亚高寒草甸群落组分种的性状收敛与分歧模式及其影响因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关于群落构建机制的研究,以前多从物种角度出发,通过研究物种间的相互作用以及环境对该关系的影响等揭示群落构建的机制,这种方法在研究生境中物种数目较少时比较有效,当物种丰富度增加时,基于物种的方法变得十分麻烦而且解释能力和预测能力差。与基于物种的方法不同,基于性状的方法以其量化、简约、系统性和可预测等优点得到了越来越多研究者的认可,在研究群落构建机制中得到了广泛的应用。性状在群落构建的研究中主要表现两个非随机过程:性状收敛与性状分歧模式。性状在生境和互利共生等因素影响下所呈现的性状值范围变小的模式为性状收敛模式,而性状在竞争和干扰等因素的影响下所呈现的性状值之间的距离变大的模式为性状分歧模式。本文以亚高寒草甸群落为研究对象,分别测量直接环境因子(土壤含水量和光照强度)和间接环境因子(坡向和坡度),在不同阴坡-阳坡梯度上选择不同大小的群落,分析其群落构建的规律,影响群落构建机制研究的要素,以及环境因子与群落构建机制研究的关系。主要得到以下三个结论:
     (1)在研究的49个群落中,只有两个群落的性状收敛模式与零模型的随机群落的性状收敛模式存在显著性差异,而性状分歧模式则全部无显著差异;。
     (2)尺度的大小以及考虑种内变异与否等因素对研究群落构建机制有比较大的影响。
     (3)间接环境因子相对于直接环境因子能更有效地捕获该生境下环境因子的信息,以间接环境因子为环境条件比直接环境因子显著性提高了性状收敛模式的检测,而性状分歧模式之间无显著性差异,间接环境因子不失为良好的环境变量。
Previous studies about community assembly rule were mostly based on species, which is rather an efficient when the number of species in habitat is two or three. With the escalation of species richness, the method become more and more difficult and the ability of explanation and prediction becomes weak. Different from it, the methods based on traits are gaining recognition by more and more researchers in the study of community assembly rules for its quantitative, simplicity, systematic and predictable. There are two non-random processes in community assembly:trait convergence pattern and trait divergence pattern. The pattern of the range decreases presented by trait in the effect of habitat and mutualism is called trait convergence pattern. On the other hand, the pattern of distances among traits get larger in the influence of competition and disturbance is called trait divergence pattern. In this paper, we take hill community of subalpine as study subject, measuring direct environmental factors-soil moisture, light intensity-and indirect environmental factors-slope, aspect, selecting various sizes of sub-communities in the gradient from south-facing to north-facing slope. The aim is to get the assembly rules of communities, to analyze the factors impacting on the assembly and the relationship between environmental factors and studies of community assembly. Get three conclusions as following:(1)There are only two cases of significant trait convergence assembly pattern in all communities and none for trait divergence assembly pattern.(2)The selection of statistical methods and traits, null model, scale and intraspecific variation have relative important influence on community assembly.(3)Relative to direct environmental factors, indirect ones are efficient in presenting the information of environment. Taking indirect environmental factors as environmental condition relative to direct ones significantly improved the detection of TCAP, and there is no different for TDAP.
引文
[1]CLEMENTS F E. Plant succession:an analysis of development of vegetation [M]. Washington:Carnegie Institution of Washington,1916.
    [2]GLEASON H. The Individualistic Concept of the Plant Association [J]. Bulletin of the Torrey Botanical Club,1926,53(1):7-26.
    [3]GREIG-SMITH P. The Use of Random and Contiguous Quadrats in the Study of the Structure of Plant Communities [J]. Annals of botany,1952,16(2):293-316.
    [4]PIELOU E C.2k Contingency tables in ecology [J]. Journal of Theoretical Biology,1972, 34(2):337-52.
    [5]DIAMOND J M. Assembly of species communities [M]//CODY M L, DIAMOND J M. Ecology and Evolution of Communities. Harvard; Harvard University Press.1975:342-444.
    [6]CONNOR E F, SIMBERLOFF D. The Assembly of Species Communities:Chance or Competition? [J]. Ecology,1979,60(6):1132-40.
    [7]KEDDY P A. Assembly and response rules:two goals for predictive community ecology [J]. Journal of Vegetation Science,1992,3(157-65.
    [8]WEIHER E, KEDDY P A. Assembly Rules, Null Models, and Trait Dispersion:New Questions from Old Patterns [J]. Oikos,1995,74(1):159-64.
    [9]P.CALOW. Towards a definition of functional ecology [J]. functional Ecology,1987,1(1): 57-61.
    [10]MCGILL B J. ECOLOGY:A Renaissance in the Study of Abundance [J]. Science,2006, 314(5800):770-2.
    [11]HUBBELL S P. The unified neutral theory of biodiversity and biogeography [M]. Princeton,New Jersey, USA:Princeton University Press,2001.
    [12]牛克昌,刘怿宁,沈泽吴,et al群落构建的中性理论与生态位理论[J].生物多样性,2009,17(6):579-93.
    [13]CHU C-J, WANG Y-S, DU G-Z, et al. On the balance between niche and neutral processes as drivers of community structure along a successional gradient:Insights from alpine and sub-alpine meadow communities [J]. Annals of botany,2007,100(4):807-12.
    [14]MCGILL B J. Matters of Scale [J]. Science,2010,328(5978):575-6.
    [15]JIA X H, LI X R, ZHANG J G, et al. Analysis of spatial variability of the fractal dimension of soil particle size in Ammopiptanthus mongolicus'desert habitat [J]. Environ Geol,2009,58(5): 953-62.
    [16]LI X R, ZHANG Z S, ZHANG J G, et al. Association between Vegetation Patterns and Soil Properties in the Southeastern Tengger Desert, China [J]. Arid Land Research and Management, 2004,18(4):369-83.
    [17]LAWTON J H. Are There General Laws in Ecology? [J]. Oikos,1999,84(2):177-92.
    [18]GRIME J P. Evidence for the Existence of Three Primary Strategies in Plants and Its Relevance to Ecological and Evolutionary Theory [J]. Am Nat,1977,111(982):1169-94.
    [19]LI X-R, HE M-Z, ZERBE S, et al. Micro-geomorphology determines community structure of biological soil crusts at small scales [J]. Earth Surface Processes and Landforms,2010,35(8): 932-40.
    [20]VIOLLE C, NAVAS M-L, VILE D, et al. Let the concept of trait be functional! [J]. Oikos, 2007,116(5):882-92.
    [21]DARWIN C R. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life [M]. London,1859.
    [22]GRIME J P. Benefits of plant diversity to ecosystems:immediate, filter and founder effects [J]. Journal of Ecology,1998,86(6):902-10.
    [23]LAVOREL S, GARNIER E. Predicting changes in community composition and ecosystem functioning from plant traits:revisiting the Holy Grail [J]. Functional Ecology,2002,16(5): 545-56.
    [24]LI X R, WANG X P, LI T, et al. Microbiotic soil crust and its effect on vegetation and habitat on artificially stabilized desert dunes in Tengger Desert, North China [J]. Biol Fertil Soils,2002, 35(3):147-54.
    [25]WESTOBY M. A leaf-height-seed (LHS) plant ecology strategy scheme [J]. Plant and soil, 1998,199(2):213-27.
    [26]WESTOBY M, FALSTER D S, MOLES A T, et al. PLANT ECOLOGICAL STRATEGIES: Some Leading Dimensions of Variation Between Species [J]. Annual Review of Ecology and Systematics,2002,33(1):125-59.
    [27]CHAPIN Ⅲ F S, AUTUMN K, PUGNAIRE F. Evolution of suites of traits in response to environmental stress [J]. American Naturalist,1993,78-92.
    [28]DIAZ S, CABIDO M, CASANOVES F. Plant functional traits and environmental filters at a regional scale [J]. Journal of Vegetation Science,1998,9(1):113-22.
    [29]WE1HER E, CLARKE GDP, KEDDY P A. Community Assembly Rules, Morphological Dispersion, and the Coexistence of Plant Species [J]. Oikos,1998,81(2):309-22.
    [30]HODGSON J, WILSON P, HUNT R, et al. Allocating CSR plant functional types:a soft approach to a hard problem [J]. Oikos,1999,282-94.
    [31]SUDING K N, LAVOREL S, CHAPIN F S, et al. Scaling environmental change through the community-level:a trait-based response-and-effect framework for plants [J]. Global Change Biology,2008,14(5):1125-40.
    [32]CHESSON P. General theory of competitive coexistence in spatially-varying environments [J]. Theor Popul Biol,2000,58(3):211-37.
    [33]MCG1LL B J, ENQUIST B J, WEIHER E, et al. Rebuilding community ecology from functional traits [J]. Trends Ecol Evol,2006,21(4):178-85.
    [34]GREEN J L, BOHANNAN B J M, WHITAKER R J. Microbial Biogeography:From Taxonomy to Traits [J]. Science,2008,320(5879):1039-43.
    [35]DE BELLO F, LAVOREL S, D AZ S, et al. Towards an assessment of multiple ecosystem processes and services via functional traits [J]. Biodiversity and Conservation,2010,19(10): 2873-93.
    [36]THUILLER W. Biodiversity:Climate change and the ecologist [J]. Nature,2007,448(7153): 550-2.
    [37]LI X-R, JIA X-H, LONG L-Q, et al. Effects of Biological Soil Crusts on Seed Bank, Germination and Establishment of Two Annual Plant Species in the Tengger Desert (N China) [J]. Plant and Soil,2005,277(1-2):375-85.
    [38]GARNIER E, LAURENT G, BELLMANN A, et al. Consistency of species ranking based on functional leaf traits [J]. New Phytologist,2001,152(1):69-83.
    [39]CORNELISSEN J H C, LAVOREL S, GARNIER E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide [J]. Australian Journal of Botany,2003,51(4):335-80.
    [40]VAIERETTI M V, DIAZ S, VILE D, et al. Two Measurement Methods of Leaf Dry Matter Content Produce Similar Results in a Broad Range of Species [J]. Ann Bot,2007,99(5):955-8.
    [41]LAVOREL S, GRIGULIS K, MCINTYRE S, et al. Assessing functional diversity in the field-methodology matters! [J]. Functional Ecology,2008,22(1):134-47.
    [42]ANDERSON M J. Distance-based tests for homogeneity of multivariate dispersions [J]. Biometrics,2006,62(1):245-53.
    [43]PODANI J. Convex hulls, habitat filtering, and functional diversity:mathematical elegance versus ecological interpretability [J]. Community Ecology,2009,10(2):244-50.
    [44]SAVAGE V M, WEBB C T, NORBERG J. A general multi-trait-based framework for studying the effects of biodiversity on ecosystem functioning [J]. J Theor Biol,2007,247(2): 213-29.
    [45]ALBERT C H, THUILLER W, YOCCOZ N G, et al. Intraspecific functional variability: extent, structure and sources of variation [J]. Journal of Ecology,2010,98(3):604-13.
    [46]SHIPLEY B, VILE D, GARNIER E. From plant traits to plant communities:A statistical mechanistic approach to biodiversity [J]. Science,2006,314(5800):812-4.
    [47]MARKS C O, MULLER-LANDAU H C. Comment on "From plant traits to plant communities:a statistical mechanistic approach to biodiversity" [J]. Science,2007,316(5830): 1425; author reply
    [48]SHIPLEY B, VILE D, GARNIER E. Response to Comments on "From Plant Traits to Plant Communities:A Statistical Mechanistic Approach to Biodiversity" [J]. Science,2007,316(5830): 1425d-d.
    [49]HARTE J, ZILLIO T, CONLISK E, et al. MAXIMUM ENTROPY AND THE STATE-VARIABLE APPROACH TO MACROECOLOGY [J]. Ecology,2008,89(10):2700-11.
    [50]SHIPLEY B. Limitations of entropy maximization in ecology:a reply to Haegeman and Loreau [J]. Oikos,2009,118(1):152-9.
    [51]HAEGEMAN B, LOREAU M. Trivial and non-trivial applications of entropy maximization in ecology:a reply to Shipley [J]. Oikos,2009,118(8):1270-8.
    [52]HE F. Maximum entropy, logistic regression, and species abundance [J]. Oikos,2010,119(4): 578-82.
    [53]SHIPLEY B, LAUGHLIN D C, SONNIER G, et al. A strong test of a maximum entropy model of trait-based community assembly [J]. Ecology,2011,92(2):507-17.
    [54]NORBERG J, SWANEY D P, DUSHOFF J, et al. Phenotypic diversity and ecosystem functioning in changing environments:A theoretical framework [J]. Proceedings of the National Academy of Sciences,2001,98(20):11376-81.
    [55]LOREAU M, MOUQUET N, GONZALEZ A. Biodiversity as spatial insurance in heterogeneous landscapes [J]. Proceedings of the National Academy of Sciences,2003,100(22): 12765-70.
    [56]LI X R, KONG D S, TAN H J, et al. Changes in soil and vegetation following stabilisation of dunes in the southeastern fringe of the Tengger Desert, China [J]. Plant and Soil,2007,300(1-2): 221-31.
    [57]LATIMER A M, WU S, GELFAND A E, et al. Building Statistical Models To Analyze Species Distributions [J]. Ecological Applications,2006,16(1):33-50.
    [58]GELFAND A E, SCHMIDT A M, WU S, et al. Modelling species diversity through species level hierarchical modelling [J]. Journal of the Royal Statistical Society:Series C (Applied Statistics),2005,54(1):1-20.
    [59]GELFAND A E, SILANDER J A, JR., WU S, et al. Explaining species distribution patterns through hierarchical modeling [J]. Bayesian Analysis,2006,1(1):41-92.
    [60]WEBB C T, HOETING J A, AMES G M, et al. A structured and dynamic framework to advance traits-based theory and prediction in ecology [J]. Ecology letters,2010,13(3):267-83.
    [61]IVERSON L R, PRASAD A M. PREDICTING ABUNDANCE OF 80 TREE SPECIES FOLLOWING CLIMATE CHANGE IN THE EASTERN UNITED STATES [J]. Ecological Monographs,1998,68(4):465-85.
    [62]GARNIER E, SHIPLEY B, ROUMET C, et al. A standardized protocol for the determination of specific leaf area and leaf dry matter content [J]. Functional Ecology,2001,15(5):688-95.
    [63]LUOTO M, TOIVONEN T, HEIKKINEN R. Prediction of total and rare plant species richness in agricultural landscapes from satellite images and topographic data [J]. Landscape Ecology,2002,17(3):195-217.
    [64]ACKERLY D D, CORNWELL W K. A trait-based approach to community assembly: partitioning of species trait values into within-and among-community components [J]. Ecology letters,2007,10(2):135-45.
    [65]CINGOLANI A M, CABIDO M, GURVICH D E, et al. Filtering processes in the assembly of plant communities:Are species presence and abundance driven by the same traits? [J]. Journal of Vegetation Science,2007,18(6):911-20.
    [66]POORTER L, WRIGHT S J, PAZ H, et al. Are functional traits good predictors of demographic rates? Evidence from five Neotropical forests [J]. Ecology,2008,89(7):1908-20.
    [67]CORNWELL W K, ACKERLY D D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California [J]. Ecological Monographs, 2009,79(1):109-26.
    [68]KRAFT N J, VALENCIA R, ACKERLY D D. Functional traits and niche-based tree community assembly in an Amazonian forest [J]. Science,2008,322(5901):580-2.
    [69]KRAFT N J B, ACKERLY D D. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest [J]. Ecological Monographs,2010,80(3): 401-22.
    [70]M.-L.NAVAS, C.VIOLLE. Plant traits related to competition:how do they shape the functional diversity of communities? [J]. Community Ecology,2009,10(1):131-7.
    [71]PILLAR V D, DUARTE L D S, SOSINSKI E E, et al. Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients [J]. Journal of Vegetation Science,2009,20(2):334-48.
    [72]ANDERSEN K M, ENDARA M J, TURNER B L, et al. Trait-based community assembly of understory palms along a soil nutrient gradient in a lower montane tropical forest [J]. Oecologia, 2012,168(2):519-31.
    [73]CHASE J M. Community assembly:when should history matter? [J]. Oecologia,2003, 136(4):489-98.
    [74]DE BELLO F, PRICE J N, M NKEM LLER T, et al. Functional species pool framework to test for biotic effects on community assembly [J]. Ecology,2012,
    [75]PACALA S W, TILMAN D. Limiting Similarity in Mechanistic and Spatial Models of Plant Competition in Heterogeneous Environments [J]. Am Nat,1994,143(2):222-57.
    [76]CORNWELL W K, SCHWILK D W, ACKERLY D D. A trait-based test for habitat filtering: Convex hull volume [J]. Ecology,2006,87(6):1465-71.
    [77]JUNG V, VIOLLE C, MONDY C, et al. Intraspecific variability and trait-based community assembly [J]. Journal of Ecology,2010,98(5):1134-40.
    [78]POCKMAN W T, SPERRY J S. Vulnerability to xylem cavitation and the distribution of Sonoran Desert vegetation [J]. American Journal of Botany,2000,87(9):1287-99.
    [79]ROY M, PASCUAL M, LEVIN S A. Competitive coexistence in a dynamic landscape [J]. Theor Popul Biol,2004,66(4):341-53.
    [80]GRIME J P. Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences [J]. Journal of Vegetation Science,2006,17(2):255-60.
    [81]SCHAMP B S, CHAU J, AARSSEN L W. Dispersion of traits related to competitive ability in an old-field plant community [J]. Journal of Ecology,2008,96(1):204-12.
    [82]STUBBS W J, BASTOW WILSON J. Evidence for limiting similarity in a sand dune community [J]. Journal of Ecology,2004,92(4):557-67.
    [83]LI X R, ZHOU H Y, WANG X P, et al. The effects of sand stabilization and revegetation on cryptogam species diversity and soil fertility in the Tengger Desert, Northern China [J]. Plant and Soil,2003,251(2):237-45.
    [84]GOLDBERG D E. Neighborhood Competition in an Old-Field Plant Community [J]. Ecology, 1987,68(5):1211-23.
    [85]WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum [J]. Nature,2004,428(6985):821-7.
    [86]LI X-R, XIAO H-L, ZHANG J-G, et al. Long-Term Ecosystem Effects of Sand-Binding Vegetation in the Tengger Desert, Northern China [J]. Restoration Ecology,2004,12(3):376-90.
    [87]DE BELLO F, THUILLER W, LEPS J, et al. Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence [J]. Journal of Vegetation Science,2009, 20(3):475-86.
    [88]LI X R, JIA R L, CHEN Y W, et al. Association of ant nests with successional stages of biological soil crusts in the Tengger Desert, Northern China [J]. Applied Soil Ecology,2011,47(1): 59-66.
    [89]KATTGE J, DIAZ S, LAVOREL S, et al. TRY-a global database of plant traits [J]. Global Change Biology,2011,17(9):2905-35.
    [90]LI X, TAN H, HE M, et al. Patterns of shrub species richness and abundance in relation to environmental factors on the Alxa Plateau:prerequisites for conserving shrub diversity in extreme arid desert regions [J]. Science in China Series D:Earth Sciences,2009,52(5):669-80.
    [91]SARGENT R D, ACKERLY D D. Plant pollinator interactions and the assembly of plant communities [J]. Trends in ecology & evolution (Personal edition),2008,23(3):123-30.
    [92]MASON N W H, MOUILLOT D, LEE W G, et al. Functional richness, functional evenness and functional divergence:the primary components of functional diversity [J]. Oikos,2005,111(1): 112-8.
    [93]HE M Z, ZHENG J G, LI X R, et al. Environmental factors affecting vegetation composition in the Alxa Plateau, China [J]. Journal of Arid Environments,2007,69(3):473-89.
    [94]PILLAR V D, DUARTE L D S. A framework for metacommunity analysis of phylogenetic structure [J]. Ecology Letters,2010,13(5):587-96.
    [95]CARLUCCI M B, STREIT H, DUARTE L D S, et al. Individual-based trait analyses reveal assembly patterns in tree sapling communities [J]. Journal of Vegetation Science,2012,23(1): 176-86.
    [96]LI Q, YANG X, SOININEN J, et al. Relative importance of spatial processes and environmental factors in shaping alpine meadow communities [J]. Journal of Plant Ecology,2011, 4(4):249-58.
    [97]WIENS J A. Spatial Scaling in Ecology [J]. Functional Ecology,1989,3(4):385-97.
    [98]SIMON A L. The Problem of Pattern and Scale in Ecology:The Robert H. MacArthur Award Lecture [J]. Ecology,1992,73(6):1943-67.
    [99]FROST T, DEANGELIS D, BARTELL S, et al. Scale in the Design and Interpretation of Aquatic Community Research [M]//CARPENTER S. Complex Interactions in Lake Communities. Springer New York.1988:229-58.
    [100]SCHNEIDER D C. The Rise of the Concept of Scale in Ecology [J]. BioScience,2001, 51(7):545-53.
    [101]LI X R, JIA X H, DONG G R. Influence of desertification on vegetation pattern variations in the cold semi-arid grasslands of Qinghai-Tibet Plateau, North-west China [J]. Journal of Arid Environments,2006,64(3):505-22.
    [102]CAUGHLEY G, SHORT J, GRIGG G C, et al. Kangaroos and Climate:An Analysis of Distribution [J]. Journal of Animal Ecology,1987,56(3):751-61.
    [103]ROOT T. Environmental Factors Associated with Avian Distributional Boundaries [J]. Journal of Biogeography,1988,15(3):489-505.
    [104]XINRONG L. Influence of variation of soil spatial heterogeneity on vegetation restoration [J]中国科学D辑(英文版),2005,48(11):12.
    [105]G TZENBERGER L, DE BELLO F, BR THEN K A, et al. Ecological assembly rules in plant communities-approaches, patterns and prospects [J]. Biological Reviews,2012,87(1): 111-27.
    [106]ZHANG J, HAO Z, SONG B, et al. Fine-scale species co-occurrence patterns in an old-growth temperate forest [J]. Forest Ecology and Management,2009,257(10):2115-20.
    [107]DULLINGER S, KLEINBAUER I, PAULI H, et al. Weak and variable relationships between environmental severity and small-scale co-occurrence in alpine plant communities [J]. Journal of Ecology,2007,95(6):1284-95.
    [108]REITALU T, PRENTICE H, SYKES M, et al. Plant species segregation on different spatial scales in semi-natural grasslands [J]. Journal ofVegetation Science,2009,19(3):407-16.
    [109]LAKE J K, OSTLING A. Comment on "Functional traits and niche-based tree community assembly in an Amazonian forest" [J]. Science,2009,324(5930):1015; author reply
    [110]PAINE C E T, BARALOTO C, CHAVE J, et al. Functional traits of individual trees reveal ecological constraints on community assembly in tropical rain forests [J]. Oikos,2011, 120(5):720-7.
    [111]MESSIER J, MCGILL B J, LECHOWICZ M J. How do traits vary across ecological scales? A case for trait-based ecology [J]. Ecology Letters,2010,13(7):838-48.
    [112]李远智,陈宁,王刚.亚高寒草甸植物种内变异与基于性状的群落构建机制[J].中国科技论文在线,2012,
    [113]陈宁,李远智,包顺平,et al植物性状的变异分解及种内变异对物种共存的影响[J].中国科技论文在线,2012,
    [114]SOUTHWOOD T R E. Habitat, the Templet for Ecological Strategies? [J]. Journal of Animal Ecology,1977,46(2):337-65.
    [115]CONNELL J H. Diversity in tropical rain forests and coral reefs [J]. Science (New York, NY),1978,199(4335):1302-10.
    [116]VIOLLE C, BONIS A, PLANTEGENEST M, et al. Plant functional traits capture species richness variations along a flooding gradient [J]. Oikos,2011,120(3):389-98.
    [117]李新娥,王刚.亚高寒草甸阳坡-阴坡梯度上植物功能性状与群落构建机制[D].兰州;兰州大学,2011.
    [118]聂莹莹,李新娥,王刚.阳坡-阴坡生境梯度上植物群落α多样性与β多样性的变化模式及与环境因子的关系[J].兰州大学学报(自然科学版),2010,46(6):73-9.
    [119]张蕾,张春辉,吕俊平,et al光照强度对青藏高原东缘九种紫草科植物种子萌发的影响[J].兰州大学学报(自然科学版),2011,47(5):
    [120]张莹莹,张春辉,张蕾,et al青藏高原东缘30种禾本科植物种子萌发对光的响应及其与生活史的关联[J].兰州大学学报(自然科学版),2011,47(4):
    [121]STERNBERG M, SHOSHANY M. Influence of slope aspect on Mediterranean woody formations:comparison of a semiarid and an arid site in Israel [J]. Ecological Research,2001, 16(2):335-45.
    [122]BENNIE J, HILL M O, BAXTER R, et al. Influence of slope and aspect on long-term vegetation change in British chalk grasslands [J]. Journal of Ecology,2006,94(2):355-68.
    [123]WARREN R J. Mechanisms driving understory evergreen herb distributions across slope aspects:as derived from landscape position [J]. Plant Ecology,2008,198(2):297-308.
    [124]YANG Z, R.POWELL J, ZHANG C, et al. The effect of environmental and phylogenetic drivers on community assembly in an alpine meadou community [J]. Ecology,2012, 93(11):2312-28.
    [125]KIKVIDZE Z, KHETSURIANI L, KIKODZE D, et al. Facilitation and interference in subalpine meadows of the central Caucasus [J]. Journal of Vegetation Science,2001,12(6):833-8.
    [126]储诚进.植物间正相互作用对种群动态与群落结构的影响研究[D],2010.
    [127]魏盼盼,张荣,王璠,et al青藏高原东缘高寒草甸群落物种间相互作用[J].兰州大学学报(自然科学版),2011,47(5):
    [128]ZHANG H, JOHN R, PENG Z, et al. The Relationship between Species Richness and Evenness in Plant Communities along a Successional Gradient:A Study from Sub-Alpine Meadows of the Eastern Qinghai-Tibetan Plateau, China [J]. Plos One,2012,7(11):
    [129]LI X, NIE Y, SONG X, et al. Patterns of species diversity and functional diversity along the south-to north-facing slope gradient in a sub-alpine meadow [J]. Community Ecology,2011, 12(2):179-87.
    [130]LI W-J, LI J-H, KNOPS J M H, et al. Plant Communities, Soil Carbon, and Soil Nitrogen Properties in a Successional Gradient of Sub-Alpine Meadows on the Eastern Tibetan Plateau of China [J]. Environmental Management,2009,44(4):755-65.
    [131]MENG F-Q, GAO X-M, SUN S-C. Plant Community Succession on Ant-hills of a Sub-alpine Meadow in Northwestern Sichuan, China Species Composition and Diversity [J]. Plant Diversity and Resources,2011,33(2):191-9.
    [132]李奇.青藏高原东缘植物群落构建机制研究[D].兰州:兰州大学,2011.
    [133]王宏康.青藏高原高寒草甸植物群落构建机制的研究[D].兰州;兰州大学,2009.
    [134]YAN B G, ZHANG J, LIU Y, et al. Trait assembly of woody plants in communities across sub-alpine gradients:Identifying the role of limiting similarity [J]. Journal of Vegetation Science,2012,23(4):698-708.
    [135]任正炜,王刚.资源添加对青藏高原高寒草甸物种多样性的影响[D].兰州;兰州大学,2010.
    [136]张杰琦.氮素添加对青藏高原高寒草甸植物群落结构的影响[D].兰州:兰州大学,2011.
    [137]杜国祯,王刚.甘南亚高山草甸人工草地的演替和质量变化[J].植物学报:英文版,1995,37(04):306-13.
    [138]张仁懿,干刚.亚高寒草甸不同功能群植物N:P化学计量特征差异研究[D].兰州;兰州大学,2010.
    [139]李栋梁,刘德祥.甘肃气候[M].北京:气象出版社,2000.
    [140]MASON N W H, DE BELLO F, DOLEZAL J, et al. Niche overlap reveals the effects of competition, disturbance and contrasting assembly processes in experimental grassland communities [J]. Journal of Ecology,2011,99(3):788-96.
    [141]TEAM R D C. R:A language and environment for statistical computing [M]. Vienna, Austria; R Foundation for Statistical Computing.2011.
    [142]DE BELLO F. The quest for trait convergence and divergence in community assembly: are null-models the magic wand? [J]. Global Ecology and Biogeography,2012,21(3):312-7.
    [143]GROSS N, KUNSTLER G, LIANCOURT P, et al. Linking individual response to biotic interactions with community structure:a trait-based framework [J]. Functional Ecology,2009, 23(6):1167-78.
    [144]WEBB C O, SLIK J W F, TRIONO T. Biodiversity inventory and informatics in Southeast Asia [J]. Biodiversity and Conservation,2010,19(4):955-72.
    [145]GOTELLI N J, GRAVES G R. NULL MODELS IN ECOLOGY [M]. Washington & London:Smithsonian Institution Press,1996.
    [146]GOTELLI N J, GRAVES G R, RAHBEK C. Macroecological signals of species interactions in the Danish avifauna [J]. Proceedings of the National Academy of Sciences,2010, 107(11):5030-5.
    [147]LI X R, HE M Z, DUAN Z H, et al. Recovery of topsoil physicochemical properties in revegetated sites in the sand-burial ecosystems of the Tengger Desert, northern China [J]. Geomorphology,2007,88(3-4):254-65.
    [148]BADANO E 1, CAV1ERES L A, MOLINA-MONTENEGRO M A, et al. Slope aspect influences plant association patterns in the Mediterranean matorral of central Chile [J]. Journal of Arid Environments,2005,62(1):93-108.
    [149]PEN-MOURATOV S, BERG N, GENZER N, et al. Do slope orientation and sampling location determine soil biota composition? [J]. Frontiers of Biology in China,2009,4(3):364-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700