种群冠型体积辅助参数的变异表明在不同的生境条件下,栓皮栎种群营养分
    配的不均衡性。在密度大的地区,将营养优先配送到树高生长的构件上,在密度小的地
    区,将营养首先分配到冠层的横向扩展上。
    不同生境的栓皮栎种群性状参数分化差异明显。栓皮栎种群的叶脉对数、叶柄长、
    叶长、叶宽和叶长宽比随着生境条件的差异而产生较大的地理变异。栓皮栎种群的叶柄
    长、叶长、栓皮厚度、种长和种宽随纬度的变化模式以二次抛物线方程描述最为合适;
    栓皮栎种群的叶柄长、叶长和栓皮厚度随海拔高度呈现明显的二次抛物线关系;而叶宽
    和种宽随海拔高度的变化呈现出明显的正线性相关;种长与海拔的关系为一种典型的负
    线性相关。
    多维分析认为:栓皮栎种群的同一性状的叶柄长和叶宽的相关性最强,叶长和叶宽
    对栓皮厚度的影响最大,叶柄长对栓皮厚度的影响最小;不同性状的叶长、种宽与栓皮
    厚度的相关性最强,种长对栓皮厚度的影响较小。
    从栓皮栎种群的分布中心到分布边缘,MDH‐1a、MDH‐1b、MDH‐2b、MDH‐2c、PGI
    
    
    2 陕西地区栓皮栎种群区域变异性与遗传多样性的研究
    ‐1 b、PGI‐2 b、 ADH‐1a 、ADH‐1b、ADH‐2b 的等位基因频率呈现出逐渐递减趋势;
    而 PGI‐1a、PGI‐2a、ADH‐2a 的等位基因频率呈现出逐渐递增趋势。说明生境条件的
    不同引起等位基因频率的高低之分,改变了栓皮栎种群在分布区的遗传结构。
     栓皮栎种群的等位基因百分数 P、实际杂合度 H0和预期杂合度 He均高于远交风媒木
    本植物和其它木本被子植物,而平均每个位点的等位基因数 A 和平均每个位点的等位基
    因的有效数 Ae则均低于远交风媒木本植物和其它木本被子植物。
     栓皮栎种群总的遗传多样性为 0.2868,种群内的遗传多样性为 0.2057,约占总遗
    传多样性的 78.7%,种群间的遗传变异为 0.0600,约占总数的 21.3%,种群遗传分化系
    数为 0.2279,群体间遗传分化为 22.79%,种群间遗传分化程度较低,在总的遗传多样
    性中,有 78.7%来自种群内,种群间的遗传变异为 21.3%。表明栓皮栎种群的遗传多样
    性主要来源于种群内不同个体间的遗传变异,而非种群间的遗传变异。从分布中心到分
    布边缘,栓皮栎种群内平均基因多样性表现出较大的差异。具体表现在:秦岭北坡>秦
    岭南坡>巴山北坡>黄龙山区,表现出栓皮栎种群内遗传多样性分布格局的不均匀性。
     对栓皮栎种群内的遗传多样性与生态因子进行相关性分析认为:坡度、年平均气温、
    光照时间和 pH 值等生态因子与遗传多样性的相关性不显著(P>0.05),而平均土壤厚度
    和年降雨量生态因子与遗传多样性的相关性系数分别为 0.8764 和 0.8957,相关性较为
    显著(P*<0.05);总氮和有机质的含量与遗传多样性的相关性呈现出显著的负相关性
    (P*<0.05)。土壤越厚,年降雨量越大,栓皮栎种群的遗传多样性越丰富。表明氮、有
    机质、平均土壤厚度和年降雨量在调节栓皮栎种群遗传多样性方面起着较为重要的作
    用。
     对栓皮栎种群遗传结构的空间自相关性分析可知:栓皮栎种群内大多数等位基因不
    存在显著的空间自相关关系,等位基因的分布与邻近植株的基因型相关性较弱。说明栓
    皮栎种群的多数位点缺乏空间结构模式,其遗传变异呈现出随机分布的空间格局,与种
    群间地理分布的相关性不大。
Quercus variabilis population of semiaridity core of north slope of Qinling ,
    humidity core of Bashan and Huanglong coteau was taken as the object of our study
    in Shaanxi region, through field investigation 、 field determination and
    experiments in the laboratory, the principles and methods were applied to study
    systematically the regularity of diameter structure、increment、architecture
    variability 、character differentiation and geographic variability as well as
    genetic diversity of Quercus variabilis population along with habitat grads from
    habitat factors、exterior variance and molecular dynamic in Shaanxi region, such
    as population ecology and molecular ecology, and also explore the adaptive
    variability and evolution of Quercus variabilis population, the results are as
    follows:
     Diameter structure takes on a certain area variability along with habitat
    grads. As a whole, seedling number is lacking in four regions, population renewal
    mainly relys on stump-sprouting sampling, and the number of stump-sprouting
    sampling can help population get over “bottleneck”,and ensure adequately
    continual resources.
     Population age and density are the dominant factors in influencing on
    population accumulation volume. Meanwhile, The optimal combination of
    population structure parameters and habitat factors can arrive at the most for
    accumulation volume
     Crown volume、LAI、total ramification ratio、gradual ramification ratio、
    branch dimension influence on tree high is the most in NSQ; Influence of crown
    characters on BD and bark thickness is the most in HLC.
     Ramification angle and leaf obliquity take on increscent trend along with
    habitat grads, Gradual ramification ratio R1:2、R2:3 and total ramification ratio
    Rb、secondary parameters of crown volume are different in different habitats.
     In general, nervation 、footstalk length、leaf length、leaf breadth、seed
    thickness、seed length、seed diameter and rear hair are different along with
    habitats. Variance models of footstalk length、leaf length、bark thickness is
    parabola equation along with altitudes, variance models of leaf breadth、seed
    breadth are obviously linear equation, variance model of seed length is typically
    negative correlation.
    
    
    4 陕西地区栓皮栎种群区域变异性与遗传多样性的研究
     Allele frequency of MDH‐1a、MDH‐1b、MDH‐2b、MDH‐2c、PGI‐1 b、PGI‐
    2 b、 ADH‐1a 、ADH‐1b、ADH‐2b show minish trend, allele frequency of PGI
    ‐1a、PGI‐2a、ADH‐2a take on increscent trend from distribution center to margin,
    indicate: habitat bring about allele frequent change, it influences on genetic
    structure of Quercus variabilis population in distribution regions, posting
    adaptive significance of enzyme allele as well as correlation of allele frequency
    and environments.
     Percentage of loci polymorphism P、observed heterozygosity H0、expected
    heterozygosity He value of Quercus variabilis population is higher than that of
    long distance mutual wind medium angiosperm.
     Average genetic diversity is different in different region, distribution
    pattern of genetic diversity is asymmetrical within population.
     Correlation of grade、average temperature、light time as well as pH value
    and genetic diversity is not significant(P>0.05) by correlation analysis, and
    that correlation of genetic diversity and soil thickness as well as rainfall
    is significant( P*<0.05), correlation of genetic diversity and nitrogen、organic
    matter is remarkably negative correlation(P*<0.05), the more soil thickness, the
    more rainfall, the more genetic diversity, the result reveals that nitrogen、
    organic matters、soil thickness and rainfall play an important role in regulating
    genetic diversity of population of Quercus variabilis.
     Most alleles in population of Quercus variabilis markedly inexistence
    autocorrelation, distribution of allele and genotype correlation of adjacent
    stand is weak though spatial-autocorrelation analysis, detailed analysis showed
    that most allele loci lack of spatial structure pattern
引文
[1] 吴明作. 栓皮栎研究进展[J].陕西林业科技,1998,4:65~69.
    [2] 中国树木志编委会. 中国树木志[M].北京:中国林业出版社,1976,12,507~515.
    [3] 周启星. 应用生态学的研究与发展趋势[J].应用生态学报,2002,13(7)879~884.
    [4] 沈农,魏林. 栓皮栎分布的初步调查[J]. 林业科学,1960,1.
    [5] 陕西森林编辑委员会.陕西森林[M]. 北京:中国林业出版社,1989.
    [6] 张大明. 生态学和遗传学[J]. 植物生态学报,2001,25(2):252~253.
    [7] 张文辉. 裂叶沙参种群生态学研究[M]. 哈尔滨: 东北林业大学出版社,1998.
    [8] 王中仁. 植物等位酶分析[M]. 北京:科学出版社,1998.
    [9] 尚玉昌. 种群的特性、动态和数量调节[J]. 陆地生态学译报(连载),1985~1987.
    [10] 王伯荪,彭少麟. 鼎湖山森林优势种群数量动态[J].生态学报,1987,6(2)27~30.
    [11] 张孝义. 昆虫生态及预报[J]. 生态学报,2000,36(1)19~27
    [12] 马世骏. 昆虫种群的空间、数量、时间结构及动态[J]. 昆虫学报,1964,17(3)269.
    [13] 胥辉. 一种与材积相容的生物量模型[J]. 北京林业大学学报,1999,21(5)32~36
    [14] 洪 伟. 杉木人工林自然生长模型的研究[J].福建林学院学报,1997,17(3)231~234
    [15] 林成来. 马尾松人工林生长模型的研究[J]. 福建林学院学报,2000,20(3)227~230
    [16] 曾伟生. 异龄林的生长动态研究[J].林业科学,2000 ,27(3)193~198
    [17] 吴晓芙. 林木生长与养分动态模型研究[J].中南林学院学报,1999,19(1)1~8
    [18] 邬祥光. 昆虫生态学的常用数学分析方法[M]. 北京:农业出版社,1985.
    [19] 姜启源. 数学模型[M]. 北京:高等教育出版社,1987.
    [20] 张大勇. 生态学、遗传学与进化[J]. 植物生态学报,2001,25(2):254.
    [21] 蒋有绪,臧润国. 热带树木构筑学研究概述[M]. 北京:林业科学,1998, 34(5):112~119.
    [22] 北京林学院编. 森林学[M]. 北京:农业出版社,1961.
    [23] 李博. 普通生态学[M].包头:内蒙古大学出版社,1993.
    [24] 罗天祥,赵士洞. 中国杉木生物生产力格局及其数学模型[J].植物生态学报,1997,21(5):403~
     415.
    [25] 励龙昌. 以潜能函数建立单木生长模型[J]. 东北林业大学学报,1990,18(4):22~28.
    [26] 董文泉. 数量化理论及应用[M]. 吉林:吉林出版社,1979.
    [27] 冯宗炜. 不同自然地带杉木的生产力[J].植物生态学与地植物学丛刊,1984,8(2)93~100
    [28] 胡志昂,琿锐. 检测植物 DNA 扩增多态性方法的比较和改进[J].植物学报,1997,39(2)144~
     148.
    [29] 钟章成. 植物种群研究进展[M]. 重庆:西南师范大学出版社,1988.
    [30] 钟章成. 我国植物种群研究成就与进展[J]. 生态学杂志,1992,11(1) 4~8
    [31] 袁嘉祖 张汉雄. 黄土高原地区森林植被建设的优化模型[M]. 北京:科学出版社,1991
    [32] 孟宪宇. 测树学[M]. 北京:中国林业出版社,1996
    [33] 韩兴吉. 林分生长和产量的数学模型[J]. 北京林业大学学报,1986,10(3):85~98.
    [34] 盖钧镒. 试验统计方法[M]. 北京:中国农业出版社,2000
    [35] 陈永富. 中国海南岛热带天然林可持续经营[M]. 北京:中国科技出版社,2001
    [36] 王婷,于丹. 树木年轮宽度与气候变化关系研究进展[J].植物生态学报,2003,27(1):23~33.
    [37] 李瑾,安树青. 生态系统健康评价的研究进展[J].植物生态学报,2001,25(6):641~647.
    [38] 刘庆洪. 小兴安岭红松种群天然更新的特点[J]. 林业科学,1987,23(3):266~276.
    [39] 卢泽愚. 种群增长的矩阵模型[J]. 生态学报,1981,1(3):256~266.
    
    
    参考文献 107
    [40] 刘玉萃. 宝天曼自然保护区栓皮栎林生物量和生产力研究[J].应用生态学报,1998,9(6)567~
     574
    [41] 王得艺. 雾灵山蒙古栎林生物生产量的研究[J].生态学杂志,1998,17(1)9~15
    [42] 周纪伦,郑师章. 植物种群生态学[M]. 北京:高等教育出版社,1992.
    [43] 张文彤. SPSS11.5 统计分析教程[M]. 北京:北京希望电子出版社,2002.
    [44] 吴承帧,洪伟. 杉木经营学引论[M]. 北京:中国林业出版社,2000.
    [45] 董鸣. 缙云山马尾松种群年龄结构的初步研究[J]. 植物生态学与地植物学学报,1987,11(1):
     50~58.
    [46] 江洪. 冷杉生态型分化的初步研究[J]. 生态学杂志,1984,8(3):5~8.
    [47] 曹慧娟. 植物学[M]. 北京:中国林业出版社,1981.
    [48] 郭勤峰. 物种多样性研究现状及趋势[M]. 北京:中国科技出版社,1995.
    [49] 韩兴国. 岛屿生物地理理论与生物多样性保护[M]. 北京:中国科技出版社,1994.
    [50] 李中明. 论生物多样性发展史研究的现状及意义[J].生物多样性,1994,2(3)169~172.
    [51] 施立明. 生物多样性[M]. 北京:中国科技出版社,1993.
    [52] 汪小全. 银杉遗传多样性的 RAPD 分析[M].中国科学(C 辑),26(5)436~441.
    [53] 刘占林. 居群遗传学原理及其在植物保护中的应用[J].生物多样性,1999,7(4)340~346.
    [54] 谢国文. 江西种子植物特有属的多样性及其保护[J].武汉植物研究,1996,14(4)294~300.
    [55] 宋延龄,杨亲二. 物种多样性研究与保护[M]. 浙江:浙江科技出版社,19918.
    [56] 葛颂. 同工酶与林木群体遗传变异研究[J].南京林业大学学报,1988,12(1):68~77.
    [57] 李俊清,吴刚. 四川南江两种水青冈种群遗传多样性初步研究[J].生态学报,1999,19(1):42~
     49.
    [58] 李斌,顾万春. 白皮松的保育遗传学研究Ⅰ.基因保护分析[J]. 生物多样性,2003,11(1):28~
     36.
    [59] 张颖娟,杨持. 西鄂尔多斯特有种四合木种群遗传多样性及遗传分化研究[J]. 生态学报,2001,
     21(3):506~511.
    [60] 陈小勇. 安徽黄山青冈种群遗传结构的空间自相关分析[J]. 植物生态学报,2001,25(1):29~
     34.
    [61] 张颖娟,杨持. 濒危物种四合木与其近缘种霸王遗传多样性的比较研究[J].植物生态学报,2000,
     24(4):425~429.
    [62] 陈小勇. 生境片断化对植物种群遗传结构的影响及植物遗传多样性保护[J]. 生态学报,2000,
     20(5):884~891.
    [63] 李丹,彭少麟. 三个不同海拔梯度马尾松种群的遗传多样性及其与生态因子的相关性[J].生态学
     报,2001,21(3):415~421.
    [64] 谢国文. 庐山野生观赏植物资源多样性及持续利用对策[J].广西植物,1996,16(3)259~264.
    [65] 颜亨梅. 物种濒危的机制与保护对策[J].生命科学研究,1998,2(1):6~11.
    [66] .易能君. 林木群体遗传多样性的多位点遗传结构[J]. 生物多样性,1996,4(3)153~159.
    [67] 郑向忠. 动物种群遗传异质性研究进展[J]. 生物多样性,1997,5(3)210~216.
    [68] 谢衷洁. 时间序列分析[M]. 北京:北京大学出版社,1980.
    [69] 蒋有绪. 王峥峰.海南岛热带林生物多样性及其形成机制[M]. 北京:科学出版社,2002.
    [70] 夏铭. 天然红松群体遗传多样性的 RAPD 分析[J].生态学报,2001,21(5)730~737
    [71] 高贤明. 暖温带若干落叶阔叶群落物种多样性及其与群落动态的关系[J].植物生态学报,2001,
     25(3)283~290.
    [72] 祝宁. 植物种群生态学研究现状与进展[M].哈尔滨:黑龙江科技出版社,1992.
    [73] 郑元润. 植物种群生态学研究进展[M].哈尔滨:黑龙江科技出版社,1993.
    
    
    108 陕西地区栓皮栎种群区域变异性与遗传多样性的研究
    [74] 杨持,王迎春,刘强. 四合木保护生物学[M]. 北京:科学技术出版社,2002.
    [75] 夏铭, 周晓峰. 天然红松群体遗传多样性的 RAPD 分析[J].生态学报,2001,21(5):730~737.
    [76] 于长青. 中国麋鹿遗传多样性现状与保护对策[J].生物多样性,1996,4(3)130~134.
    [77] 祖元刚,孙梅,康乐. 生态适应与生态进化的分子机理[M]. 北京:高等教育出版社,2000.
    [78] 蒋有绪,藏润国. 热带树木构筑学研究概述[J].林业科学,1998,34(5):112~119.
    [79] 陈波.木本植物的构型及其在植物生态中的作用[J].生态学报,1999,19(3)359—364
    [80] 陈小勇. 安徽黄山青冈种群遗传结构的空间自相关分析[J].植物生态学报,2001,25(1):29~
     34.
    [81] 闫伯前,秦岭. 中国栗疫病群体遗传结构的空间自相关性分析[J].武汉植物研究,2001,23(3):
     41~43
    [82] 蒋志刚,马克平,韩兴国. 保护生物学[M]. 杭州:浙江科学技术出版社,1996.
    [83] 刘君然. 林分平均直径与自然稀疏规律的研究[J]. 林业科学,1987,23(3):45~54.
    [84] 吴承祯,洪伟. 林分直径结构新模型研究[J]. 西南林学院学报,1999,19(2):90~95.
    [85] 董鸣. 缙云山马尾松种群数量动态初步研究[J].植物生态学与地植物学学报,1986,10(4):283~
     293.
    [86] 江洪. 云杉种群生态学[M]. 北京:中国林业出版社,1992.
    [87] 李俊清,藏润国. 欧洲水青冈(Fagus sylvatical L.)构筑型与形态多样性研究[J].生态学报,2001,
     21(1)152~155.
    [88] Brown, S.A.J.R. Gillepie &A.E.Lugo.1989.Biomss estimation methods for tropical forests with
     applications to forest inventory data. Forest Science.35:881~902.
    [89] Hamrick, J. L. Factors influencing levels of genetic diversity in woody plant species. New
     Forest,1992,6:95 ~124
    [90] S.L.GUTSELL .2002.Accurately ageing trees and examing their height growth rates:implications for
     interpreting forest dynamics. Journal of Ecology,90:153~166.
    [91] M.KARIUKI.2002.Height estimation in complete stem analysis using annual radial growth
     measurements .Forestry ,75:63~74
    [92] Lieth H.Primary production of terrestrial ecosystems. Human Ecol,1973, (1):303~332
    [93] Lieth.H. Modeling the primary productivity of the world. Nature and Resource, UNESCO
     paris,1972,5~10
    [94] Tadaki, Y.The preestimating of stem yield based on the competition density effect. Rinshi
     denho,1963,154:1~49
    [95] M.KARIUKI, Height estimation in comlete stem analysis using annual radial growth measurements,
     Forestry, 2002,75(1),63~74.
    [96] Hamrick J L. In: Genetics and Wild pop. Manag. , 1983.
    [97] Cho, D. S. & R. E. J. Boerner. 1991. Canopy disturbance patterns and regeneration of Quercus species
     in two Ohio old-growth forests. Vegetatio, 93:9~18.
    [98] Halle F , Oldeman R A and Tomlinson P B. Tropical trees and forests—an architectural analysis.
     Springer-Verlag, Berlin, Heidelberg. 1978.
    [99] Loveless, M. D. & J.L. Hamrick.1984.Ecological determinants of genetic structure in plant
     populations. Annual Review of Ecology and systematics,15:65~18.
    [100] Montalvo, A. M. , S. G. Conard, M. T. Conkle & P.D. Hodgskiss. 1997. Population structure,
     genetic diversity, and clone formation in Quercus chrysolepis. American Journal of Botany,
     84:1553~1564.
    [101] Heywood, J. S. 1991. Spatial analysis of genetic variation in plant population. Annual Review of
    
    
    参考文献 109
     Ecology and Systemtics, 22:335~355.
    [102] Godt M J W, et al. Genetic diversity and population size in four rare southern Appalachian plant
     species. Conservation Biology, 1996,10:796~805.
    [103] D,Arrigo, R. D., G. C. Jacoby & R.M. Free.1992. Tree-ring width and maximum latewood density at
     the North American tree line: parameters of climatic change. Canadian Journal of Forest
     Research,22:1290~1296.
    [104] Borgaonkar, H. P., G. B. Pant & K. R. Kunar. 1999. Tree-ring chronologies from western Himalya
     and their dendroclimatic potential. International Association of Wood Anatomists, 20:295~309.
    [105] Comps B, et al. Genetic variance of the Croatian beech tands. Ann Sci For,1991,48:15~28.
    [106] Lacy R C & Lindenmayer D B. 1995. A simulation study of the impacts of population subdivision
     on the mountain brushtail possum trichosurus caninus.
    [107] Epperson, B. K. & R. W. Allard. 1989. Spatial autocorrelation analysis of the distribution of
     genotypes within population of lodgepole pine. Genetics, 121:369~377.
    [108] Leonard, S. & P. Menozzi. 1996. Spatial structure of genetic variability in natural stands of Fagus
     sylvatica L. in Italy. Heredity,77:359~368.
    [109] Kim Zin Such, Sook Woo Lee. 1994. Genetic diversity and structure of natural population of pinus
     koraiensis in Korea. Forest Genetics, 1(1):41~49.
    [110] Glock, W. S. Principles and methods of tree ring analysis. Carnegie Institute, Washington Publ. 1937,
     486.
    [111] Kikuzawa K. 1988. Dispersal of Quercus mongolica acorn in a broad-leaved deciduous forest: 2.
     Scatterhoarding by mice. Forest Ecology and Management, 25:9~16.
    [112] Silvrertown J.W. Introduction to plant population ecology. 2nd ed.Longman, London,1987.
    [113] Ashmum J. W. & L.F. Pitelka. 1985. Population biology of Clintonia (七筋骨属植物)borealis
     2.Survival and growth of transplant ramet(无性分株)in different environments. J. Eco.. 73:198~
     385.
    [114] Barrett. S. C.H. & J. R. Kohn,1991. Genetic and evolutionary consequences of small population size
     in plants: implication for conservation. In D. A. Falk & K. E. Holsinger, Genetic and Conservation of
     Rare Plants. Oxford Univ. Press. New York, Oxford. 3~30.
    [115] Grant,V.,1991,The evolutionary process: a critical study of evolutionary theory. Second edition.
     Columbia Univ. Press, New York.
    [116] Neilson, Ronald P. A. 1995. Model for predicting continental sale vegetation and water balance.
     Ecological Applications, 5(2):362~385.
    [117] Ogilby, in South-Eastern Australia, Ⅱ Loss of genetic variation within and between subpopulations.
     Biol Conserv., 73: 131~142.
    [118] Rebertus, A. J. & T. T. Veblen.1993. Structure and tree-fall gap dynamics of old-growth Nothofagus
     forests in Tierra del Fuego, Argentina. Journal of Vegetation Science, 4:641~654.
    [119] Time series analysis and forecasting with SPSS trends 9.0. SPSS Inc. Chicago, Illinosis. 1999.1.
    [120] Mcdonald D B,Hamrick J L. Genetic variation in some plants of Florida scrub. Amer.J.Bot. ,
     1996,83:21~27.
    [121] Schanbel A, Hamrick J L. Organization of genetic diversity within and among population of Gleditsia
     triacanthos. Amer.J.Bot. ,1990,77:1060~1069.
    [122] Godt M J W, et al. Genetic diversity and population size in four rare southern Appalachian plant
     species. Conservation biology,1996,10:796~805.
    [123] Barbujani G. Autocorrelation of gene frequencies under isolation by distance. Genetics,
    
    
    110 陕西地区栓皮栎种群区域变异性与遗传多样性的研究
     1987,117:777~782.
    [124] Sokal R R, Jacquez G M, Wooten M. Spatial autocorrelation analysis of migration and selection.
     Genetics, 1989,121:845~855.
    [125] Geburek, T. Are gene randomly distributed over space in mature population of sugar maple?. Annals
     of Botany, 1993,71:217~222.
    [126] Rescuch T B H, Hukriede W, Stam W, et al. Differentiating between clonal growth and limited gene
     flow using spatial autocorrelation of microsallites. Heredity, 1999,83:120~126.
    [127] Billins WD., Mooney HA. The ecology of arctic and alpine plants. Biochemistry Review,
     1968,43:481~529.
    [128] Wilson, D.S. 1975.A theory of group selection. Proceedings to National Academy of Sciences U. S.
     A.,72;143~146.
    [129] Wright, D. H. Spcies energy theory: an extension of species area theory. Oikos,1983,41:496~506.
    [130] Wright, J. W.1976. Introduce to Forest Genetics. New York: Academic press.
    [131] Williamson, M. S. 1981.Island Population. Oxford University Press.
    [132] Soule,M.E. 1985. What is conservation biology? BioScience,35:727~734.
    [133] Pianka, E. R.1974. Evolutionary Ecology. New York:Haper and Row,233~242.
    [134] Primack, R. B. 1993. Essentials of conservation biology. Sunderland MA: Sinauer Associates, Inc
    [135] Rey, J. R., Strong, D. R. 1983. Immigration and extinction of salt marsh arthropods on islands:an
     experimental study. Oikos, 41:396~401.
    [136] Schal, J. JJ., Pianka, E. R.1978. Geographical trends in number of species. Science, 201:679~686.
    [137] Shaffer, M. L. 1981. Minimum Population sizes for species conservation. Bio Science, 31(2): 131~
     134.
    [138] Silvertown, J. W. 1985. History of Latitudinal diversity gradient: Woody plants in Europe 1300~
     1000 years B. P. Journal of Biogeography, 12:519~525.
    [139] Simberloff, D.1986. The contribution of population and community biology to conservation science.
     Annual Review Ecology and Systematics, 19:473~511.
    [140] Stevens, G. C. 1989. The latitudinal gradients in geographical range: how to many species co-exist in
     the tropics. American Naturalist, 133:240~256.
    [141] Liu F,Chen W-L.2000.Population structure and regeneration of Quercus aliena var.acuteserrata in
     Shennongjia.Acta Phytoecol Sin, 24(4):396~401(in Chinese)
    [142] Gao X-M, Wang W, Du X-Jand Ma K-p.2001.Size structure, ecological significance and population
     origin of Quercus Wutaishanica forest in Beijing mountainous area. Acta Phytoecol Sin, 25(6):673~
     678(in Chinese)
    [143] Yan G-Q, Zhao G-F. 2001. Population structure and dynamics of Larix chinenesis in Qinling
     mountain. Chin J Appl Ecol, 12(6):824~828
    [144] Zhang W-H, Zhao Z-H. 2002. Study on population diameter structures of tree and shrub dominant
     plants in Dongling mountain in Beijing. Atca Botonica Sinica, 22(1):84~90
    [145] Liu J-Q,Wang Y-J.1986.Wave feature of population changes of pinus koraiensis in natural forest.
     Chinese Journal of Ecology, 5(5):1~5.(in Chinese)
    [146] Cho, D. S., R. E.J. Boerner. 1991. Canopy disturbance patterns and regeneration of Quercus species
     in two Ohio old growth forests. Vegetation, 93: 9~18
    [147] Ma, K. P. 1997. Study on the flora of Dongling Mountain area. In: Chen, L. Z. ed. Study on forest
     ecosystem structure and function in warm temperate region. Beijing: Science Press.53~72.(in
     Chinese)
    
    
    参考文献 111
    [148] Gholz H L. Environmental limits on above ground net primary production , leaf area ,and biomass in
     vegetation zones of the Pacific Northwest . Ecology, 1982,63: 469~481
    [149] Ma, K. P., Y. M. Liu().1994. Measurement of biotic community diversity. I.αdiversity (part 2).
     Chinese Biodiversity (), 2: 231~239. (in Chinese)
    [150] Smith J. Models in ecology. Beijing: Science Press. 1975
    [151] John N. R.杰弗斯,Utility of system analysis in ecology. Beijing: Science press. 1983
    [152] May, R. M. 1976. Simple mathematical models with very complex dynamics. Nature, lord. 261,
     459-467
    [153] Moor P. D., Chapman S. B. ,Methods in plant ecology. Oxford London: Blackwell Scientific
     Publication, 1986
    [154] Pearl R. The growth of population. Quart. Rev. Biol., 1956, 2:532~548
    [155] Box G.E.P., and G.M. Jenkins. Time series analysis: Foresting and control. Holden-Day San
     Francisco,1970.
    [156] Pielou, E. C. (1979). An introduction to mathematical ecology. Wiley interscience, New York and
     London.
    [157] Usher, M. B. (1969). A matrix approach to the management of renewable resources, with special
     reference to selection forests. Appl. Ecol., 3, 355~367
    [158] Cho, D. S., R. E.J. Boerner. 1991. Canopy disturbance patterns and regeneration of Quercus species
     in two Ohio old growth forests. Vegetation, 93: 9~18
    [159] Hamrik J L., M. T., Godt. Allozyme diversity in plant species. Sunderland Massachusetts: Sinauer
     Associates, 1990,43~63.
    [160] Giles B. E., Goudet J. A case study of genetic structure in a plant metapopulaion. Ecology,
     Genetics and Evolution. San diego: Academics Press, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700