能源植物香叶树FatB基因cDNA全长的克隆及表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
香叶树CLindera communis)别名香果树,属樟科山胡椒属常绿阔叶乔木或灌木,广泛分布在我国南方,可作为园林绿化树种,具有改良土壤、保持水土等生态价值,果实和种子富含油脂,是提取月桂酸,生产生物柴油的良好原料,在我国华南、西南地区有着巨大的开发和应用前景。利用分子生物学技术,挖掘香叶树果实脂肪酸生物合成相关酶基因并进行功能鉴定,有利于香叶树品种改良与利用。在此之前香叶树的研究仅限于脂肪酸成分、生物柴油特性、育苗、挥发物、生态功能、造林等基础层面,分子生物学基础研究还是空白。脂酰-酰基载体蛋白硫脂酶(fatty acyl-ACP thioesterase, FAT)作为一类植物脂肪酸合成重要调控因子,与植物的脂肪酸的成分及积累息息相关。因此,本研究利用RT-PCR和RACE技术从香叶树的种子中克隆了脂酰-酰基载体蛋白硫脂酶B型(FatB基因),并进行序列生物信息学分析,对FatB基因进行组织特异性表达分析,构建原核表达载体、真核表达载体转化大肠杆菌和拟南芥进行功能鉴定,为将来充分利用这种野生能源植物奠定基础。通过这些研究得到以下结果:
     1)由于香叶树分子生物学研究的空白,且其种子中富含脂肪、多糖、多酚等次生代谢产物,RNA提取难度大,我们采用改良的CTAB法成功提取了香叶树种子RNA,可供后续分子生物学实验。
     2)比对其他物种的FatB蛋白序列,在保守区设计简并引物,利用RT-PCR和RACE技术首次克隆到香叶树脂肪酸酰基载体蛋白硫酯酶B类型(FatB)基因的cDNA,全长1788bp,开放阅读框长1260bp,基因命名为LcFatB,在NCBI的注册号为:KF543781。
     3)序列分析表明LcFatB基因编码419个氨基酸,氨基酸序列分子量为46.09kDa,理论等电点为6.48,LcFatB基因属于Acyl-ACP-TE家族,序列比对发现,LcFatB蛋白序列同其他物种的FatB相似性在61-73%,预测的三个保守催化活性位点为:315位的天冬酰胺、317的组氨酸和352半胱氨酸。FatB蛋白序列进化树分析表明LcFatB蛋白同加州月桂(Umbellularia californica)的UCFatB、香樟(Cinnamomum camphora)的CCFatB蛋白更相似。
     4)对LcFatB基因进行组织表达分析显示,LcFatB基因在香叶树的根、叶、茎、花、种子中都有表达,但是种子中具有最高的表达水平,另外LcFatB基因在香叶树开花后30d,45d,60d,75d和90d的种子中也都被检测到,但是花后75d表达水平最高。
     5) ChloroP1.1预测LcFatB蛋白有61个氨基酸长度的叶绿体转运肽,去除转运肽之后,将358个氨基酸的成熟多肽与原核表达载体pET-30a连接,转化到删除了脂酰辅酶A脱氢酶(fadE)基因的大肠杆菌表达菌株BL21(DE3),经IPTG诱导,SDS-PAGE分析发现在分子量40.5kDa处有预计大小的蛋白条带。气相色谱分析比较未转化和转化菌的脂肪酸成分发现,转化菌中C12:0占总脂肪酸含量的16.59%,是对照的3.68倍,C10:0也有较大增加,占总脂肪酸的6.28%。
     6)将LcFatB基因插入到植物双元表达载体pGreen-0029的多克隆位点,构建重组植物表达载体pGreen-LcFatB,冻融法转化到根瘤农杆菌LBA4404中,花絮侵染法转化拟南芥,经过50ug/mL卡那霉素抗性筛选和PCR鉴定,证实LcFatB基因已经整合到拟南芥的基因组中,并在35S启动子的作用下能够正常的转录和表达,气相色谱分析T2代转基因拟南芥种子脂肪酸组成,发现野生型种子种不存在的C12:0、C10:0脂肪酸,C12:0含量达到2.32mg/g,比野生型高了76.33倍,C10:0含量增加到0.99mg/g。
Lindera communis has another name is Xiangguo and belonging to the family Rubiaceae, it is an evergreen broadleaf arbor or shrub, it is a fast-growing tree species which widely distributed in southern China, can be used as landscaping trees, the plant might serve as a species for conservation of soil and water as well as amelioration of soil. Its fruits and seeds contain rich oil, and they are a good raw material to extract lauric acid and produce biodiesel, it has huge prospects to development and application in China South and Southwest region. Cloning of fatty acid biosynthesis genes and functional identification of L.communis using molecular biology techniques, it help L. communis improve breeds. However, those studies have only addressed its fatty acid composition, biodiesel traits, seedling development, volatile oils, ecological functions, and afforestation, little is known about the regulatory mechanisms involved in the production of the saturated fatty acid rich oil in the developing seeds of L. communis. Molecular biology research on this species remains limited. FatB is a kind of important regulatory factors that biosynthesize fats in plant, and it is closely related to oils accumulation and ingredients. Therefore, we cloned L. communis FatB by RT-PCR and RACE, analyzed sequence structure, issue-specific expression, prokaryotic expression, and eukaryotic expression for functional identification, the main results are as follows:
     1) Because L. communis seed contain high oil, polysaccharides, polyphenols and other secondary metabolites, RNA extraction is difficult, no previous experiment can be learn to extract RNA from L. communis, we have used the modified CTAB method to successfully extract L. communis seed RNA, it can be used for follow-up biological experiments.
     2) Based on conserved amino acid sequences identified by the alignment of FatB proteins from other plant species, two degenerate oligonucleotide primers were designed, a full-length cDNA of L.communis FatB was cloned using RT-PCR and RACE for the first time, the nucleotide sequence of the cDNA is1788bp with an open reading frame (ORF) of1260bp, named LcFatB, NCBI's registration number is:KF543781.
     3) Sequence analysis of LcFatB predicted a polypeptide of419amino acids, calculated molecular mass and predicted isoelectric point is46.09kDa and6.48respectively, LcFatB belongs to the family Acyl-ACP-TE, the deduced amino acid sequence showed61-73% identity to proteins in the FatB class of plant thioesterases, three residues (N315, H317, and C352) that are essential for TE catalytic activity are present in the mature protein, a phylogenetic tree based on the alignment of47TE sequences obtained from GenBank which showed a close relationship between LcFatB, UCFatB and CCFatB from L.communis, U. californica and C. camphora respectively.
     4) Expression of the LcFatB gene in developing seeds and vegetative tissues of L.communis was analyzed by qRT-PCR, transcripts were detected in all tissues examined, expression was highest in seeds and lowest in roots, LcFatB transcript levels were higher at75d (day after flowering) DAF than other stages of seed development after flowering30,45,60and90days.
     5) Predicted LcFatB protein has61amino acids in length chloroplast transit peptide using ChloroP1.1, after removing the transit peptide, the LcFatB gene was inserted into the T7-based expression vector pET-30a, the recombinant plasmid was transformed into BL21(DE3)△fadE that was deleted acyl-CoA dehydrogenase, SDS-PAGE analysis showed that a band of40.5kDa corresponding to the predicted size of mature protein. Gas chromatography analysis showed contents of the decanoic acid and lauric acid were increased significantly in transgenic bacteria, content of the lauric acid reached16.59%and is higher3.68-fold than control bacteria, content of the decanoic acid reached6.28%.
     6) To further understand the metabolic function of LcFatB in plant, the LcFatB gene was inserted into a plant binary expression vector pGreen-0029to construct the recombinant expression vector pGreen-LcFatB, it was transformed into Arabidopsis thaliana via Agrohacterium-mediated transfer methods and overexpressed under the control of the cauliflower mosaic virus (CaMV)35S promoter. The transgenic plants were selected in cultures with50ug/mL kanamycin and PCR tests were conducted to confirm that the LcFatB gene had been successfully integrated into the arabidopsis genome. Gas chromatography analysis of transgenic A. thaliana seed fatty acid composition found C12:0, C10:0increased significantly, reached2.32mg/g and0.99mg/g respectively.
引文
陈锦清,黄锐之,郎春秀,等.油菜PEP基因的克隆及PEP反义基因的构建[J].浙江大学学报,1999,25(4):365-367.
    陈锦清,郎春秀,胡张华,等.反义PEP基因调控油菜籽粒蛋白质/油脂含量比率的研究[J].农业生物技术学报,1999,25(4):613-620.
    陈雅琳,高吉喜,李咏红.中国化石能源以生物质能源替代的潜力及环境效应研究[J].中国环境科学,2010,30(10):1425-1431.
    丁声俊.国外生物柴油的发展状况、政策及趋势[J].中国油脂,2010,35(7):1-4.
    冯金朝,周宜君,石莎.国内外能源植物的开发利用[J].中央民族大学学报,2008,17(3):26-31.
    国家能源局.国家能源局关于印发生物质能发展“十二五”规划的通知[EB/OL].:国家能源局网,2013.
    郭静怡,谭晓风,王威浩,等.油茶FatB基因全长cDNA的分离克隆及序列分析[J].中南林业科技大学学报,2010,30(9):66-75.
    胡芳名,谭晓风,何德,等.CTAB法抽提香榧种子胚乳DNA的改进[J].湖南林业科技,2002,29(1):1-5.
    江丞华.生物柴油企业缩水九成[N].中国企业报,2013,4(8):10.
    蒋建新,王卫刚,吴昱.固定化脂肪酶催化制备香叶树籽生物柴油研究[J].现代化工,2009,29(1):289-292.
    蒋建新,蒲志鹏,张志翔,等.一种以香叶树果为原料制备生物柴油、月桂酸和癸酸及其单甘酯的方法[P].中国:CN200810119793,2009-03.
    蒋丽娟,马倩,李昌珠.具开发潜能的生物柴油原料油树种-灯台树[J].太阳能,2009,(9):13-14,24.
    郎思睿,高逸超,赵航,等.香叶树种子休眠与萌发特性的研究[J].北京林业大学学报,2011,33(6):124-129.
    雷新涛,曹红星,冯美利,等.热带木本生物质能源树种-油棕[J].中国农业大学学报,2012,17(6):185-190.
    李长潇.植物非试管高效快繁技术与农业调整和西部大开发[A].见:西部大开发科教先行与
    可持续发展——中国科协2000年学术年会文集[C].北京:中国科学技术出版社,2000,1241-1242.
    李惠钰.油料作物可破生物柴油原料瓶颈[N].中国科学报,2013,7(31):6.
    李玲玲,刘强,郑艳宁,等.利用工程大肠杆菌生产不同类型的游离脂肪酸[J].食品工业科技,2012,33(23):158-162.
    李攀,王贤华,李允超.生物柴油研究现状及其进展[J].能源与节能,2012,(10):31-32,64.
    林萍.中间锦鸡儿油酸脱氢酶(FAD2)基因克隆及酵母表达调控的研究[D]:中国林业科学研究院,2008.
    刘爱琴,刘春华.香叶树和杉木人工林生态功能的比较[J].中南林学院学报,2005,6(25):47-51.
    刘春华.香叶树人工林与天然林群落特征及生长过程比较[J].西南林学院学报,2006,26(1):10-13.
    刘立侠,柳青,许守民.基因工程在改善植物油营养价值中的应用[J].植物学通报,2005,22(5):623-631.
    刘轩.中国木本油料能源树种资源开发潜力与产业发展研究[D]:北京林业大学,2011.
    刘一樵等.森林植物学[M].北京:中国林业出版社,1993.
    卢善发.植物脂肪酸的生物合成与基因工程[J].植物学通报,2000,17(6):481-491.
    潘标志.香叶树和杉木人工林生产力的比较研究[J].江西林业科技,2005,(5):5-6.
    阮成江,李群.基因调控种子含油量研究进展及生物柴油用海滨锦葵遗传改良策略[J].可再生能源,2008,26(4):35-40.
    沈立新.野生香叶树育苗及栽培技术研究初报[J].经济林研究,2001,3(19):15-17.
    石东乔,周奕华,陈正华.植物脂肪酸调控基因工程研究[J].生命科学,2002,14(5):291-295.
    孙红杰,谭燕宏.能源植物资源的开发利用现状与展望[J].安徽农业科学,2007,35(25):7900-7901,7908
    滕虎,牟英,杨天奎,等.生物柴油研究进展[J].生物工程学报,2010,26(7):892-902
    万泉.能源植物的开发和利用[J].福建林业科技,2005,32(2):1-5.
    王威浩,谭晓风.植物脂酰-酰基载体蛋白硫酯酶研究综述[J].经济林研究,2009,27(2):118-124.
    王剑,万杰,李博.制约地沟油制取生物柴油的因素及对策[A].见:全国农村清洁能源与低碳技术学术研讨会论文集[C].北京市:中国工程学会,2011:230-234.
    王发松,杨得坡,任三香,等.香叶树果挥发油的化学成分和抗菌活性研究[J].天然产物研究与开发,1999,11(6):1-5.
    王赫麟,张无敌,刘士清,等.蓖麻油制备生物柴油的研究[J].能源工程,2007,(3):24-26
    危文亮,金梦阳,马冲,等.续随子油脂肪酸组成分析[J].中国油脂,2007,32(5):70-71.
    王介妮,曹磊昌,刘扩金,等.微藻制备生物柴油的研究进展[J].现代化工,2013,33(5):36-39.
    王涛.中国主要生物质燃料油木本能源植物资源概况与展望[J].科技导报,2005,23(5):12-14.
    王艺璇,柳志杰,刘天罡.脂肪酸合成系统潜能的挖掘与释放[J].生命科学,2013,25(10):966-977.
    萧正春,张卫明,张广伦,等.燃油植物香叶树的开发利用与栽培[J].中国野生植物资源,2007,26(6):9-12.
    谢光辉,秦烁,薛帅,等.亚麻荠作为生物柴油原料树种的研究现状与前景分析[J].中国农业大学学报,2012,17(6):239-246.
    谢双喜,彭贵.贵州喀斯特山地灌丛香叶树群落及种群结构的初步研究[J].中南林业调查规划,2002,1(21):56-57.
    新能源网.油料作物可破生物柴油原料瓶颈[EB/OL].:新能源网,2014.
    徐耀庭,邱润生,魏斌,等.香叶树播种育苗技术[J].林业科技开发,2004,18(4):67-68.
    颜健,邱顿,陆璐,等.高含游离脂肪酸的香果树籽油制备生物柴油的方法[J].植物分类与资源学报,2013,35(1):89-94.
    杨得坡,王发松,彭劲甫,等.香叶树叶精油的GC-MS分析与抑菌活性[J].中药材,1999,22(3):128-131.
    伊亚莉,关宁,张文娟,等.紫花苜蓿几丁质酶Class I基因cDNA全长克隆及序列分析[J].江苏农业科学,2011,39(2):29-34.
    元冬娟,吴湃,江黎明。高等植物的酰基-ACP硫酯酶研究进展[J].中国油料作物学报,2009,31(1):103-108.
    袁伟,万红建,杨悦俭.植物实时荧光定量PCR内参基因的特点及选择[J].植物学报,2012,47(4):427-436.
    中国产业经济信息网.2013年我国石油对外依存度达到58.1%[DB/OL]中国产业经济信息网,2014-01-21.
    中国油脂网.专家称地沟油价格跑赢国内原油[EB/OL]中国油脂网,2013.
    中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1982:408-409.
    周奕华,陈正华.植物种子中脂肪酸代谢途径的遗传调控与基因工程[J].植物学通报,1998,15(5):16-23.
    Ainsworth C. Isolation of RNA from floral tissue of Rumex acetosa (sorrel) [J]. Plant Mol Biol Rep,1994,(12):198-203.
    Azam M M, Waris A, Nahar N M. Prospects and potential of acid methyl esters of some non-traditional seed oils for use as biodiesel in India [J]. Biomass Bioenerg,2005, (29):293-302. Biodiesel Association of Canada. Economic, financial, social analysis and public policies for biodiesel [EB/OL].:Biodiesel Association of Canada,2004
    Bonaventure G, Salas J J, Pollard M R, et al. Disruption of the FATB Gene in arabidopsis demonstrates an essential role of saturated fatty acids in plant growth [J]. Plant Cell,2003,15 (4): 1020-1033.
    Bouvier P, Benveniste P, Oelkers P, et al. Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase [J]. Eur J Biochem,2000,267(1):85-96.
    Chen G, Peng Z Y, Shan L, et al. Cloning of Acyl-ACP thioesterase FatA from Arachis hypogaea L. and its expression in Escherichia coli [J]. J Biomed Biotechnol,2012, doi: 10.1155/2012/652579.
    Choi Y J, Lee S Y. Microbial production of short-chain alkanes [J]. Nature,2013, (502):571-574. Davies H M, Anderson L, Fan C, et al. Developmental induction, purification, and further
    characterization of 12:0-ACP thioesterase from immature cotyledons of Umbellularia californica [J]. Arch Biochem Biophys,1991,290 (1):37-45.
    Dehesh K, Edwards P, Hayes T, et al. Two novel thioesterases are key determinants of the bimodal distribution of acyl chain length of Cuphea palustris seed oil [J]. Plant Physiol,1996,110 (1):203-210.
    Dheda K, Huggett J F, Bustin S A, et al. Validation of housekeeping genes for normalizing RNA expression in real-time PCR [J]. Biotechniques,2004, (37):112-119.
    Dehesh K, Jones A, Knutzon D S, et al. Production of high levels of 8:0 and 10:0 fatty acids in transgenic canola by over-expression of ChFatB2, a thioesterase cDNA from Cuphea hookeriana [J]. Plant J,1996, (9):167-172.
    Dittrich F, Zajonc D, Huhne K, et al. Fatty acid elongation in yeast-biochemical characteristics of the enzyme system and is olation of elongation-defective mutants [J]. Eur J Biochem,1998, (252): 477-485.
    Dormann P, Kridl J C, Ohlrogge J B. Cloning and expression in Escherichia coli of a cDNA coding for the oleoyl-acyl carrier protein thioesterase from coriander (Coriandrum sativum L) [J]. Biochim Biophys Acta,1994,1212(1):134-136.
    Dormann P, Voelker T A, Ohlrogge J B. Cloning and expression in Escherichia coli of a novel thioesterase from Arabidopsis thaliana specific for long-chain acyl-acyl carrier proteins [J]. Arch Biochem Biophys,1995,(316):612-618.
    Dormann P, Voelker T A, Ohlrogge J B. Accumulation of palmitate in arabidopsis mediated by the acyl-acyl carrier protein thioesterase FATB1 [J]. Plant Physiol,2000, (123):637-643
    Facciotti M T, Bertain P B, Yuan L. Improved stearate phenotype in transgenic canola expressing a modified acyl-acyl carrier protein thioesterase [J]. Nature Biotech,1999, (17):593-597.
    Margarita S. Animal fat wastes for biodiesel production [M]. Biodiesel-Feedstocks and Processing Technologies,2011.
    Gerpen J V. Business management for biodiesel producers. NREL Technical Report, NREL/SR-51036342,2004.
    Ghosh S K, Bhattacharjee A, Jha J K, et al. Characterization and cloning of a stearoyl/oleoyl specific fatty acyl-acyl carrier protein thioesterase from the seeds of Madhuca longifolia (latifolia). [J]. Plant Physiol Biochem,2007, (45):887-897.
    Gibon Y, Vigeolas H, Tiessen A, et al. Sensitive and high throughput metabolite assays for inorganic pyrophosphate, ADPGlc, nucleotide phosphates, and glycolytic intermediates based on a novel enzymic cycling system [J].Plant J,2002,30(2):221-235.
    Girke T, Todd J, Ruuska S, et al. Microarray analysis of developing arabidopsis seeds [J]. Plant Physiol,2000, (124):1570-1581.
    Hamada T, Kodama H, Takeshita K, et al. Characterization of transgenic tobacco with an increased a-linolenic acid level [J]. Plant Physiol,1998, (118):591-598.
    Harwood J L. The synthesis of acyl lipids in plant tissues [J]. Prog Lipid Res,1979,18(2):55-86. Hellyer A, Leadlay P F, Slabas AR. Induction, purification and characterization of acyl-ACP thioesterase from developing seeds of oil seed rape (Brassica napus) [J]. Plant Mol Biol,1992, (20):1573-5028.
    He X, Turner C, Chen G Q, et al. Cloning and characterization of a cDNA encoding diacylglycerol acyltransferase from castor bean [J]. Lipids,2004,39(4):311-318.
    Hills M J. Control of storage product synthesis in seeds [J]. Curr Opin Plant Biol,2004,7(3):302-308.
    Ishizaki-Nishizawa O, Fujii T, Azuma M, et al. Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase [J]. Nat Biotechnol,1996, (14): 1003-1006.
    Jako C, Kumar A, Wei Y,et al., Seed-specific overexpression of an arabidopsis DNA encoding a diacyl-glycerol acyltransferase enhances seed oil content and seed weight [J]. Plant Physiol,2001, (126):861-874.
    James D W, Lim E, K eller J, et al. Directed tagging of the arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with maize transposon activator [J]. Plant Cell,1995, (7):309-319.
    Jha J K, Maiti M K, Bhattacharjee A, et al. Cloning and functional expression of an acyl-ACP thioesterase FatB type from Diploknema (Madhuca) butyracea seeds in Escherichia coli [J]. Plant Physiol Biochem,2006,44 (11-12):645-655.
    Jha, S.S., Jha, J.K., Chattopadhyaya, B, et al. Cloning and characterization of cDNAs encoding for long-chain saturated acyl-ACP thioesterases from the developing seeds of Brassica juncea [J]. Plant Physiol Biochem,2010, (48):476-480.
    Jones A, Davies H M, Voelker T A. Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases [J]. Plant Cell,1995,7(3):359-371.
    Kartika A, Yani M, Ariono D. Biodiesel production from jatropha seeds:Solvent extraction and in situ transesterification in a single step [J]. Fuel,2013, (106):111-117.
    Kennedy E P. Biosynthesis of complex lipids [J]. Fed Proc,1961,20(9):934-940.
    Kirsch C, Hahlbrock K, S omssich I E. Rapid and transient induction of a parsley microsomal delta 12 fatty acid desaturase mRNA by fungal elicitor [J]. Plant Physiol,1997, (115):283-299. Kirsch C, Takamiya-Wik M, Reinold S, et al. Rapid, transient, and highly localized induction of plastidialco3 fatty acid desaturase mRNA at fungal in fection sites in Petroselinum crispum[M]. USA:Proc Natl Acad Sci,1997. (94):2079-2084.
    Korbitz W. Biodiesel production in Europe and North Amerrica an encouraging prospect [J]. Renew Energy,1999, (16):1078-1083.
    Kunst L, Tayl D C, Underzhill E W. Fatty acid elongation in developing seeds of Arabidopsis thaliana [J]. Plant Physiol Biochem,1992,30(4):25-434.
    Lassner M W, Lardizabal K, Metz J G. A jojoba beta-ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants [J]. Plant Cell,1996, (8):281-292.
    Lemieux B, Miquel M, Somerville C, et al. Mutants of Arabidpsis with alterations in seed lipid fatty acid composition [J]. Theor Appl Genet,1990,80(7):234-240.
    Lewinsohn E, Steele C L, Croteau R. Simple isolation of functional RNA from woody stems of gymnosperms [J]. Plant Mol Biol Rep,1994,12(1):20-25.
    Li Y G, Xu L, Huang A M, et al. Microalgal biodiesel in China:opportunities and challenges [J]. Appl Energ,2011, (88):3432-3437.
    Liu Q, Singh S P, Green AG. High-stearic and high-oleic cotton seed oils produced by hairpin RNA-mediated post-transcriptional gene silencing [J]. Plant Physiol,2002a,129(4):1732-1743.
    Liu Q, Singh S P, Green AG. High-stearic and high-oleic cotton seed oils:nutritionally improved cooking oils developed using gene silencing [J]. J Am Coll Nutr,2002b, (21):205S-211S.
    Liu T G, Vora H, Khosla C. Quantitative analysis and engineering of fatty acid biosynthesis in E. coli [J]. Metab Eng,2010, (12):378-386.
    Lopez-Gomez R, Gomez-Lim M A. A method for extracting intact RNA from fruits rich in polysaccharides using ripe mango mesocarp [J]. HortScience,1992, (27):440-442.
    Los D A, Murata N. Structure and expression of fatty acid desaturases [J]. Biochim Biophys Acta, 1998, (1394):3-15.
    Lu X F, Vora H, Khosla C. Overproduction of free fatty acids in E. coli:implications for biodiesel production [J]. Metab Eng,2008,(10):333-339.
    Ma F and Hanna M A. Biodiesel production:a review [J]. Bioresource Technol,1999, (70):1-15. Martin B, Wilson R. Subcellular localization of TAG synthesis in spinach leaves [J]. Lipids,1984, (19):117-121.
    Mata T M, Martins A A, Caetano N S. Microalgae for biodiesel production and other applications: A review [J]. Renew Sust Energ Rev,2010, (14):217-232.
    Mayer K M, Shanklin J. A structural model of the plant acyl-acyl carrier protein thioesterase FatB comprises two helix/4-stranded sheet domains, the N-terminal domain containing residues that affect specificity and the C-terminal domain containing catalytic residues [J]. J Biol Chem,2005, 280 (5):3621-3627.
    Millar A A, Kunst L. Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme [J]. Plant J,1997, (12):121-131.
    Moreno-Perez A J, Venegas-Caleron M, Vaistij F E, et al. Reduced expression of FatA thioesterases in Arabidopsis affects the oil content and fatty acid composition of the seeds [J]. Planta,2012, (235):629-639.
    Ohlrogge J and Browse J. Lipid biosynthesis. [J]. Plant Cell,1995,7(3):957-970. Ohlrogge J B, Jaworski J G. Regulation of fatty acid synthesis [J]. Annu Rev Plant Physiol Plant Mol Biol,1997,48(1):109-136.
    Patthy L. Modular assembly of genes and the evolution of new functions [J]. Genetica,2003,118 (2-3):217-231.
    Perry H, Bligny R, Gout E, et al. Changes in kennedy pathway intermediates associated with increased triacylglycerol synthesis in oil-seed rape [J]. Phytochemistry,1999,52(5):799-804. Perry H, Harwood J L. Changes in the lipid content of developing seeds of brassica napus [J]. Phytochemistry,1993,32(6):1411-1415.
    Pollard M R, Anderson L, Fan C, et al. A specific acyl-ACP thioesterase implicated in mediumchain fatty acid production in immature cotyledons of Umbellularia californica [J]. Arch Biochem Biophys,1991,284(2):306-312.
    Radakovits R, Eduafo P M, Posewitz M C. Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum [J]. Metab Eng,2011,13(1):89-95.
    Ramli U S, Baker D S, Quant P A, et al. Control analysis of lipid biosynthesis in tissue cultures from oil crops shows that flux control is shared between fatty acid synthesis and lipid assembly [J]. Biochem J,2002,364(2):393-401.
    Roesler K, Shintani D, Savage L, et al. Targeting of the arabidopsis homomeric acetyl-coenzyme a carboxylase to plastids of rapeseeds [J]. Plant Physiol,1997, (113):75-81.
    Roughan P G, Slack C R. Cellular organization of glycerolipid metabolism [J]. Annu Rev Plant Physiol,1982, (33):97-132.
    Salas J J, Ohlrogge J B. Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases [J]. Arch Biochem Biophys,2002, (403):25-34.
    Sanchez-Garcia A, Moreno-Perez A J, Muro-Pastor A M, et al. Acyl-ACP thioesterases from castor (Ricinus communis L.):an enzymatic system appropriate for high rates of oil synthesis and accumulation [J]. Phytochemistry,2010, (71):860-869.
    Sandager L, Gustsvsson M H, Stehl U, et al. Storage lipid synthesis is non-essential in yeast [J]. J Biol Chem,2002,277(8):6478-6482.
    Savage N. Next generation biofuels [J]. Nature Outlook,2011,474(7352):s2-s5
    Schneiderbauer A, Sandermann H J, Ernst D. Isolation of functional RNA from plant tissues rich in phenolic compounds [J]. Anal Biochem,1991,197(1):91-95.
    Serrano-Vega M J, Venegas-Caleron M, Garces R, et al. Cloning and expression of fatty acids biosynthesis key enzymes from sunflower (Helianthus annuus L.) in Escherichia coli [J]. J Chromatogr B,2003, (786):221-228.
    Settlage S B, Kwan Yuen P, Wilson R F. Relation between diacylglycerol acyltransferase activity and oil concent ration in soybean [J]. J Am oil chem soc,1998,75 (7):775-781.
    Settlage S H, Wilson R F, Kwanyuen P. Localization of diacylglycerol acyltransferase to oil body associated endoplasmic reticulum [J]. Plant Physiol Biochem,1995,33(3):399-407.
    Shanklin J, Cahoon E B. Desaturation and related modifications of fatty acids [J]. Annu Rev Plant Physiol Plant Mol Biol,1998, (49):611-641.
    Shanklin J, Somerville C. Stearoylaeyl-arrier-Protein desaturase from higher plants is structurally unrelated to the animal and fungal homologues [J]. Proe Natl Acad Sci,1991,88(6):2510-2514. Shintani D, Roesler K, Shorrosh B, et al. Antisense expression and overexpression of biotin carboxylase in tobacco leaves [J]. Plant Physiol,1997,114(3):881-886.
    Shimada T, Wakita Y, Otani M, et al. Modification of fatty acid composition in rice plants by transformation with a tobacco microsomal OMEGA.-3 fatty acid desaturase gene (NtFAD3) [J]. Plant Biotechnol,2000, (17):43-48.
    Singh S P, Singh D. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel A review [J]. Renew Sust Energ Rev,2010, (14): 200-216.
    Srikanta Dani K G, Hatti K S, Ravikumar P, et al. Structural and functional analyses of a saturated acyl ACP thioesterase type B from immature seed tissue of Jatropha curcas [J]. Plant Biol,2011, (13):453-461.
    Steen E J, Kang Y, Bokinsky G, et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass [J]. Nature,2010, (463):559-562.
    Stoutjesdijk P, Singh S P, Liu Q, et al. HpRNA-mediated targeting of the Arabidopsis thaliana FAD2 gene gives highly efficient and stable silencing [J]. Plant Physiol,2002, (129):1723-1731. Taylor D C, Katavic V, Zou J T, et al. Field testing of transgenic rapeseed cv hero transformed with a yeast sn-2 acyltransferase results in increased oil content, erucic acid content and seed yield [J]. Mol Breed,2002,8(3):317-322.
    Thelen J J, Ohlrogge J B. Metabolic engineering of fatty acid biosynthesis in plants [J]. Metab Eng,2002a,4(1):12-21.
    Thelen J J, Ohlrogge J B. Both antisense and sense expression of biotin carboxyl carrier protein isoform 2 inactivates the plastid acetyl-coenzyme a carboxylase in Arabidopsis thaliana [J]. Plant J, 2002b,32(4):419-431.
    Thompson G A, Scherer D E, Aken S F, et al. Primary structures of the precursor and mature forms of stearoyl-acyl carrier protein desaturase from saffiower embryos and requirement of ferredoxin for enzyme activity [J]. Proe Natl Acad Sci USA,1991, (88):2578-2582.
    Tzen T C, Cao Y, Laurent P et al. Lipids proteins and structures of seed oil bodies from diverse species [J]. Plant Physiol,1993, (101):267-276.
    Vigeolas H, Geigenberger P. Increased levels of glycerol-3-phosphate lead to a stimulation of flux into triacylglycerol synthesis after supplying glycerol to developing seeds of Brassica napus L in planta [J]. Planta,2004,219(5):827-835.
    Voelker T A. Plant acyl-ACP thioesterases:chain-length determining enzymes in plant fatty acid bio synthesis [J]. Genet Eng,1996, (18):111-133.
    Voelker T A, Davies H m. Alteration of the specificity and regulation of fatty acid synthesis of escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase [J]. J Bacteriol,1994,176(23):7320-7327.
    Voelker T A, Jones A, Cranmer A M, et al. Broad-range and binary-range acyl-acyl-carrier protein thioesterases suggest an alternative mechanism for medium-chain p reduction in seeds [J]. P lant Physiol,1997,114(2):669-677.
    Wang D, Wang B, Li B, et al. Extraction of total RNA from Chrysanthemum containing high levels of phenolic and carbohydrates [J]. Colloids Surf B Biointerfaces,2004,36(2):111-114.
    Wang W G, Ma L, Jiang J X, et al. Transesterified Chinese spicehush (Lindera communis) seed oil as abiodiesel fuel [J]. For Stud China,2007,9 (2):132-136.
    Wu P Z, Li J, Wei Q, et al. Cloning and functional characterization of an acyl-acyl carrier protein thioesterase (JcFATB1) from Jatropha curcas [J]. Tree Physiol,2009,29(10):1299-1305.
    Wu S, Hu C, Jin G, et al. Phosphate-limitation mediated lipid production by Rhodosporidium toruloides [J]. Bioresource Technol,2010,101(15):6124-6129.
    Wu S, Zhao X, Shen H, et al. Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions [J]. Bioresource Technol,2011,102(2):1803-1807.
    Xu J Y, Du W, Zhao X B, Zhang, G L, Liu, D H. Microbial oil production from various carbon sources and its use for biodiesel preparation [J]. Biofuel Bioprod Bior,2013,7(1):65-77.
    Yuan L, Nelson B A, Caryl G. The catalytic cysteine and histidine in the plant acyl-acyl carrier protein thioesterases [J]. J Biol Chem,1996,271 (7):3417-3419.
    Zhang L H, Jia B L, Zhuo R Y, et al. An Acyl-acyl carrier protein thioesterase gene isolated from wintersweet (Chimonanthus praecox) CpFATB enhances drought tolerance in transgenic tobacco (Nicotiana tobaccum) [J]. Plant Mol Biol Report,2012, (30):433-442.
    Zhao X, Hu C, Wu S, et al. Lipid production by Rhodosporidium toruloides Y4 using different substrate feeding strategies [J]. J Ind Microbiol Biot,2011,38(5):627-632.
    Zheng Y N, Li L L, Liu Q, et al. Optimization of fatty alcohol biosynthesis pathway for selectively enhanced production of C12/14 and C16/18 fatty alcohols in engineered Escherichia coli [J]. Microb Cell Fact,2012,11(1):1-11.
    Zhou Z, Zhang D Q, Lu M Z. Cloning and expression analysis of PtFATB gene encoding the acyl-acyl carrier protein thioesterase in Populus tomentosa Carr [J]. J Genet Genomics,2007,34 (3): 267-274.
    Zou J T, Katavic V, Giblin E M, et al. Modification of seed oil content and acyl composition in the Brassicaceae by expression of a yeast sn-2 acyltransferase gene [J]. Plant Cell,1997, (9):909-923.
    Zou J, Wei Y D, Jako C, et al. The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene [J]. Plant J,1999,19(6):645-653.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700