冀西北坝上地区主要鼠类的丰富度及生态位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冀西北坝上地区属蒙古高原与华北平原的过渡带,与此相适应,动物地理区系构成亦表现为蒙新区与华北区的交汇特征。因而,该区域鼠类丰富度及多样性的研究对于探讨动物生态学的基础理论问题具有重要的价值。同时,该区域是我国华北地区的天然屏障及主要的水源涵养地,其生态变化直接影响京津地区的人居环境。鼠类是生态变化的敏感物种类群,因此,研究该区域鼠类的生态问题对掌握冀西北坝上地区生态变化具有重要的理论和实践意义。本项研究从2006年1月开始查阅相关文献至2008年5月完成论文撰写,外业调查时间从2006年5月至2007年9月。研究地点选择在具有冀西北坝上典型过渡区特征的沽源县辖区内,重点开展了坝上地区主要鼠类的丰富度与多样性、生态位测度方法、n维生态位适宜度等方面的研究。主要结论如下:
     1.冀西北坝上地区鼠类的丰富度和多样性:依据生态地理特征,研究区域划分为坝缘山地、低山丘陵干草原及河川湿草原三个区域。本项研究共捕获鼠类7种,三个区域物种丰富度排序为坝缘山地>低山丘陵干草原>河川湿草原。在动物区系成分上,坝缘山地以东北-华北型成分为主,低山丘陵干草原和河川湿草原以蒙古高原型为主,反映出该区域优势鼠种的过渡特征。按本研究划分的14种生境类型,鼠类多样性指数依次为落叶松幼林地>农田>退耕地幼林地>放牧湿草原>荒坡低丘>放牧半湿草原>落叶松疏林地>禁牧半湿草原>杨树成林地>退耕新造林地=禁牧湿草原>放牧干草原>天然林地>落叶松成林地。个体丰富度排序为低山丘陵干草原>坝缘山地>河川湿草原;不同生境类型中,个体丰富度以退耕地为最高,其次为放牧干草原和荒坡低丘,落叶松成林地、天然林地、落叶松疏林地、禁牧湿草原及农田的个体丰富度都很低。结合近十年来的农林牧业生产方式的改变,分析了该区域鼠类构成的总体变化趋势。
     2.生态位测度方法:
     ①在生态位宽度测度方法的研究方面,本项研究将生态位宽度划分为绝对生态位宽度和相对生态位宽度,提出了绝对生态位宽度的概念及测度方法。依据MacArthur的资源利用曲线及正态分布函数曲线的特征,以常用的统计估计参考值0.6826、0.05和0.01进行拟合:将绝对生态位宽度定义为物种对某一维资源的利用概率为0.99时所对应的资源变量的取值范围;把将概率密度取极大值时所对应的资源变量位点(x=u)定义为物种的最适生态位;并进一步将绝对生态位分为适宜生态位、亚适宜生态位和边际生态位,将概率密度函数曲线两个拐点之间所对应的资源变量取值范围[u-σ,u+σ]定义为适宜生态位、取值范围[u-1.96σ,u-σ]和[u+σ,u+1.96σ]定义为亚适宜生态位、取值范围[u-2.576σ,u-1.96σ]和[u+1.96σ,u+2.576σ]定义为边际生态位。同时,以坝上地区主要鼠类为例,分别进行了讨论。
     ②在生态位测度模型的研究方面:提出了物种种群数量饱和度概念,并以该饱和度概念为基础,建立了生态位测度模型。建立了一维生态位宽度测度模型及包含资源量信息因素的一维生态位宽度测度模型、n维生态宽度模型、生态位重叠的对称模型及不对称模型、某一物种与群落中其它所有物种的生态位重叠模型。
     ③在物种竞争系数的研究上,建立了种群密度制约型生态位竞争系数(α)模型、资源利用制约型生态位竞争系数(β)模型、生态位竞争系数(γ)模型,并运用生态位竞争系数模型分析了坝上地区主要鼠类的种间竞争关系。结果表明,生态位竞争系数模型在描述群落中物种的种间关系时优于生态位重叠模型;生态位竞争模型也可以与生态位宽度及生态位重叠模型配合使用,能更好地描述种间关系。
     3.把Hutchinson的n维生态位理论与美国鱼类和野生生物署(USFWS)提出的生境适宜度指数(HSI)模型相结合,尝试性地建立了达乌尔黄鼠的n维生态位适宜度模型,并以该模型对坝上地区达乌尔黄鼠的生境适宜性进行了评价。n维生态位适宜度模型对研究鼠类的生境评价、种群数量预测、预防控制、生物入侵的风险评估等方面均具有很强的适用性,并为今后鼠类生态研究提供了一条新途径。
The highland in the northwest of Hebei province is the transitional region of Mogolia altiplano and the plain of North China. Correspondently, the combination of the Mogolia district and the North China district characterizes the formation of the zoogeographical region.There is important significance in studying the abundance and diversity of the rat species to investigate the fundamental theories of animal biology. At the same time, this region is the natural defense and the main water resource conservation of North China and its biological variation influences the human environment of Beijing and Tianjin district. Moreover, Rats is the species which are sensitive to the biological change, so studying the rats biologically is very meaningful to master the biological change of the highland region in the northwest of Hebei province theoretically and practically. This study was carried out from Janurary of 2006 to May of 2008 and the outdoor investigation time is from May of 2006 to September of 2007, and Guyuan County, which is typical of the transitional region of the highland, was chosen as the investigated area. The main rat species are studied from the different aspects of abundance, diversity, niche metrics methods and n-dimensional suitability. The results are:
     1. The abundance and the diversity of the rat species in the highland: according to the geogrophical features, the investigated area can be divided into:The mountainous region in the edges of the highland; the low hills and dry grassland; and the plain and the wet grassland. Seven species of rats were captured in the research, and the ordination (from high level to low level) of the abundance of these three regions is: the mountainous region in the edges of the highland, the low hills and dry grassland, the plain and the wet grassland. In terms of fauna composition, the type of Northeast-North of China is typical in the mountainous region in the edges of the highland; and the type of Mogolia altiplano is typical in the low hills and dry grassland and the plain and the wet grassland, which reflects the transitional features of the dominant rat species. Of the fourteen habitat types, the ordination of rat diversity index (from high level to low level) is: young larch woodland, farmland, returned plowland and young woodland, grazing wet grassland, barren slope and low hills, grazing half-wet grassland, sparse larch woodland, herd prohibited half-wet grassland, adult poplar woodland, herd prohibited returned plowland=herd prohibited wet grassland, grazing dry grassland, natural woodland, adult larch woodland. The ordination of the individual richness (from high level to low level) is: the low hills and dry grassland, the mountainous region in the edges of the highland, the plain and the wet grassland. Connected with the alteration of the productive style in the last ten years, the general changing tendency of the rat species is analyzed during the present study.
     2. Niche metrics methods:
     a. In terms of the study of the niche metrics methods, niche breadth is divided into absolute niche breadth and comparative niche breadth. The concept and the metrics approach of the absolute niche breadth are put forward in this study. Based on the resource utilization curve put forward by MacArthur and the features of the normal distribution function curve, combined with the common use statistic estimation reference cost 0.6826、0.05 and 0.01, absolute niche breadth is defined as the corresponding scope of the resource variable when the utilization probability of one-dimensional resource by species is equal to 0.99; optimum niche is defined as the corresponding resource variable point(x=u) when the probability density is maximum. Further more, the absolute niche is divided into adequate niche, sub-adequate niche and boundary niche; and adequate niche is defined as the corresponding resource variable scope of [u-σ,u+σ] between the two inflecxions of the probability density function curve; sub-adequate niche is defined as the corresponding resource variable scope of [u-1.96σ,u-σ] and [u+σ,u+1.96σ]; boundary niche is defined as the corresponding resource variable scope of [u-2.576σ,u-1.96σ] and [u+1.96σ,u+2.576σ]. With the examples of the main rats in the highland, these methods are discussed respectively.
     b. In terms of the study of the niche metrics models, the concept of species-amount saturation is advanced, based on which, niche metrics model is established. And they are: one-dimensional niche breadth metrics model, one-dimensional niche breadth metrics model including the resource information factors. N-dimensional niche breadth model, symmetry and asymmetry model of niche overlapping and the niche model of one species overlapping with other species are also put up during the present study.
     c. In terms of the study of the species compitition index, niche competition modulus restricted by species density (α), resource utilization niche competion modulus (β) and niche competition modulus (γ) models are suggested and put up. These models are used to analyse the competition relationship of the main rat species in the highland. It turns out that niche competition modulus model, which can be cooperated with niche breadth and niche overlapping model, is better than the niche overlapping model in describing the interspecific relationship. 3. Combining the n-dimensional niche theory put forward by Hutchinson with the Habitat Suitability Index put forward by USFWS, the n-dimensional niche suitability model of Citellus dauricus Brandt is established, and the habitat suitability of the highland for Citellus dauricus Brandt is evaluated. N-dimensional niche suitability model is applied to the habitat evaluation of the rats, the forecast of the amount of the population, and the evaluation of the risk of biology invasion. All in all, this research provides a new approch to the biological study of rats.
引文
[1] 马世骏.现代生态学透视[M].北京:科学出版社,1990,72-89.
    [2] 马富裕,杨建荣,郑重,等.北疆高产棉花密度与打顶时序调控的[J].生态学杂志,2005, 24(2):136- 140.
    [3] 马勇.新疆北部地区啮齿动物地理分布的研究[J].动物学报,1981,27(2):180-188.
    [4] 于婧,聂艳,周勇,等.生态位适宜度方法在基于 GIS 的耕地多宜性评价中的应用[J].土壤学报, 2006,43(2):190-196.
    [5] 王利民,周延林,鲍伟东.鄂尔多斯高原沙地啮齿动物群落资源利用研究Ⅰ--空间资源维利用研究[J].内蒙古大学学报(自然科学版),2001,32(5):567-574.
    [6] 王利民,周延林,鲍伟东.鄂尔多斯高原沙地啮齿动物群落资源利用研究Ⅱ--食物资源维利用研究[J].内蒙古大学学报(自然科学版),2002,33(1):65-72.
    [7] 王利民,周延林,鲍伟东.鄂尔多斯高原沙地啮齿动物群落资源利用研究Ⅲ--时间资源维利用模式[J].内蒙古大学学报(自然科学版),2002,33(2):182-190.
    [8] 王刚.生态位理论若干问题探讨[J].兰州大学学报(自然科学版),1990,26(2):109-113.
    [9] 王刚,赵松岭,张鹏云,等.关于生态位定义的探讨及生态位重叠计测公式改进的研究[J].生态学报,1984,4(2):119-127.
    [10] 王桂明,周庆强,钟文勤.内蒙古典型草原 4 种常见小哺乳动物的营养生态位及相关关系[J].生态学报,1996,16(1):71-76.
    [11] 王莉莉.城市生态位适宜度的对比分析--以江苏省 13 城市为例[J].现代城市研究,2007,(3):73- 80.
    [12] 王学志,徐卫华,欧阳志云,等. 生态位因子分析在大熊猫(Ailuropodamelanoleuca)生境评价中的应用[J].生态学报,2008,28(2):821-828.
    [13] 王淯,胡锦矗,谌利民,等.唐家河自然保护区小哺乳动物空间生态位初步研究[J].兽类学报,2005, 25(4):379-384.
    [14] 王淯,王小明,王正寰.高原鼠兔生境选择的初步研究[J].四川大学学报(自然科学版),2004,41(4): 1041-1045.
    [15] 王元,华佩伦,杨秀连.张家口坝上四县鼠蚤分布及疫情分析[J].中国地方病防治杂志, 1994,9(5):307,309.
    [16] 王庆锁,冯宗炜,罗菊春.河北北部、内蒙古东部森林--草原交错带生物多样性研究[J].植物生态字报,2000,24(2):141-146.
    [17] 王日旭,项有清.河北省鼠疫自然疫源地动植物生态群演变规律[J].中国媒介生物学及控制杂志,1994,5(6):468-470.
    [18] 王权业,蒋志刚,樊乃昌. 高原歇鼠、高原鼠兔以及甘肃鼠兔种间关系的初步探讨[J].动物学报,1989,3(2):205-212.
    [19] 文祯中.生态位理论在农业中的应用[J].信阳师范学院学报(自然科学版),1989,2(1):15- 19.
    [20] 帅凌鹰,宋延龄,李俊生,等.黑河流域中游地区荒漠--绿洲景观区啮齿动物群落结构[J].生物多样性,2006,14(6):525-533.
    [21] 付和平,马春梅,艾东,等. 内蒙古阿拉善荒漠主要啮齿类种群生态位[J].内蒙古农业大学学报, 2003,24(4):22-25.
    [22] 付和平,武晓东,杨泽龙.不同干扰条件下荒漠啮齿动物生态位特征[J].生态学报,2005, 25(10): 2637-2643.
    [23] 付和平,杨泽龙,武晓东,等.不同干扰尺度下荒漠啮齿动物群落格局[J].内蒙古农业大学学报, 2007,28(1):51-56.
    [24] 付和平,杨泽龙,武晓东,等.不同干扰和尺度下荒漠啮齿动物群落格局[J].内蒙古农业大学学报, 2007,28(1):51-56.
    [25] 冯波,陈新军,许柳雄.应用栖息地指数对印度洋大眼金枪鱼分布模式的研究[J].水产学报,2007, 41(6):805-812.
    [26] 叶晓堤,马勇,冯祚建.华北平原及黄土高原啮齿动物物种丰富度的空间格局及其分异[J].兽类学报,1998,18(4):260-267.
    [27] 刘满福,李玉贵,王桂琴,等.张家口市啮齿动物区系研究[J].地方病通报,2005,20(3):16- 17.
    [28] 刘满福,刘合智,张彩虹.河北省鼠疫自然疫源地内啮齿动物种类及其分布的调查[J].中国媒介生物学及控制杂志,2002,13(4):260-262.
    [29] 刘红玉,李兆富,白云芳.挠力河流域东方白鹳生境质量变化景观模拟[J].生态学报, 2006,26(12): 4007-4013.
    [30] 纪秋颖,林健.高校生态位适宜度的数学模型及其应用[J].辽宁工程技术大学学报, 2006,25(增): 260-262.
    [31] 朴顺姬,王振杰,颜秀灵,等.科尔沁沙地差巴嘎蒿种群生态位适宜度分析[J].植物生态学报,2006, 30(4):593-600.
    [32] 孙鸿良.生态位理论在生态农业建设中的拓广应用[J].农业现代化研究,1987,(4):12-16.
    [33] 孙儒泳.动物生态学原理[M]. 北京:北京师范大学出版社, 2001,334-338.
    [34] 朱春全.生态位理论及其在森林生态学研究中的应用[J].生态学杂志,1993,12(4):41-46.
    [35] 李德志,刘科轶,臧润国,等.现代生态位理论的发展及其主要代表流派[J].林业科学, 2006,42(8): 88-94.
    [36] 李德志,石强,臧润国,等.物种或种群生态位宽度与生态位重叠的计测模型[J].林业科学,2006, 42(7):95-103.
    [37] 李玉贵,王日旭.河北省鼠疫自然疫源地啮齿动物种类组成及其动态变化的研究[J].中国地方病防治杂志,1994,9(2):94-95,103.
    [38] 李契,朱金兆,朱清科.生态位理论及其测度研究进展[J].北京林业大学学报,2003,25 (1):100- 107.
    [39] 李博,杨持,林鹏.生态学[M].北京:高等教育出版社,2000,100-107.
    [40] 李雪梅,程小琴.生态位理论的发展及其在生态学各领域中的应用[J].北京林业大学学报,2007, 29(增刊 2):294-297.
    [41] 李自珍,林红.春小麦生态位适宜度与产量关系的研究关[J].自然科学进展,1998, 8(2):137-141.
    [42] 李自珍, 李文龙.黄土高原半干旱区农田水肥条件对作物生态位适宜度和产量的影响[J]. 西北植物学报,2003,23(1):28-33.
    [43] 李自珍,赵松岭,张鹏云.生态位适宜度理论及其在作物生长系统中的应用[J].兰州大学学报(自然科学版),1993,29(4):219-224.
    [44] 李自珍,黄子深.沙坡头地区人工林植物的水分生态位适宜度分析[J].西北植物学报, 1995, 15(5):97-101.
    [45] 李自珍,黄子琛,唐海萍.沙区植物种的生态位适宜度过程数值模拟[J].兰州大学学报(自然科学版),1996,32(2):108-114.
    [46] 李自珍,施维林,唐海萍,等.干旱区植物水分生态位适宜度的数学模型及其过程数值模拟试验研究[J].中国沙漠,2001,21(3):281-285.
    [47] 李文龙,施维林,王刚,等.沙坡头地区人工林植物的水分生态位适宜度与种间共存机制分析[J].西北植物学报,2004,24(3):384-391.
    [48] 李文龙,李自珍,王 刚,等.沙坡头地区人工固沙植物水分利用及其生态位适宜度过程数值模拟分析[J].西北植物学报,2004,24(6):1012-1017.
    [49] 李文龙,张彦宇,李自珍,等. 高寒草地植物生态位适宜度与生产力和多样性的关系及其对放牧的响应[J].兰州大学学报(自然科学版),2007,43(2):53-57.
    [50] 李俊生,宋延龄,徐存宝,等.小兴安岭林区不同生境梯度中小型哺乳动生物多样性[J].生态学报, 2003,23(6):1037-1046.
    [51] 李晓晨,王廷正.陕西地区啮齿动物种数分布与生态因子关系的分析[J].兽类学报,1996, 16(2):129-135.
    [52] 佘建军,李晓晨.陕西省啮齿动物种数分布及其生物多样性的研究[J].中国媒介生物学及控制杂志,2003,14(4):269-272.
    [53] 陈志平,王应祥,冯庆,等.云南西双版纳片断热带雨林鼠形啮齿类的物种多样性研究[J].动物学研究,1996,17(4):451-458.
    [54] 陈新军,冯波,许柳雄.印度洋大眼金枪鱼栖息地指数研究及其比较[J].中国水产科学, 2008, 15(2):269-278.
    [55] 宋延龄,杨亲二,黄永青,等.物种多样性研究与保护[M].浙江科学技术出版社,1998,168- 180.
    [56] 余世孝,Orloci L.生态位分离的涵义与测度[J].植物生态学与地植物学学报,1993,17 (3):253- 263.
    [57] 余世孝,奥罗西 L.物种多维生态位宽度测度[J].生态学报,1994,14(1):32-39.
    [58] 张光明,谢寿昌.生态位概念演变与展望[J].生态学杂志,1997,16(6):46-51.
    [59] 张雪冬,李振海,史献明,等.河北省鼠疫自然疫源地地理景观特征与啮齿动物的分布[J].中国媒介生物学及控制杂志,2007,18(6):517-518.
    [60] 张荣祖.中国动物地理[M].北京:科学出版社,2004,304-394.
    [61] 武晓东,薛河儒,苏吉安,等.内蒙古半荒漠区啮齿动物群落分类及其多样性研究[J].生态学报, 1999,19(5):737-743.
    [62] 武晓东,阿娟,付和平.内蒙古阿拉善荒漠啮齿动物群落结构及其多样性研究[J].草地学报, 2003, 11(4):312-316.
    [63] 林红,李自珍.半干旱区作物生态位适宜度模型及水肥调控试验结果的定量分析[J].兰州大学学报(自然科学版),1998,34(1):100-105.
    [64] 欧阳志云,王如松,符贵南. 生态位适宜度模型及其在土地利用适宜性评价中的应用[J].生态学报,1996,16(2):113-120.
    [65] 杨瑞,张雅林,冯纪年.利用 ENFA 生态位模型分析玉带凤蝶和箭环蝶异地放飞的适生性[J].昆虫学报,2008,51(3):290-297.
    [66] 杨春文,马建章,金建丽,等.森林生态系统中 5 种啮齿动物秋季时间生态位[J].动物学杂志, 2008, 43(2):64-69.
    [67] 胡德夫,盛和林.准噶尔盆地沙质荒漠啮齿动物群落在短命植物存在期的空间-食物资源利用[J].兽类学报,1999,19(1):52-63.
    [68] 赵天飙,张忠兵,李新民,等.大沙鼠和子午沙鼠的种群生态位[J].兽类学报,2001,21(1): 76-79.
    [69] 赵天飙,张忠兵,李新民,等.大沙鼠对栖息地的选择[J].动物学杂志,2003,5(1):40-43.
    [70] 周立志,马勇.中国干旱地区啮齿动物物种多样性[J].淮北煤师院学报,1999,20(2):46-52.
    [71] 周立志,马勇,叶晓堤.中国干旱地区啮齿动物物种分布的区域分异[J].动物学报, 2002,48(2):l83-194.
    [72] 周立志,马勇.中国西部干旱地区啮齿动物多样性分布格局[J].生物多样性,2002,10(1):44-48.
    [73] 周立志,马勇.用GIS进行西部干旱地区啮齿动物物种分布的信息管理[J]. 安徽大学学报(自然科学版),2003,27(2):94-103.
    [74] 姚圣忠,胡德夫,曹青,等.沽源县林地啮齿动物种类及为害研究[J].河北林业科技,2005, (3): 19-21.
    [75] 郝锋,李医民.模糊生态位初探[J].江苏大学学报(自然科学版),2005,26(6):91-94.
    [76] 唐海萍,李自珍,王刚.生态位适宜度在绿洲人口问题上的应用[J].兰州大学学报(社会科学版), 1994,22(3):134-136.
    [77] 唐海萍,史培军,李自珍.沙坡头地区不同配置格局油蒿和柠条水分生态位适宜度研究[J].植物生态学报,2001,25(1):6-10.
    [78] 聂艳,周勇,于婧,等.土壤基础生态位适宜度模型在耕地土壤肥力综合评价中的应用[J].长江流域资源与环境,2006,15(2):223-227.
    [79] 程海涛,马富裕,慕彩芸.北疆棉区打顶调控棉纤维生态位适宜度的研究[J].中国农学通报,2005, 21(2):272-275.
    [80] 傅和平,武晓东,杨泽龙,等.内蒙古阿拉善荒漠主要啮齿动物生态位测度比较[J].动物学杂志, 2004,39(4):27-34.
    [81] 韩崇选,杨学军,王明春,等.关中北部塬区林地啮齿动物群落多样性变化研究[J].陕西师范大学学报(自然科学版),2003,(31):177-183.
    [82] 韩崇选,吕复扬,卜书海,等.陕西林区啮齿动物群落多样性研究[J].西北林学院学报,2004,19(3): 99-104.
    [83] 靳新霞,张大铭.莫索湾垦区啮齿动物群落结构与物种多样性分析[J].动物学杂志,2005,40(6): 30-37.
    [84] 蒋志刚.生态龛宽度的刀切法研究及其在高原鼠兔生态龛研究中的应用[J].兽类学报,1987, 7(1):20一27.
    [85] 戴昆,潘文石,钟文勤.荒漠鼠类群落格局[J].干旱区研究,2001,18(4):1-7.
    [86] 戴昆,姚军. 荒漠啮齿类共存机制[J].干旱区研究,1999,16(3):23-27.
    [87] 樊乃昌,景增春,张道川.高原鼠兔与达乌尔鼠兔食物资源维生态位的研究[J].兽类学报,1995, 15(1):36-40.
    [88] 樊乃昌,张道川.高原鼠免和达乌尔鼠免的摄食行为及对栖息地适应性的研究[J].兽类学报, 1996,16(1):48-53.
    [89] 魏辅文,冯祚建,王祖望.野生动物对生境选择的研究概况[J].动物学杂志,1998,33(4): 48-52.
    [90] 颜忠诚,陈永林.动物的生境选择[J].生态学杂志,1998,17(2):43-49.
    [91] 谭萌佳,严力蛟,李华斌.城市人居环境质量定量评价的生态位适宜度模型及其应用[J].科技通报,2007,23(3):439-445.
    [92] 田中章.何をもって生態系を復元したといえるのか? 生態系復元の目標設定とハビタット評価手続きHEPについて[J].日本造園学会ランドスケープ研究,2002,64(5):282- 285.
    [93] 田中章.ハビタットの評価と復元 -代償ミティゲーションを評価する HEP-[J].日本生態学会関東地区会報,2003,(51):25-33.
    [94] Abrams P.A. Some comments on measuring niche over lap [J].Ecology, 1980, (61):44-49.
    [95] Abrams P.A., Matsuda H., Harada Y. Evolutionarily unstable fitness maxima and stable fitness minima of continuous traits [J].Evolutionary Ecology, 1993, (7):465-487.
    [96] Arthur W. The niche in competition and evolution [J].The Journal of Applied Ecology, 1988, 25 (2):745.
    [97] Austin M.P., Nicholls A.O., Margules C.R. Measurement of the realized qualitative niche: environmental niches of five Eucalyptus species [J].Ecological Monographs, 1990, (60): 161–177.
    [98] Abramsky Z., Rosenzweig M.L., Pinshow B., et al. Habitat selection: an experimental field test with two gerbil species [J].Ecology, 1990, 71(6):2358-2369.
    [99] Angelici F.M., Luiselli L. Patterns of specific diversity and population size in small mammals from arboreal and ground-dwelling guilds of a forest area in southern Nigeria [J].The Zoological Society of London, 2005, (265):9-16.
    [100] Braunisch V., Suchant R. A model for evaluating the‘ habitat potential’ of a landscape forcaperc- aillie Tetrao urogallus: a tool for conservation planning [J].Wildl. B., 2007, (13): 21-33.
    [101] Bryan T.L., Metaxas A. Predicting suitable habitat for deep-water orgonian corals on the Atlantic and Pacific Continental Margins of North America.Mar [J]. Ecol. Prog. Ser, 2007, (330):113-126.
    [102] Brigitte A.R., Helfer V., Hirzel A.H. Modeling Habitat-Suitability Using Museum Collections: an Example with Three Sympatric Apodemus Species from the Alps [J].Journal of Biogeography, 2003,(30):581-590.
    [103] Barnes T.K., Volety A.K., Chartier K., et al. A habitat suitability index model for the eastern oyster (Crassostrea virginica), a tool for restoration of the Caloosahatchee Estuary, Florida [J]. Journal of Shellfish Research, 2007, 26(4):949-959.
    [104] Bond W., Ferguson M., Forsyth G. Small mammals and habitat structure along altitudinal gradie- nts in Southern Cape Mountains [J].S.Afr.J.Zool, 1980, (15):34-43.
    [105] Bowland J.M., Perrin M.R. Wetlands as reservoirs of small mammal population in Natal Draken- sberg [J].S.Afr.J.Wild.Res, 1993, (23):39–43.
    [105] Brown J.S., Lieberman G. Resource utilization and coexistence of seed-eating rodents in sand dune habitats [J]. Ecology, 1973, (54):788-797.
    [107] Brown J.S. Coexistence on a seasonal resource [J].Am Nat, 1989, (133):168-182.
    [108] Brown J.S. Desert rodent community structure: a test of four mechanisms of coexistence [J]. Ecol. Monogr, 1989, (59):1-20.
    [109] Culver D.C. Analysis of simple cave communities: niche separation and species packing [J]. Ecology, 1970, (51):949-958.
    [110] Colinvaux P. Ecology [M].New York: John Wiley & Sons, Inc, 1986, 29-34.
    [111] Cody M.L. Competition and the structure of bird communities [M].USA: Princeton University Pres, 1974, 40-180.
    [112] Cao Guangxia. The definition of the niche by fuzzy set theory [J].EcolModel, 1995, (77): 65-71.
    [113] Cassinello J., Acevedo P., Hortal J. Prospects for population expansion of the exotic aoudad (Ammotragus lervia; Bovidae) in the Iberian Peninsula: clues from habitat suitability modeling [J].Diversity Distrib, 2006, (12): 666-678.
    [114] Caughley G., J. Short, G.C. Griggt, et. al. Kangaroos and climate: an analysis of distribution [J].Journal of Animal Ecology, 1987, (56):751–761.
    [115] Christensen J.T. Home range and abundance of Mastomys natalensis (Smith, 1834) in habitats affected by cultivation [J].Afr.J.Ecol, 1996, (34):298–311.
    [116] Colwell R.K., Futuyma D.J. On the measurement of niche breadth and over lap [J]. Ecology, 1971, (52):567-576.
    [117] Clarke A.S. Studies on the life cycle of the Pseudophyllidean cestode, Schistocephalus solidus [J].Proceedings of Zoological Society of London, 1954, (124): 257-304.
    [118] David J.H.M., Jarvis J.U.M. Notes on two brief surveys of the small mammal fauna on the Rooiberg, Ladismith, Southern Cape Province [J]. S.Afr.J.Zool, 1983, (18): 371–377.
    [119] Dieckmann U., Doebeli M. On the origin of species by sympatric speciation [J]. Nature, 1999, (400):354-357.
    [120] Doebeli M. A quantitative genetic competition model for sympatric speciation [J].Journal of Evolutionary Biology, 1996, (9):893-909.
    [121] Dueser R.D., Shugart H.H.Jr. Microhabitats in forest floor small mammal fauna [J].Ecology, 1978, 59(1):89-98.
    [122] Elton C. Animal ecology [M]. London: Sidgwick and Jackon, 1927, 63-68.
    [123] Feinsinger P., Spears E.E., Poole R.W. A simple measure of niche breadth [J].Ecology, 1981, (62): 27-32.
    [124] Fornes G.L. Habitat use by loggerhead shrikes(Lanius ludovicianus) at Midewin National Tallgr- ass Prairie, Illinois: An application of Brooks and Temple's habitat suitability index [J]. American Midland Naturalist,2004, 151(2):338-345.
    [125] Grinnell J. The niche-relationship of the California Thrasher [J].Auk, 1917, (34):427-433.
    [126] Grinnell J. Geography and evolution [J]. Ecology, 1924, 5(3):225-229.
    [127] Grinnell J. A distributional summation of the ornithology of Lower California [J].University of California Publications of Zoology, 1928, (32):1-30.
    [128] Green R.H. A multivariate statistical approach to the Hutchinsonian niche: bivalve molluscs of central Canada [J].Ecology, 1971, (52):543–556.
    [129] Grant P.R. Ecological character displacement [J].Science, 1994, (266):748-749.
    [130] Gause G.F. The struggle for existence [M]. Baltimore: Williams&Wilkins, 1934, 19-20.
    [131] Grubb P.J. The maintenance of species-richness in plant communities: the importance of regenera- tion niche [J].Biol, 1977, (52):107-145.
    [132] Giller P.S. Community structure and the niche [J].The Quarterly Review of Biology, 1985, 60(4): 531-532.
    [133] Gibbons J.R.H. A model for sympatric speciation in Megarhyssa (Hymenoptera: Ichneumonidae): competitive speciation. American [J].Naturalist, 1979, (114):719-741.
    [134] Hutchinson G.E. Concluding remarks: population studies, animal ecology and demography [J].Cold Spring Harbor Symposium of Quantitative Biology, 1957, (22): 415-427.
    [135] Hirzel A.H., Helfer V., Metral F. Assessing habitat-suitability model swith a virtual species [J]. Ecological Modelling, 2001, (145):111-121.
    [136] Hirzel A.H., Hausser J., Chessel D., et al. Ecological-Niche Factor Analysis: How to Compute Habitat-Suitability Maps Without Absence Data? [J].Ecology, 2002, 83(7):2027-2036.
    [137] Hirzel A.H., Posse B., OggierP A., et al. Ecological requirements of reintroduced species and the implications for release policy: the case of the bearded vulture. Journal of Applied Ecology, 2004, 41(6):1103-1116.
    [138] Hurlbert S.H. The measurement of niche overlap and some relatives [J].Ecology, 1978, (59): 67-77.
    [139] Huntly N., Inouye R.S. Small mammal populations of an old-field chronosequence: successional patterns and associations with vegetation [J].Mamm.1987, (68):739–745.
    [140] Horn H.S. Measurement of overlap in comparative ecological studies [J]. American Naturalist. 1966, (100):419-424.
    [141] Inglis G.J., Hurren H., Oldman J., et al. Using habitat suitability index and particle dispersion models for early detection of marine invaders[J].Ecological Applications,2006, 16(4): 1377- 1390.
    [142] Jones P.F., Hudson R.J., Farr D.R. Evaluation of a winter habitat suitability index model for elk in west-central Alberta [J].Forest Science.2002, 48(2):417-425.
    [143] Johnson R.H. Determinate evolution in the color pattern of the lady-beetles [M]. ComegieZnstitution of Washington Publ, 1910, 122, 1-104.
    [144] Jones Z.F., Bock C.E., Bock J.H. Rodent communities in a grazed and ungrazed Arizona grassland, and a model of habitat relationships Among rodents in southwestern grass/shrublands [J].The American Midland Naturalist,2003,(149): 384-394.
    [145] Kasangaki A., Kityo R., Kerbis J. Diversity of rodents and shrews along an elevational gradient in Bwindi Impenetrable National Park, southwestern Uganda [J].Afr.J.Ecol,2003, (41):115–123.
    [146] Kenagy G.J. Daily and seasonal patterns of activity and energetics in a heteromyid rodent commu- nity [J].Ecology, 1973, (54): 1201-1219.
    [147] Kirkland Jr.G.L. Patterns of initial small mammal community change after clear cutting of temper- ate North American forests [J]. Oikos, 1990, (59):313–320.
    [148] Kirkland Jr.G.L. Responses of small mammals to the clear cutting of northern Appalachian forests [J]. Mamm, 1977, (58): 600–609.
    [149] Kohn A.J. Ecological shift and release in an isolated population: Conus milliaris at Easter Island [J]. Ecological Monographs, 1978, (48): 323-336.
    [150] Kotler B.P., Brown J.S. and Subach A. Mechanisms of species coexistence of optimal foragers: temporal partitioning by two species of sand dune gerbils [J]. Oikos, 1993, (67): 548-556.
    [151] Kotler B.P. Predation risk and the structure of desert rodent communities [J]. Ecology, 1984, (65): 689-701.
    [152] Kotler B.P., Brown J.S., Mitchell W.A. The role of predation in shaping the behavior, morphology and community organization of desert rodents [J].Aust.J.Zool, 1994, (42): 449-466.
    [153] Kotler B.P, Brown J.S. Environmental heterogeneity and the coexistence of desert rodents [J]. Ann.Rev.Ecol.syst, 1988, (19):281-307.
    [154]Kearney M., Porter W.P. Mapping the fund amental niche: physiology, climate, and the distribution of a nocturnal lizard [J] Ecology, 2004, 85(11): 3119-3131.
    [155] Levins R. Evolution in changing environments: some theoretical explorations [M]. USA: Princeton University Press, 1968.
    [156] Leibold M.A. The niche concept revisited: mechanistic models and community context [J]. Ecology, 1995, 76(5):1371-1382.
    [157] Lemen C.A., Freeman P.W. Interference competition in a heteromyid community in the Great Basin of Nevada, USA [J]. Oikos, 1986, (46):390-396.
    [158] Lee G.E.M., Molen D.T., Boogaard H.F.P., et al. Uncertainty analysis of a spatial habitat suitabili- ty model and implications for ecological management of water bodies [J].Landscape ecology, 2006, 21(7):1019-1032.
    [159] Larsen E.C. Competitive release in microhabitat use among coexisting desert rodents: a natural experiment [J]. Oecologia, 1986, 69(2):231-237.
    [160] Longland W., Price M.V. Direct observations of owls and heteromyid rodents: can predation risk explain micro-habitat use [J].Ecology, 1991, (72):2261-2273.
    [161] Losos J.B., De-Queiroz K. Evolutionary consequences of ecological release in Caribbean Anolis lizards [J]. Biological Journal of the Linnean Society, 1997, (61):459-483.
    [162] Lowie C.E., Haynes J.M., Walter R.P. Comparison of walleye Habitat Suitability Index (HSI) information with habitat features of a walleye spawning stream [J].Journal of Freshwater Ecology, 2001, 16(4):621-631.
    [163] Lluis B., Wilfried T., Miguel B.A., et al. Presence-absence versus presence-only modeling methods for predicting bird habitat suitability [J]. Ecography, 2004, (27): 437-448.
    [164] Macarthur R.H. The theory of the niche [M]// Lewontin R.C. Population biology and evolution.New York: Academic Press, 1968, 159-179.
    [165] MacArthur R.H. and Levins R. The limiting similarity, convergence, and divergence of coexisting species [J].The American Naturalist, 1967, (101):377-385.
    [166] MacArthur R.H. Species packing and competitive equilibria for many species [J].Theoretical Population Biology, 1970, 1(1):1-11.
    [167] MacArthur R.H. Species packing and what interspecies competition minimizes [J]. Proceedings of the National Academy of Sciences, USA, 1969, (64):1369-1371.
    [168] Maguire B.Jr. A partial analysis of the niche [J].American Naturalist, 1967, (101): 515-523.
    [169] May R.M. Some notes on estimating the competition matrix [J].Ecology, 1975, 56(3): 737-741.
    [170] May R.M., MacArthur. Niche overlap as a function of environmental variability [J]. Proceedings of the National Academy of Sciences, USA, 1972, (69):1109-1113.
    [171] M’Closkey R.T. Niche separation and assembly in four species of Sonoran Desert rodents[J]. Am Nat, 1978, (112):683-694.
    [172] May R.M. On the theory of niche overlap [J].Theoretical Population Biology, 1974, (5):297 -332.
    [173] McNaughton S.J., WolfL L. Dominance and niche in ecological systems [J].Science, 1970, (167):131-139.
    [174] Mitchell M.S., Zimmerman J.W., Powell R.A. Test of a habitat suitability index for black bears in the southern Appalachians [J].Wildlife Society Bulletin, 2002, 30(3):794-808.
    [175] Kearney M., Warren P, Porter. Mapping the fund amental niche: physiology, climate, and the distributon of a nocturnal lizard [J]. Ecology, 2004, 85(11): 3119-3131.
    [176] M’Closkey R.J., Fieldwick B. Ecological separation of sympatric rodents (Peromyscus and Microtus)[J]. Mammal, 1975, (56):119-129.
    [177] Constantine N.L., Campbell T.A., Baughman W.M., et al. Effects of clear cutting with corridor retention on abundance, richness, and diversity of small mammals in the Coastal Plain of South Carolina, USA [J].Forest Ecology and Management,2004,(202):293-300.
    [178] Orians G.H., Horn H.S. Overlap in foods and foraging of four species of blackbirds in the Potholes of central Washington [J].Ecology, 1969, (50):930-938.
    [179] Odum E.P. Fundamentals of Ecology [M].First edition.W.B. Saunders, Philadelphia, USA, 1953.
    [180] Pagels J.P., Erdle S.Y., Uthus K.L. Small mammal diversity in forested and clear cut habitats in the Virginia Piedmont [J].Va.J.Sci.1992.(43):171–176.
    [181] Pianka E.R. Habitat specificity, speciation, and species density in Australian desert lizards [J]. Ecology, 1969, (50):498-502.
    [182] Pitelka F. Distribution of birds in relation to major biotic communities [J].American Midland Naturalist, 1941, (25): 113-137.
    [183] Pielou E.C. Niche width and overlap: a method for measuring them [J].Ecology, 1971, 53(4): 687-692.
    [184] Pianka E.R. r and K selection or b and d selection? [J] American Naturalist, 1972, (106): 581-588.
    [185] Pianka E.R. The structure of lizard communities [J].Annual Review of Ecology and Systematics, 1973, (4):53-74.
    [186] Pielou E.C. Niche width and overlap: a method for measuring them [J] .Ecology, 1971, 53 (4): 687-692.
    [187] Root R.B. The niche exploitation pattern of the bluegrey gnatcatcher [J].Ecological Monographs, 1967, (37):317-350.
    [188] Roughgarden J. Evolution of niche width [J].American Naturalist, 1972, (106): 683-718.
    [189] Reichman O.J. Relation of desert rodent diets to available resources [J].J. Mamm, 1975,(56):731-751.
    [190] Rebar C., Conley W. Interactions in microhabitat use between Dipodomys ordii and Onychomys leucogaster [J]. Ecologty, 1983, 64(5):984-988.
    [191] Robinson B.W., and Wilson D.S. Character release and displacement in fishes: A neglected literature [J].American Naturalist, 1994, 144:596-627.
    [192] Rosenzweig M.L. Competitive Speciation [J]. Biological Journal of the Linnean Society, 1978, (10):275-289.
    [193] Ross S.T. Resource partitioning in fish assemblages: a review of field studies [J]. Copeia, 1986, (2):352-388.
    [194] Rosenzweig M.L., Winakur. Population ecology of desert rodent communities: habitats and envir- onmental complexity [J].Ecology, 1969, (50):558–572.
    [195] Rowe-Rowe D.T., Meester. Habitat preferences and abundance relations of small mammals in the Natal Drankensberg [J].S.Afr. J. Zool, 1982, (17):202–209.
    [196] Rowe-Rowe D.T., Lowry P.B. Influence of fire on small mammal population in the Natal Drak- ensberg[J]. S. Afr. J. Wild.Res., 1982, (12):130–139.
    [197] Ruger N., Schluter M., Matthies M. A fuzzy habitat suitability index for Populus euphratica in the Northern Amudarya delta [J].Ecological Modelling, 2005, 184 (2-4):313-328.
    [198] Zuther S., Schulz H.K., Lentzen-godding A. Development of a habitat suitability index for the noble crayfish astacus using fuzzy modeling [J].Bulletin Francais de la Peche et de la Pisciculture. 2005, (376-377): 731-742.
    [199] Schoener T.W. The Anolis lizards of Bimini: resource partitioning in a complex fauna [J]. Ecology, 1968, (49):704-726.
    [200] Schoener T.W. Resouce partitioning in ecological communities [J].Science, 1974, (185): 27-39.
    [201] Soares C., Brito J.C. Environmental correlates for species richness among amphibians and reptiles in a climate transition area [J].Biodiv.Conserv, 2007, (16): 1087-1102.
    [202] Santos X., Brito J.C., Sillero N., et al. Inferring habitat-suitability areas with ecological modelling techniques and GIS: A contribution to assess the conservation status of Viperalatastei [J].Biol.Conserv, 2006, (130):416-425.
    [203] Stanley W.T., Goodman S.M., Hutterer R. Notes on the insectivores and elephant shrew of the Chome forest S. Pare mountains, Tanzania (Mammalia: insectivora and macroscelidea) [J].Zool. Abh. Mus. Tierkd. Dresden, 1996, (49):132–147.
    [204] Schluter D. The Ecology of Adaptive Radiation [M]. Oxford University Press, New York.2000.
    [205] Sun Hongzhi, Gao Zhongxin, Wang Dan. Habitat suitability index models: grey heron nesting in ZhaLong national nature reserve [J].Journal of Northeast Forestry University. 1995, 6(2):61-64.
    [206] Steinmueller K. A model of niche overlap and interaction in ecological systems [J]. Biom J, 1980, (22):211-228.
    [207] Stern K., Roche L. Genetics of forest ecosystems [J].The Journal of Applied Ecology,1975, 12(2):703-705.
    [208] Smigel B.W., Rosenzweig M.L. Seed selection in Dipodomys merriami and Perognathus penicill- atus [J]. Ecologty, 1974, (55):329-339.
    [209] Schoener T.W. The Anolis lizards of Bimini: resource partitioning in a complex fauna [J].Ecology, 1968, (49):704-726.
    [210] Schroder G.D. Mechanisms for coexistence among three species of Dipodomys: habitat selection and an alternative [J].Ecology, 1987, 68(4):1071-1083.
    [211] Slatkin M. Ecological causes of sexual dimorphism [J].Evolution, 1984, (38): 622-630.
    [212] Stauffer J.R., Hert E. Pseudotropheus callainos, a new species of mbuna (Cichlidae), with analy- ses of changes associated with two intra-lacustrine transplantations in Lake Malawi, Africa [J]. Ichthyological Exploration of Freshwaters, 1992, (3):253-264.
    [213] Schoener T.W. Resource partitioning in ecological communities [J].Science, 1974, (185): 27-39. Slobodchikoff C.N., Schulz W.C. Measures of niche overlap [J].Ecology, 1980, (61): 1051-1055.
    [214] Van Valen L. Morphological variation and the width of the ecological niche [J]. American Natura- list, 1965, (100):377-389.
    [215] Vandermeer J.H. Niche theory [J]. Annual Review of Ecology and Systematics, 1972, (3):107- 132.
    [216] Van Horne B. Niches of adult and juvenile deer mice (Peromyscus maniculatus) in seral stages of coniferous forests [J].Ecology, 1982, (63):992-1003.
    [217] Vinagre C., Fonseca V., Cabral H., et al. Habitat suitability index models for the juvenile soles, Solea soleaand Solea senegalensis, in the Tagus estuary: Defining variables forspecies managem- ent[J]. Fisheries Research, 2006, 82(1-3):140-149.
    [218] Wang Guiming, Zhong Wenqin, Zhou Qingqiang, et al. Soil water condition and small mammal spatial distritution in Inner Mongolian steppes, China [J]. Journal of Arid Environment, 2003, (54):729-737.
    [219] Weatherly A.H. Notions of niche and competition among animals, with special reference to fresh- water fish [J].Nature, 1963, (197):14-17.
    [220] Whittaker R.H. Gradient analysis of vegetation [J]. Biological Review, 1967, (42): 207-264.
    [221] Whittaker R.H., Levin S.A., Root R.B. Niche, habitat and ecotope [J]. American Naturalist, 1973, 107(955): 321-338.
    [222] Wuenscher J.E. Niche specification and competition modeling [J].Journal of Theoretical Biology, 1969, (25):426-443. Whittaker R.H., Linkens G.E. Primary production: the biosphere and man, human [J]. Ecology, 1973, 1(4):357-369.
    [223] Whittakerrh, Levin S.A., Root R.B. Niche [J].Habitat and Ecotype, Am, Natl, 1973, 7(5):321-338.
    [224] Ziv Y., Abramsky Z., Kotler B.P., et al. Interference Competition and temporal partitioning by two gerbil species [J].Oikos, 1993, (66):237-246.
    [225] Zhou Q., Zhong W., Sun C. Study on species diversity of rodent communities in Baijinxile typical steppe, Inner Mongolia[J]. Acta Theriologica Sinica, 1982, (2): 89-94.
    [226] Zaniewski A.E., Lehmann A., Overton J.M. Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns [J].Ecol.Model,2002,(157): 261-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700