GIS技术支持下的川西白玉县生态环境地质质量评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,与人类生存休戚相关的一系列环境问题不断涌现,人类面临着种种人口、资源、环境等影响人类和谐和可持续发展的问题。当今的环境问题中,生态环境地质问题占据突出重要的地位。解决这一刻不容缓的问题需要对生态环境地质状况进行深入的研究,需要切实的生态环境地质调查与合理的生态环境地质评价作保障。只有在科学合理的生态环境地质评价工作的基础上才能进一步搞好质量区划和相关管理工作,更有效地保护我们的生态环境地质系统。
     本研究将生态环境地质质量评价这一笼统的评价目标分解为自然生态环境地质质量评价和人居生态环境地质质量评价两个分目标。在深入探讨白玉县生态环境地质状况的基础上,以GIS技术为依托,分别建立了两套具有各自针对性、主导性、综合性和可操作性的评价指标体系。采用不同的评价单元和不同的指标获取与赋值方法来评价两个分目标,并运用主成分分析、B-P神经网络和层次分析三种评价模型各自确立白玉县各评价单元的生态环境地质质量等级,综合三种模型的评价结果,得到各评价单元的质量等级的最终归属。研究取得的主要成果有:
     (1)介绍了白玉县生态环境地质概况,分析了白玉县水土、河湖、植被、地质灾害等主要生态环境地质问题,阐述了对该地区进行生态环境地质质量评价的必要性。
     (2)分解生态环境地质质量评价为自然生态环境地质质量评价和人居生态环境地质质量评价两个评价目标,针对性地构建各自相应的评价指标体系,为高原山地地区生态环境地质质量评价提供一定价值的参考依据。
     (3)根据自然生态环境地质质量评价和人居生态环境地质质量两个分目标各自的评价特点,分别采用乡镇行政区和行政驻地作为基本评价单元,提高了评价的可操作性。
     (4)针对两种不同评价单元的指标赋值要求,在参评指标数据提取时采用了不同的提取方法,对同样意义的指标在表征形式上区别对待,提高了指标获取的效率和准确性。
     (5)采用了主成分分析模型、B-P神经网络模型和层次分析模型三种截然不同的评价理论对目标进行评价并分级,评价单元的最终分级归属是综合了三种模型的结果,在很大程度上降低了评价结果的偶然性。
     (6)通过对白玉县生态环境地质质量的评价,发现不论是自然生态环境地质质量还是人居生态环境地质质量,总体上西部高山峡谷区要优于中部山原深谷区和东部丘状高原区。整个评价结果将为白玉县生态环境地质问题的治理以及生态环境和地质环境的保护提供科学依据,对白玉县生态建设、城乡规划与建设起到指导作用。
Recently, a series of environmental problems, which are related to human survival closely, have been emerging. Human faces a lot of problems, such as population expansion, resource shortage, environment pollution, etc. They influence human harmonious and sustainable development. In these problems, the eco-environmental geological problems occupy prominent position. In order to solve this urgent problem, the further research of eco-environmental geological condition, the practical survey of eco-environmental geology and the reasonable evaluation of eco-environmental geology are all imperative. The scientific evaluation of eco-environmental geology is the basis of quality division and management. It could help to protect human eco-environmental geology system effectively.
     In this evaluation of eco-environmental geological quality, the general evaluation objective is divided into evaluation of natural eco-environmental geological quality and residential eco-environmental geological quality. On the basis of the thorough discussion of eco-environmental geological condition in Baiyu County, two sets of evaluation index system which are pertinent, leading, comprehensive and maneuverable, are constructed by GIS. Two different types of evaluation unit and the corresponding different methods of index gaining and assignment are utilized to evaluate the two decomposition objectives. The eco-environmental geological quality grade for each evaluation unit in Baiyu County is determined by the use of three evaluation models which are called principal component analysis, B-P neural network and hierarchical analysis. The three evaluation results are combined together so that the final grade belonging of each evaluation unit is obtained. The main achievements in this research are as follows:
     (1) The survey of eco-environmental geology in Baiyu County is introduced. The main problems of eco-environmental geology, such as soil, petrology, vegetation, geological hazard, and so on, are analized. The necessity of the evaluation of eco-environmental geological quality in the region is expounded.
     (2) The evaluation objective of eco-environmental geological quality is divided into evaluation of natural eco-environmental geological quality and residential eco-environmental geological quality. The respective evaluation index system is built pertinently. It provides reference for the evaluation of eco-environmental geological quality in plateau mountainous region.
     (3) According to the evaluation characteristics of the two decomposition objectives, the township administrative region and the administrative headquarters are consided as the basic evaluation unit. It improves the evaluation maneuverability.
     (4) According to the index assignment requirements of the two different types of evaluation unit, the different methods are applied in the course of index data access. In the characterization form, the similar meaning index is made a difference between the two different evaluation index systems, so that the efficiency and accuracy of index data access are improved.
     (5) The three sets of disparate evaluation theory of PCA model, B-P neural network model and AHP model are used to evaluate the objectives, and then the quality grade is divided. The final grade belonging of each evaluation unit is the result which is integrated with three kinds of mathematical model algorithm. Therefore, the accident of evaluation results is reduced as greatly as possible.
     (6) The evaluation result of the natural eco-environmental geological quality and the residential eco-environmental geological quality in Baiyu County indicates that the overall quality of the western alpine canyon area is superior to the central valley area and eastern demo shape plateau area. The evaluation results could provide scientific reference for the governance of eco-environmental geological problems and the protection of ecological environment and geological environment, and also guide the ecological, urban and rural planning and construction in Baiyu County.
引文
[1]施瑞良.基于3S的朔州市生态地质环境质量评价研究[D].太原:太原理工大学,2010.
    [2]黄润秋.生态环境地质的基本特点与技术支撑[J].中国地质,2001,28(11):20-24.
    [3]黄润秋,许向宁,唐川,等.地质环境评价与地质灾害管理[M].北京:科学出版社,2008.
    [4]陶星明.生态功能分区方法学研究——以杭州市为例[D].杭州:浙江大学,2005.
    [5]林景星,张静,史世云,等.生态环境地质学——21世纪新兴的地球学科[J].地质通报,2003, 22(7):459-469.
    [6]张森琦,王永贵,朱桦,等.关于生态环境地质学几个理论问题的探讨[J].青海环境,2007,17 (2):65-70.
    [7]蔡劲松.岷江上游生态环境地质质量评价与可持续发展[J].成都:成都理工大学,2004.
    [8]张宗祜,袁道先.我国跨世纪的重大地学问题——环境地学发展前景[J].地矿工作研究,1995,(10):1-11.
    [9] Jie T, Nianfeng L. Some problems of ecological environmental geology in arid and semiarid areas of China[J]. Environmental Geology,1995, 26(1):64-67.
    [10]陶于祥,毛建仁,孙玉华,等.生态环境地质学初探[J].江苏地质,1998,22(3):186-191.
    [11]陈梦熊.论生态地质环境系统与综合性生态环境地质调查[J].水文地质工程地质,1999 (3):3-6.
    [12]林景星,王绍芳,翟红,等.·生态环境地质学概述[J].环境保护,1999(9):37-39.
    [13]葛佐. GIS与生态环境地质评价[J].呼伦贝尔学院学报,2008,16(5):64-65,79.
    [14]魏伦武,赖绍民.西南地区江河流域生态环境地质调查的探讨[J].四川地质学报,2002, 22(3):153-155.
    [15]周爱国,周建伟,梁合诚,等.地质环境评价[M].武汉:中国地质大学出版社,2008.
    [16]夏福瑞.基于RS和GIS的自贡市长山盐矿区生态环境评价[D].成都:成都理工大学,2010.
    [17] Saaty TL, Bennett JP. Atheory of analytieal hierarehiesa pplied to politicaleandidacy[J]. Behavioral Seienee,1977,22:237-245.
    [18]李祚泳.环境质量评价原理与方法[M].北京:化学工业出版社,2004.
    [19]吕常荣.区域农业洪水灾害脆弱性评价研究[D].上海:上海师范大学,2008.
    [20]张崇甫,陈述云,胡希铃.统计分析方法及应用[M].重庆:重庆大学出版社,1995.
    [21] Shirazi, M. A., L. Boersma. A unifying quantitative analysis of soil texture[J]. Soil Science Society of American Journal, 1984.48: 142-147.
    [22] Thomas, B.M, Douglas, L.K, etal. Identification of regional soil quality factors and indicators:Ⅰ.Central and southern high plain[J]. Soil Science Society of American Journal,2000,64: 2115-2124.
    [23]张继承.基于RS/GIS的青藏高原生态环境综合评价研究[D].长春:吉林大学,2008.
    [24]张宝刚.基于物元分析法的连云港港进港航道通航环境风险评价研究[D].武汉:武汉理工大学,2010.
    [25]吴华军,刘年丰,何军,等.基于物元分析的生态环境综合评价研究[J].华中科技大学学报(城市科学版),2006,23(1):52-55.
    [26]杨晓华,杨志峰,郦建强.大气环境质量综合评价的物元分析法[J].环境工程,2003,21(5): 69-70.
    [27]劭子逊.物元分析与可拓学评价[J].咸阳师范专科学校学报(自然科学版),1998,13(6): 49-53.
    [28]王洪光,王国平.地下水环境质量的物元分析评价法[J].黑龙江环境通报,2002,26(4): 114-118.
    [29]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理和方法[M].北京:科学出版社,2005.
    [30]杨勤科,Tin R McVicar,Tom G Van Niel,等. ANUDEM和TIN两种建立DEM方法的对比研究[J].水土保持通报,2006,26(6):84-88.
    [31]杨勤科,Tin R McVicar,Tom G Van Niel,等.用ANUDEM建立水文地貌关系正确DEM的方法研究[J].测绘科学,2006,31(6):155-158.
    [32]何政伟,许辉熙,张东辉,赵银兵,杨斌.最佳DEM分辨率的确定及其验证分析[J].测绘科学,2010,35(2):114-116.
    [33]张玉君.遥感异常提取方法技术推广教材[M].北京:中国国土资源航空物探遥感中心, 2007.
    [34]刘新华.基于ER Mapper的水土流失地形因子提取技术初探[J].四川测绘,2001,24(1): 10-12.
    [35]周启鸣,刘学军.数字地形分析[M].北京:科学出版社,2006.
    [36]武文波,刘正纲.一种基于地物波谱特征的最佳波段组合选取方法[J].测绘工程,2007,16 (6):22-24.
    [37]许菡,燕琴,徐泮林,等.多源遥感影像融合最佳波段选择及质量评价研究[J].测绘科学,2007,32(3):72-74.
    [38]程红芳,章文波,陈锋.植被覆盖度遥感估算方法研究进展[J].国土资源遥感,2008,1:13- 18.
    [39]罗亚,徐建华,岳文泽.植被指数在城市绿地信息提取中的比较研究[J].遥感技术与应用, 2006,21(3):212-219.
    [40]戴建光,蔡海良.基于TM影像的城市建筑用地信息提取方法研究[J].现代测绘,2008,31 (6):34-36.
    [41]魏伟,赵军,王旭峰.天祝高寒草原区NDVI,DEM与地表覆盖的空间关系[J].干旱区研究, 2008,25(3): 394-401.
    [42]弋良朋,尹林克,王雷涛.基于RDVI的尉犁绿洲植被覆盖动态变化研究[J].干旱区资源与环境,2004,18(6):66-71.
    [43] Roujean J.L., Breon F.M. Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements[J]. Remote Sensing of Environ.,1995,51:375-384.
    [44]程红芳,章文波,陈锋.植被覆盖度遥感估算方法研究进展[J].国土资源遥感,2008,1:13- 18.
    [45]李苗苗.植被覆盖度的遥感估算方法研究[D].北京:中国科学院研究生院,2003.
    [46]吴柏清,何政伟,闫静,等.基于遥感与GIS技术的水电站库区植被覆盖度动态变化分析[J].水土保持研究,2008,15(3):39-42.
    [47]王朝阳,陈吉普.坡向与斜坡稳定性的关系研究[J].企业技术开发,2007,26(12):12-14.
    [48] A.Cerda.Seasonal variability of infiltration rates undercontrasting slope conditions in southeast Spain[J]. Geo-derma,1996,(69):217-232.
    [49]胡自治.青藏高原的草业发展与生态环境[M].北京:中国藏学出版社,2000.
    [50]袁金国.遥感图像数字处理[M].北京:中国环境科学出版社,2006.
    [51]赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.
    [52]赵书河.多源遥感影像融合技术与应用[M].南京:南京大学出版社,2008.
    [53]韦跃龙,覃建雄,张凌云.四川广元剑门关景区地质遗迹资源及其可持续发展[J].水土保持研究,2006,13(5):309-312.
    [54]焦锋,杨勤科,雷会珠.土地资源动态监测信息系统——以延安/安塞七乡镇为例[J].水土保持研究,2000,7(2):172-175.
    [55] Zavoianu l. Morphometry of drainage basins[M]. Amsterdam-Oxford-Tokyo: Elsevier, 1985.
    [56]陈明.神经网络模型[M].大连:大连理工大学出版社,1995.
    [57]孟庆香.基于遥感、GIS和模型的黄土高原生态环境质量综合评价[D].杨凌:西北农林科技大学,2006.
    [58]李丽.小城镇生态环境质量评价指标体系及其评价方法的研究[D].武汉:华中农业大学,2008.
    [59]汤姿.县(市)区域层面的生态环境质量评价与规划研究——以庄河市为例[D].沈阳:辽宁师范大学,2005.
    [60] Nekovei R, Sun Y. Back-propagation network and its configuration for blood vessel detection in angiograms. IEEE Trans on Neural Networks,1995,6(1):64-72.
    [61]李剑锋.基于RS/GIS技术的汶川地震与次生地质灾害评价[D].北京:中国地质大学(北京),2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700