半干旱黄土区集雨措施和养分添加对苜蓿草地和封育植被生产力及土壤生态化学计量特征的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以半干旱黄土高原地区(甘肃省榆中县北山地区)利用垄沟集雨技术建成的人工苜蓿草地和围栏封育的撂荒地演替植被为对象,通过2年的大田试验研究了垄沟集雨技术下的苜蓿草地干草产量、水分利用效率、土壤剖面水分动态、苜蓿根系及地上凋落物的分解特征与养分动态、分解速率对集雨技术的响应及土壤生态化学计量特征;初步探讨了养分添加对封育的撂荒地演替植被地上生物量、地下生物量、根冠比的影响;以及养分添加对封育植被土壤生态化学计量特征的影响和植被建设的作用。为此,我们在榆中县北山地区进行了四个实验。实验一:垄沟集雨对紫花苜蓿人工草地土壤水分和产草量的影响,实验设5个处理:1)CK:常规平作,不起垄,不覆膜(对照);2)M30:垄和沟的宽度都为30 cm,垄上覆盖塑料薄膜;3)M60.垄和沟的宽度都为60 cm,垄上覆盖塑料薄膜;4)B30:垄和沟的宽度都为30 cm,不覆膜;5)B60:垄和沟的宽度都为60 cm,不覆膜。实验二:苜蓿根系和地上凋落物野外埋置分解试验,实验在实验一的5个处理中进行野外分解。实验三:集雨措施对植株残体和根系,有机肥野外埋置分解的影响,实验设2个处理:1)F:平地不起垄,不覆膜;2)H:起垄覆膜,垄和沟宽都为60cm。实验四:养分添加对围栏封育的撂荒地植被土壤生态化学计量特征的影响和植被建设的作用,实验设4个处理:1)CK:不施肥(对照);2)N:只添加氮肥;3)P:只添加磷肥;4)NP:同时添加氮肥和磷肥。主要实验结果如下:
     实验一:1)垄沟覆膜处理(M60)能显著提高苜蓿干草产量,裸露处理(B30、B60)的苜蓿干草产量反而降低,各处理之间的产量关系为:M60>M30>CK>B60>B30,这一产量的大小顺序与前七年是保持一致的;M60能提高水分利用效率;此外,M60处理在高产的同时保证了浅层(0-100cm)土壤的水分补充。2)种植苜蓿能有效提高0-20cm土层的土壤有机质含量;种植苜蓿会导致0-20cm的土壤C/N比降低,C/N比减小将导致土壤有机质分解加速,导致土壤有机质降低,在本研究中,M60处理能很好的减缓0-20cm土壤C/N的降低。
     实验二:1)苜蓿根系分解速率(K)大于地上凋落物:KM60R(0.0029)>KM60L(0.0021)、KM30R(0.0025)> KM30L(0.0012)、KB60R(0.0025)> KB60L(0.0014)、KB30R(0.0023)> KB30L(0.0014)、KCKR(0.0022)>KCJL(0.0014);苜蓿地上凋落物的分解速率与凋落物的初始N含量、C/P显著正相关,而与初始C/N显著负相关。2)苜蓿根系和地上凋落物野外埋置分解的前90d植物有机碳迅速释放,有机碳含量较分解前显著降低,随后释放减缓,分解450d后, M60处理的地上凋落物有机碳释放量最大(81.0g/kg)。所有处理的苜蓿根系和地上凋落物在埋置分解450d后,分解残体的全N(B30除外)、全P均较基底值(分解前的值)增加,表现为N、P素的富集积累。3)分解袋野外埋置分解450d后,苜蓿根系和地上凋落物的C/N比均显著降低,对于根系残体,其C/N比降低幅度的大小依次为:M30(9.70)>M60(9.48)>CK(9.27)>B60(8.41)>B30(7.24);而对于地上凋落物,其C/N比降低幅度依次是CK(9.59)>M30(9.27)>B30(7.91)>M60(7.69)>B60(5.69)。4)分解速率除了与底物自身化学组成密切相关外,还受环境因子影响,本实验发现苜蓿根系及地上凋落物的分解速率与0-20cm土层的土壤水分呈正相关(p<0.05)。5)分解袋野外埋置分解450d后,残体附近2-3cm的0-20cm土层的土壤有机质(SOC)含量都增加了,且根系分解残体0-20cm的SOC含量高于地上凋落物分解残体的SOC含量;分解过程中残体附近2-3cm的0-20cm土层的土壤C/N比随分解时间增加而增大,其中M60处理的根系分解450d后残体的土壤C/N比最大(9.20),CK与M30的地上凋落物分解的土壤C/N比最小(8.50),此外,根系残体附近2-3cm的0-20cm土层的土壤C/N比都大于地上凋落物残体0-20cm土壤C/N比(B30处理除外)。6)分解袋野外埋置分解450d后,根系残体附近2-3cm的0-20cm土层的土壤速效磷趋势为:裸露处理>CK>覆膜处理,且M60处理最低,而地上凋落物残体0-20cm的土壤速效磷含量依次为:B30 (5.54mg/kg)∽CK (5.33mg/kg)∽B60 (5.29mg/kg)>M30 (4.43mg/kg)>M60 (3.66mg/kg);分解450d后,根系残体附近2-3cm的0-20cm土层的土壤C/P比大于地上凋落物残体0-20cm的土壤C/P比,覆膜处理残体附近2-3cm的0-20cm土壤C/P比大于裸露处理和对照CK,其中M60处理的C/P比最大,CK处理的C/P比最小。
     实验三:小麦、玉米、豌豆、苜蓿、土豆等五种作物植株残体和根系及有机肥在垄沟覆膜集雨处理下的分解速率大于平地不覆膜处理,实验还发现,野外埋置的分解速率与0-20cm土壤含水量呈正相关。
     实验四:添加N肥、P肥能够增加围栏封育撂荒地植被整个生长季的地上生物量,且添加P肥处理的地上生物量为四个处理中最高,但添加NP肥处理的地上生物量和对照无显著差异;添加N肥会加剧土壤水分消耗,而添加P肥、NP则有利于土壤水分的恢复。实验还发现,添加N肥会使0-20cm土层的SOC含量降低,同时0-20cm的土壤C/N比降低,而添加P肥、NP肥能有效提高0-20cm土层的SOC和土壤全氮含量,并且能缓解0-20cm土壤C/N比的降低。因此,综合考虑生产效益和生态利益,添加P肥有利于围栏封育撂荒植被的恢复和建设。
We evaluated the effect of ridge and furrow rainfall harvesting technique on alfalfa grassland yield, water use efficiency, profile soil water dynamics, soil nutrient dynamics and the decomposition feature of alfalfa root and litter, and the soil ecological stoichiometry feature by 2 years field experiment in the semi-arid Loess Plateau (Beishan of Yuzhong County, Gansu Province). We also assessed the influence of nutrient applying on fenced natural vegetation aboveground biomass, belowground biomass, root/shoot ratio, the soil ecological stoichiometry feature, and the effect of nutrient applying on vegetation establishment. To this end, four experiments had been conducted in Beishan of Yuzhong County. In the First experiment, five treatments were used:1) CK:Conventional cultivation in flat treatment without mulch; 2) M30: Plastic mulched ridge with the width of ridge and furrow as 30cm; 3) M60:Plastic mulched ridge with the width of ridge and furrow as 60cm; 4) B30:Bare ridge with width of ridge and furrow 30cm; 5) B60:Bare ridge with width of ridge and furrow 60cm. The second experiment: Alfalfa root and shoot litter decomposition embedded field test. There were also five treatments as to the first. The third experiment:the effect of ridge and furrow rainfall harvesting technique on the decomposition of five crops residue, roots and organic fertilizer:it had tow treatments:1) F:Flat treatment without mulch; 2) H:Plastic mulched ridge with the width of ridge and furrow as 60cm. There were four treatments in the last-the effect of nutrient applying on the soil ecological stoichiometry and vegetation establishment:1) CK:Contrast, no fertilizer; 2) N:Add nitrogen fertilizer; 3) P:Add phosphate fertilizer; 4) NP:Add nitrogen+phosphate fertilizer. The main results as below:
     1. The first Experiment:1) M60 has been proved to be the effective way of increasing alfalfa production, while B30 and B60 have a negative effect in 2008 and 2009. The order of production on different water harvesting regimes was M60>M30>CK>B60>B30, which was the same as the results of seven years ago. M60 had a higher WUE rather than
     higher water consumption, besides, M60 had a positive effect of water complement on soil 0-100cm layer.2) Alfalfa cultivation can enhance soil organic matter in the 0-20cm layer of soil. Even though it can reduce C/N, which means the acceleration of decomposition of SOC and decrease SOC content, in our experiment M60 play a better role on decreasing C/N.
     2. The second Experiment:1) Decomposition rate (K) of alfalfa root was higher than litter: KM60R(0.0029)> KM60L(0.0021), KM30R(0.0025)> KM30L(0.0012), KB60R(0.0025)> KB60L(0.0014), KB30R(0.0023)> KB30L(0.0014), KCKR(0.0022)> KCKL(0.0014). The decomposition rate of litter has a significantly positive correlation with its initial nitrogen content and C/P ratio, while it has a significantly negative correlation with its initial C/N ratio.2) In the field, roots and litters released more organic carbon (SOC was significantly lower than before decomposition) in the former 90ds, then slowly. The alfalfa litter in M60 has the highest organic carbon release, which was 81.0g/kg. The soil total nitrogen (exclude B30) and soil total phosphorus content increased in all root and litter decomposition treatments than before after 450ds. It showed nutrient enrichment in the soil.3) Alfalfa root and litter C/N ratio decreased significantly than initial value after decomposition. The order of C/N ratio decrease in different ridge and furrow rainfall harvesting technique was M30 (9.7)>M60 (9.48)>CK (9.27)>B60 (8.41)>B30 (7.24) for alfalfa root, while it was CK (9.59)>M30 (9.27)> B30 (7.91)> M30 (7.69)> B60 (5.69) for alfalfa litter.4) Decomposition rate is closely related to its chemical composition and affected by environmental factors. We found the decomposition rate of alfalfa root and litter had a significantly positive correlation with soil water content in the 0-20cm layer.5) SOC increased in different extent after 450ds decomposition of alfalfa root and litter in the field, which is in the 0-20cm layer soli of residue near 2-3cm. Furthermore, SOC from alfalfa root was more than it from litter. The soil C/N ratio has increased along the time goes. M60 has the highest C/N ratio (9.20) after alfalfa root decomposition while CK and M30 have the lowest C/N ratio (8.50) after alfalfa litter decomposition. Besides, soil C/N ratio after alfalfa root decomposition was higher than it after litter decomposition. The soil available phosphorus content differed in different treatments after 450ds decomposition, which was bare soil treatments> CK> film mulched treatments and M60 has the lowest soil available phosphorus content. The soil available phosphorus from alfalfa litter was 5.54mg/kg in B30, 5.53mg/kg in CK,5.29mg/kg in B60,4.43mg/kg in M30, and 3.66mg/kg in M60. After 450ds decomposition, C/P ratio in all treatments was higher in root than in litter and film mulched treatments> bare soil treatments and CK. M60 has the highest C/P ratio and CK has the lowest.
     3. The third Experiment:The decomposition rate of wheat, maize, pea, potato and alfalfa shoot, root and manure were accelerated under ridge and furrow with film mulched rainfall harvesting technique and it was positively correlation with 0-20 cm soil water content.
     4. The last Experiment:The productivity of fenced natural vegetation was enhanced by applying P fertilizer and N fertilizer, the productivity by applying P fertilizer was the highest. But applying P fertilizer can't enhance productivity. Adding N fertilizer would increase soil water consumption, and apply P, NP fertilizer can benefit the soil water. Our results showed, SOC and soil C/N ratio in the 0-20cm layer of soil were decreased by applying N fertilizer, but increased by applying P, NP fertilizer. Besides, by applying P fertilizer in restoration land could prevent C/N ratio decreasing. Thus, applying P fertilizer was an effective way for fenced vegetation to establish and restore.
引文
Aerts R, Caluwe HD,1997. Nutritional and plant mediated controls on leaf litter decomposition of Carex species [J]. Ecology,78(1):244-260
    Aerts R, DeCaluwe H,1999. Nitrogen deposition effects on carbon dioxide and methane emissions from temperate peat land soils [J].Oikos,84:44-54
    Anderson JPE, Domsch KH,1980. Quantities of plant nutrients in the microbial biomass of selected soil [J]. Soil Sci,30:211-216
    Bauder JW, Bauder A, Ramirez JM, Cassel DK,1987. Alfalfa water use and production on dry land and irrigated sandy loam [J]. Agronomy Journal,70:95-99
    Blad BL, Rosenberg NJ,1976. Evaluation of resistance and mass transport evapotmnspiration models requiring canopy temperature data [J]. Agronomy Journd,68:764-769
    Campbell CA, Biederbeck VO, Zenter RP, et al.,1991. Effect of crop rotation and cultural practices on soil organic matter, microbial biomass and respiration in a thin black chernozem [J]. Can J Soil Sci, 71:363-376
    Chapin SF Ⅲ, Matson P, Mooney HA.2002. Principles of terrestrial ecosystem ecology [M]. Springer-Verlag, New York, Inc
    Chen H, Harmon ME, Griffiths PR, et al.,2001. Effects of temperature and moisture on C respired from decomposing woody roots [J]. Forest Ecology and Management,138:51-64
    Cotrufo MF, Inescon P,1996. Elevated CO2 reduces field decomposition rates of Betula pendula Roth. Leaf litter [J]. Oecologia,106:525-530
    Disc NB, Matzner E, Forsius M,1998. Evaluation of organic horizon C:N ratio as an indicator of nitrate leaching in conifer forests across Europe [J]. Environmental Pollution,102(S1):453-456
    Elser JJ, Dobberfuhl D, MacKay NA, Schampel J H,1996. Organism size, life history, and N:P stoichiometry:Towards a unified view of cellular and ecosystem processes [J]. BioScience,46:674-684
    Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison J F, Hobbie SE, Odell GM, Weider LW,2000b. Biological stoichiometry from genes to ecosystems [J]. Ecology Letters,3:540-550
    Enriquez S, Duarte CM, Jensen, K,1993. Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content [J], Oecologia,94:457-471
    Gathumbi SM, Bohlen PJ, Graetz DA,2005. Nutrient Enrichment of Wetland Vegetation and Sediments in Subtropical Pastures [J]. Soil Sci. Soc. Am. J.69:539-548
    Gijsman AJ, Alarcon HF, Thomas RJ,1997. Root decomposition in tropical grasses and legumes as affected by soil texture and season. Soil Biol Biochem,29:1443-1450
    Gundersen P, Callesen I, de Vries W.1998. Nitrate leaching in forest ecosystems is controlled by forest floor C/N ratio [J]. Environmental Pollution,102:403-407
    Hessen DO,1997. Stoichiometry in food webs-Lotka revisited [J].Oikos,79,195-200
    Hobbie SE,1996. Temperature and plant species control over litter decomposition in Alaskan tundra [J]. Ecol Monog,66:503-522
    Jia Yu, Li FM, Wang XL, Xu JZ,2006. Dynamics of soil organic carbon and soil fertility affected by alfalfa productivity in a semiarid agro-ecosystem [J]. Biogeochemistry,80:233-243
    Jiang HM, Jiang JP, Jia Y, Li FM, Xu JZ.2006. Soil carbon pool and effects of soil fertility in seeded alfalfa fields on the semi-arid Loess Plateau in China [J]. Soil Biology & Biochemistry,38:2350-2358
    Kemp P R, Deborah GW, Clenton EO, James FR, Ross AV,1994. Effects of elevated CO2 and nitrogen fertilization pretreatments on decomposition on tallgrass prairie leaf litter [J]. Plant Soil,165:115-127
    Koukoura Z,1998. Decomposition and nutrient release from C3 and C4 plant litters in a natural grassland [J]. Acta Oecol,19(2):115-123
    Krogman KK, Hobbs EH,1965. Evapotranspiration of irrigated alfalfa as related to season and growth stage [J]. Canadian, Journal of Plant Science,45:310-313
    Li FM, Song QH, Jjemba PK, Shi YC,2004. Dynamics of soil microbial biomass C and soil fertility in cropland mulched with plastic film in a semiarid agro-ecosystem [J]. Soil Biology & Biochemistry. 36:1893-1902
    Li FM, Wang TC, Cao J,1998. Effect of organic matter on total amount and availability of nitrogen and phosphorus in Loess soil of Northwest China [J]. Communications in Soil Science and Plant Analysis. 29:947-953
    Li FM, Xu JZ, Sun GJ,2003.Restoration of degraded ecosystems and development of water harvesting ecological agriculture in the semiarid Loess Plateau of China [J]. Acta Ecol Sin,23 (9):1901-1909
    Lisa CW, Sebastien PCR, Ribriowx, et al.,2001. Phosphate availability regulates root system architecture in Arabidopsis [J]. Plant Physiol,126:875-882
    Liu P, Huang JH, Han XG, Sun OJ, Zhou ZhY,2006. Differential responses of litter decomposition to increased soil nutrients and water between two contrasting grassland plant species of Inner Mongolia, China [J]. Appl Soil Ecol,34 (2-3):266-275
    Lotka AJ,1925. Elements of Physical Biology [M]. Williams and Wilkins, Baltimore
    Manson C F.1979. Decomposition [M]. Studies in Biology,74. Edward Arnold
    Meentemeyer V,1978. Macroclimate and lignin control of litter decomposition rates [J]. Ecology,59:465-472
    Meissner R A, Facelli J M,1999. Effects of sheep exclusion on the soil seed bank and annual vegetation in chenopods shrub lands of South Australia [J]. J. Arid Environ,42:117-128
    Merila P, Strammer R, Fritze H,2002. Soil microbial activity and community structure along a primary succession transect on the land-up lift coast in western Finland [J]. Soil Biology & Biochemistry, 34:1647-1654
    Michaels AF,2003. The ratios of life [J]. Science,300:906-907
    Mooney HA, Canadell J, Chapin Ⅲ FS, et al.,1999. Ecosystem physiology responses to global change. In: Walker B, Steffen W, Canadell J, and Ingram J, eds. The Terrestrial Biosphere and Global Change implications for natural and managed ecosystems [M], Cambridge Press,1999,41-189
    Moretto AS, Distel RA, DidoneN G,2001. Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semi-arid grassland [J].Appl SoilEcol,18:31-37
    Olsen, SR., Cole, CV., Watanabe, FS, and Dean, LA.,1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate [M]. U.S. Department of Agriculture Circular,939
    Ottmun MJ, Tickes BR, Roth RL,1996. Alfalfa yield and stand response to termination in an arid environment [J]. Agronomy Journal,88:44-48
    Puget P, Drinkwater LE,2001. Short term dynamics of root-and shoot-derived carbon from a leguminous green manure [J]. Soil Sci Soc Am J,65:771-779
    Redfield AC,1958. The biological control of chemical factors in the environment [J]. American Scientist, 46:205-211
    Reiners WA,1986. Complementary models for ecosystems [J]. American Naturalist,127:59-73
    Reiz C, Maulder P, Begemann L,1988. Water Harvesting for Plant Production. World Bank, Washington.
    Schindler D W,2003. Balancing planets and molecules [J]. Nature,423:225-226
    Seastedt TR,1988. Mass, nitrogen, and phosphorus dynamics in foliage and root detritus of tall grass prairie [J]. Ecology,69(1):59-65
    Seastedt TR, Parton WJ, Ojima DS,1992. Mass loss and nitrogen dynamics of decaying litter of grasslands: the apparent low nitrogen immobilization potential of root detritus [J]. Can JBot,70:384-391
    Shan L, Liu ZM, Xin YQ, et al.1992. A study on the grass and field crops rotation in Mountain region of Southern Ningxia. The production and benefit of different rotation system [J]. Soil Water Cons,6 (4):60-68
    Sherman F, Kuselman I,999. Stoichiometry and chemical metrology:Karl Fisher reaction [J]. Accreditation and Quality Assurance,4:230-234
    Silver WL, Miya RK,2001. Global patterns in root decomposition:comparisons of climate and litter quality effects [J].Oecologia,129:407-419
    Strian CL, R andall DC, Turner FB,1987. Relationship of leaf decomposition rate to rainfall in the Mojave Desert [J]. Ecology,68 (3):741-744
    Taylor BR, Parkinson D, Parsons WF J,1989. Nitrogen and lignin content as predictors of litter decay rates:a microcosm test [J]. Ecology,70:97-104
    Tessier JT, Raynal DJ,2003. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation [J]. Journal of Applied Ecology,40:523-534
    Turner RM,1990. Long-term vegetation change at a fully protected Sonoran desert site [J]. Ecology, 7:464-477
    Vitousek PM,1982. Nutrient cycling and nutrient use efficiency [J]. American Naturalist,119:553-572
    Voroney, RP, Winter JP, Beyaert RP,1993. Soil microbial biomass C and N. In:Carter, M.R. (Ed.), Soil Sampling and Methods of Analysis [M]. Canadian Society of Soil Science, Lewis Publishers, Division of CRC Press, Boca Raton, FL, pp:277-286
    Wang MJ, Li QF, Qing XL,2001. The quantities of seed setting in fenced and freely grazed areas in Stipa Baicalensis steppe, Inner Mongolia [J]. Grassland of China,23(6):21-26
    Wang W, Liu ZL, Hao DY,1997. Dynamic response of degraded steppe vegetation to grazing exclusion in the Inner Mongolia [J]. Climatic and Environmental Research,2 (3):236-240
    Yang XM, Kay BD,2001. Rotation and tillage effects on soil organic carbon sequestration in a typic Hapludalf in Southern Ontario [J]. Soil Till Res.,59:107-114
    鲍士旦,2000。土壤农化分析[M]。北京:中国农业出版社
    鲍文,包维楷,何丙辉等,2004。岷江上游23年生油松纯林下凋落物与土壤截留降水的效应[J]。水土保持学报,18(5):115-119
    边振,张克斌,李瑞,刘小丹,2008。封育措施对宁夏盐池半干旱沙地草场植被恢复的影响研究[J]。水土保持研究,15(5):68-70
    蔡晓明,2000。生态系统生态学[M]。北京:科学出版社
    曹永红,贾志宽,韩清芳,2008。苜蓿生长年限对其产量及土壤性状的影响[J]。干旱地区农业研究,26(3):104-108
    曾德慧,陈光生,2005。生态化学计量学:复杂生命系统奥秘的探索[J]。植物生态学报,29(6):1007-1019
    陈文新,1990。土壤科学与环境微生物[M]。北京:中国农业出版社
    陈佐忠,汪诗平,2000。中国典型草原生态系统[M]。北京:科学出版社
    程积民,万惠娥,2002。中国黄土高原植被建设与水土保持[M]。北京:中国林业出版社
    程积民,万惠娥,王静,2005。黄土丘陵区苜蓿生长与土壤水分变化[J]。应用生态学报,16:435-438
    郭继勋,姜世成,任炳忠,2000。松嫩草原优势植物羊草立枯体分解的研究[J]。生态学报,20(5):784-787
    郭胜利,刘文兆,史竹叶,侯喜禄,李凤民,2003。半干旱区流域土壤养分分布特征及其与地形、植被的关系[J]。干旱地区农业研究,4:40-43
    郭玉泉,王金芬,高翔,2000。种植紫花苜蓿对土壤养分的影响[J]。四川草原,4:20-24
    郭再华,贺立源,徐才国,2004。水稻耐低磷特性研究[J]。应用与环境生物学报,10(6):681-685
    黄昌勇,2000。土壤科学[M]。北京:中国农业出版社
    黄昌勇,2000。土壤学[M]。北京:中国农业出版社
    黄志霖,傅伯杰,陈利顶,2002。恢复生态学与黄土高原生态系统的恢复与重建问题[J]。水土保持学报,16(3):122-125
    李本银,汪金舫,赵世杰,张宏伟,赵明旭,2004施肥对退化草地土壤肥力、牧草群落结构及生物量的影响[J]。中国草地,26(1):14-17
    李凤民,2000。论我国半干旱地区农业生产力与生态系统可持续发展[J]。生态农业研究,8(4):21-24
    李凤民,徐进章,孙国钧,2003。半干旱黄土高原退化生态系统的修复与生态农业发展[J]。生态学报,23(9):1901-1909
    李玉山,2002。土壤-作物水分关系和调节[M]。北京:中国农业出版社
    廖仰南,张桂枝,赵吉,1992。草原羊草(Aneurolepidium chinensis)和大针茅(Stipagrandis)不同物候期植株分解的微生物特性[J]。草原生态系统研究,4:151-159
    刘小兰,李世清,李凤民,2000。论旱地农业中有机肥和豆科作物的农学意义[J]。水土保持学报,14(6):161-165
    木村允,1981。陆地植物群落的生产量测定方法[M]。姜恕等译,北京:科学出版社
    南京农业大学,1996。土壤农化分析[M]。北京:中国农业出版社
    彭少麟,刘强,2002。森林凋落物动态及其对全球变暖的响应[J]。生态学报,22(9):1534-1544
    任继周,1998。草业科学研究方法[M]。北京:中国农业出版社
    山仑,陈国良,1993。黄土高原旱地农业的理论与实践[M]。北京:科学出版社
    史竹叶,刘兆文,郭胜利,李凤民,2003。中连川小流域土壤水分物理特征及其与地形条件的关系[J]。干旱地区农业研究,21(4):101-104
    孙志高,刘景双,2007。湿地凋落物分解及其对全球变化的响应[J]。生态学报,27(4):1606-1618
    王红波,章建新,李强,2008。氮肥施用量对覆膜菜用大豆根系生长的影响[J]。甘肃农业大学报,6:58-62
    王其兵,李凌浩,白永飞,邢雪荣,2000。模拟气候变化对3种草原植物群落混合凋落物分解的影响[J]。植物生态学报,24(6):674-679
    王娓,郭继勋,张保田,2003。东北松嫩草地羊草群落环境因素与凋落物分解季节动态[J]。草业学报,12(1):47-52
    王娓,郭继勋.,2001。松嫩草原碱茅群落环境因素与凋落物分解季节动态[J]。应用生态学报,12(6):841-844
    吴敦亮,1989。农耕区草地发展研究[J]。草业科学,6(4):41-44
    吴钦孝,杨文治,1998。黄土高原植被建设与持续发展[M]。北京:科学出版社
    薛晓辉,卢芳,张兴昌,2005。陕北黄土高原土壤有机质分布研究[J]。西北农林科技大学学报,33(6):69-74
    杨晓晖,张克斌,侯瑞萍,慈龙骏,2005。半干旱沙地封育草场的植被变化及其与土壤因子间的关系[J]。生态学报,25(12):3212-3219
    张少华,1997。论黄土高原陇东地区的草地利用[J]。草业科学,14(5):4-7
    张维邦,1989。论黄土高原生态环境遭到彻底破坏的祸根[J]。水土保持通报,9(1):21-27
    张伟东,王思龙,颜绍旭,杨会侠,徐广标,2009。杉木根系和凋落物对土壤微生物学性质的影响[J]。应用生态学报,20(10):2345-2350
    张伟华,关世英,李跃进,武永智,2000。不同恢复措施对退化草地土壤水分和养分的影响[J]。内蒙古农业大学报,21(4):31-35
    赵鸿雁,吴钦孝,刘向东,1994。山杨林枯枝落叶的水文水保作用研究。林业科学,30(2):176-180
    赵吉,廖仰南,张桂枝,1992。羊草和大针茅不同物候期植株的分解及其主要营养元素的转化[J]。草原生态系统研究,4:161-169
    赵姚阳,刘文兆,濮励杰,2002。黄土丘陵区苜蓿生长对土壤水分的影响[J]。自然资源学报,20:85-91
    朱湘宁,2002。华北平原地区灌溉对苜蓿产量及土壤水分的影响[J]。中国草地,24(6):32-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700