蓝藻水华衍生物铵态氮对典型水生生物的生物效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上蓝藻水华暴发最严重、分布最广泛,并且水华的蓝藻种类最多的国家之一。蓝藻水华的暴发不仅改变了环境因子(水体出现低溶解氧、高pH、高化学需氧量等特征),还分解产生了大量的衍生物质,包括微囊藻毒素、铵态氮、硝态氮、硫化氢、嗅味物质(硫醚类物质、2-甲基异莰醇等物质),严重影响了水质和水生生态系统结构与功能,甚至危害了水生生物和人类的健康。铵态氮是典型的蓝藻水华衍生物质。本文重点研究蓝藻水华衍生物铵态氮对典型沉水植物苦草和重要淡水鱼类日本锦鲫的生物效应;本文还研究了铵态氮与典型重金属Cd的联合作用对日本锦鲫的生物效应,以及铵态氮与典型蓝藻水华衍生物微囊藻毒素MC_LR的联合作用对鲤鱼的生物效应,以期探明蓝藻水华暴发对水生生态系统的致毒效应与机制。本研究将传统毒理学研究方法与分子生物学技术相结合,以期寻找到蓝藻水华暴发条件下沉水植物和鱼类生存的铵态氮安全浓度,为我国蓝藻水华成灾的生态安全阈值指标体系,以及蓝藻水华消亡过程中适合不同功能区的水质安全指标体系的建立提供科学依据。本文的主要研究结果归纳如下:
     1.苦草对铵态氮暴露最敏感的生理生化指标是叶片中游离氨基酸态氮含量。铵态氮浓度低于0.60mg/L时苦草生长良好,浓度大于或等于1.00mg/L时苦草的光合能力受到抑制、代谢受到干扰。铵态氮作为沉水植物的一种营养物质,当其含量较低时,植物由于营养缺乏诱导产生自由基。
     2.日本锦鲫对铵态氮暴露敏感的生理生化指标是抗氧化酶SOD、CAT活性以及MDA含量。铵态氮浓度达到0.50mg/L(非离子氨NH3浓度为0.008 mg/L)时诱导日本锦鲫肝脏产生氧化应激。铵态氮浓度达到5.00mg/L(非离子氨NH3浓度为0.086 mg/L)时诱导日本锦鲫肝脏产生氧化应激,并出现氧化损伤和蛋白损伤。
     3.日本锦鲫对重金属Cd暴露敏感的生理生化指标是抗氧化酶SOD活性。Cd浓度为0.005 mg/L、铵态氮浓度为0.50 mg/L(非离子氨NH3浓度为0.006mg/L),其联合作用诱导日本锦鲫肝脏产生氧化应激,并且铵态氮的存在加剧了重金属Cd对日本锦鲫的氧化胁迫。Cd浓度为0.005 mg/L、铵态氮浓度为1.00mg/L(非离子氨NH3浓度为0.013 mg/L),其联合作用诱导日本锦鲫肝脏出现氧化损伤。
     4.微囊藻毒素MC_LR浓度为1.0pg/L、铵态氮浓度为10.0mg/L(非离子氨浓度为0.006 mg/L)以及其联合作用诱导了鲤鱼肝脏产生氧化应激。实验结果并未表明MC_LR浓度为1.0pg/L)和铵态氮(浓度为10.0mg/L)的联合作用比单一作用对鱼类的毒性更大。
     综上,在蓝藻水华暴发水体pH值较高的条件下,铵态氮浓度超过0.50mg/L即会对沉水植物和鱼类产生影响;并且铵态氮的存在加剧了重金属Cd对鱼类的胁迫。本实验结果表明微囊藻毒素MC_LR和铵态氮的联合作用并未比单一作用对鱼类产生更明显的胁迫。
China was one of the countries which had the most serious eruption of cyanobacteria blooms that widely distributed and the most species of cyano-bacteria. The eruption of cyanobacteria blooms not only changed the envi-ronmental factors(low dissolved oxygen, high pH, high chemical oxygen de-mand, et al.), but also produced a large number of derivatives, including mi-crocystin, ammonia, nitrate, hydrogen sulfide and odor substances (sulfoether, 2- methyl isobutyl alcohol camphene, et al.). It seriously affected the water quality and the structure and function of the aquatic ecosystem, and even did harm to the aquatic organisms and human beings. This study focused on cyanobacterial blooms-producing ammonia and the biologic effects on typical aquatic organisms, submersed macrophyte Vallisneria natans L. and fresh-water fish Carassius auratus, and the combined effects of ammonia and Cd on Carassius auratus and the combined effects of ammonia and MC_LR on Cy-prinus carpio L. In an attempt to obtain the data of toxicity and mechanism of eruption of cyanobacteria blooms, the traditional toxicology methods were used, which were combined with molecular biology. This study provided a scientific basis for the system of ecological security threshold on the outbreak of cyanobacterial blooms, and the standards for water safety in different func-tional areas during the process of cyanobacterial blooms diminishing. The major results were summarized as follows:
     1. Among all those physiological parameters measured, the nitrogen contents in the free amino acids of the plant leaves was the most sensitive indicator. Submersed macrophyte Vallisneria natans L. grew well when the NH4+-N concentration was below 0.60mg/L and stress and growth disturbance happened when it was above 1.00mg/L Results also suggested that defi-ciency of nutrient at a low level of ammonia may cause the induction of free radicals in submerged plant leaves.
     2. Among all those physiological parameters measured, the activity of SOD and CAT and the contents of MDA in the liver proved to be the most sensitive indicators.NH4+-N induced oxidative stress of the liver in Carassius auratus at concentration of 0.50mg/L(NH3-N 0.008mg/L), and induced oxida-tive damage and protein damage at concentration of 5.00mg/L(NH3-N 0.086 mg/L).
     3. Among all those physiological parameters measured, the activity of SOD in the liver proved to be the most sensitive indicator to Cd exposure. Oxidative stress of the liver in Carassius auratus was induced at concentration of 0.005 mg/L Cd and 0.50mg/L NH4+-N(NH3-N 0.006mg/L). Oxidative damage of the liver in Carassius auratus was induced at concentration of 0.005 mg/L Cd and 1.00mg/L NH4+-N(NH3-N 0.013mg/L).
     4. Oxidative stress of the liver in Cyprinus carpio L. was induced at concentration of 1.0μg/L MC_LR,10.0mg/L NH4+-N(NH3-N 0.006mg/L)and combined effect of MC_LR and NH4+-N. The results did not show that the combined effects of MC_LR and ammonia more toxic than a single one.
     In summary, NH4+-N would have an effect upon aquatic plants and fish when its concentration were in excess of 0.50mg/L The combined effects of Cd and ammonia were more toxic than the single effects of Cd. The combined effects of MC_LR and ammonia were not more toxic than a single one.
引文
Benz F W, Nerland D E, Corbett D, et al. Biological markers of acute acrylonitrile intoxication in rats as a function of dose and time[J]. Fundamental and Applied Toxicology, 1997,36:141-148.
    Best P H Elly. Effects of nitrogen on the growth and nitrogenous compounds of Ceratophyllum demersum [J]. Aquatic Botany,1980,8:197-206.
    Bradford M M. Arapid and sensitive method for the quantization of microgram quantities of pro-tein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry,1976,72:248-254.
    Britto D T, Kronzucker H J. NH4+ toxicity in higher plants:a critical review[J]. Journal of Plant Physiology,2002,159 (6):567-584.
    Britto D T, Kronzucker H J. NH4+ toxicity in higher plants: a critical review [J]. Plant Physiology, 2002,159:567-584.
    Cao T, Xie P, Li Z Q, et al. Physiological Stress of High NH4+ Concentration in Water Column on the Submersed Macrophyte Vallisneria Natans [J]. Bulletin of Environmental Contamination and Toxicology,2009,82:296-299.
    Carbis C R, Rawlin G T, Mitchell G F, et al. Thehistopathology of carp,Cyprinuscarpio L. ex-posed to MCs by Gavage, immersion and intraperitoneal administration[J]. Journal of Fish Diseases,1996 (19):199-207.
    Chen J, Zhou X Q, Feng L, et al. Effects of glutamine on hydrogen peroxide-induced oxidative damage in intestinal epithelial cells of Jian carp (Cyprinus carpio var. Jian)[J]. Aquacul-ture,2009(288):285-289.
    Ching B Y, Chew S F, Wong W P, Ip Y K. Environmental ammonia exposure induces oxidative stress in gills and brain of Boleophthalmus boddarti (mudskipper)[J]. Aquatic Toxicol-ogy,2009,95:203-212.
    Cristina Alonso, Clara Barba, Laia Rubio, et al. An ex vivo methodology to assess the lipid per-oxidation in stratum corneum[J]. Journal of Photochemistry and Photobiology B:Biology, 2009(97):71-76.
    Dhindsa R S, Dhinsa P P, Thorpe T A. Leaf senescence correlated with increased levels of mem- brane permeability and lipid-peroxidation and decreased levels of superoxide dismutase and catalase [J]. Journal of Experimental Botany,1980,32:127-132.
    Di Giulio R T, Washburn P C, Wenning R J. Biochemical responses in aquatic animals:a review of determinants of oxidative stress[J]. Environmental Toxicology and Chemistry,1989,8: 1103-1123.
    Eddy F B. Ammonia in estuaries and effects on fish[J]. Journal of fish biology,2005, 67:1495-1513.
    Fantel A G. Reactive oxygen species in developmental toxicity: review and hypothesis. Teratol-ogy,1996,53:196-217.
    Fischer W J, Hitzfeld B C, Tencalla F, et al. MC_L R toxicodynamics,induced pathology and immunohis tochemical localization in livers of blue-green algae exposed rainbow trout (On-corhynchus mykiss)[J]. Toxicological Science,2000 (54):365-373.
    Foss Atle, Albert K Imsland, Bjorn Roth, et al. Effects of chronic and periodic exposure to ammo-nia on growth and blood physiology in juvenile turbot (Scophthalmus maximus)[J]. Aquacul-ture,2009,296:45-50.
    Garcia-Limones C, Hervas A, Navas-Cartes J A, et al. Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporumf. Sp. Ciceris [J]. Physio-logical and Molecular Plant Pathology,2002,61:325-337.
    Goksory A, Beyer J, Egaas E, et al. Biomarker responses in flounder (Platichthysflesus) and their use in pollution monitoring[J]. Mar. Pollut. Bull,1996,33:36-45.
    Guzman R E,Solter P F. Hepatic oxidative stress following prolonged sublethal microcystin LR exposure[J]. Toxicologic Pathology,1999,27:582-588.
    Hissin P J, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem.1976,74,214-226.
    Ip Y K, Chew S F, Wilson J M, Randall D J. Defences against ammonia toxicity in tropical air-breathing fishes exposed to high concentrations of environmental ammonia: a review[J]. Journal of Comparative Physiology B,2004,174:565-575.
    J.S.Alabaster.淡水鱼类的水质标准[M].北京:科学普及出版社,1986.
    Jampeetong A, Brix H. Nitrogen nutrition of Salvinia natans: Effects of inorganic nitrogen form on growth, morphology, nitrate reductase activity and uptake kinetics of ammonium and ni-trate[J]. Aquatic Botany,2009,90 (1):67-73.
    Jones G. J, Orr P T. Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay[J]. Water Research,1994,28(4):871-876.
    Kochhar S, Kochhar V K, Khanduja S D. Changes in the pattern of isoperoxidases during matura-tion of grape berries cv. Gulabi as affected by ethephon [J]. American Journal of Enology and Viticulture,1979,30:275-277.
    Kronzucker H J, Britto D T, Davenport R J, et al. Ammonium toxicity and the real cost of trans-port[J]. Trends in Plant Science,2001,6 (8):335-337.
    Levine R L, Garland D, Olircn, et al. Determination of carbonyl content in oxidatively modified proteins[J]. Methods Enzymol,1990,186:464-478.
    Li X Y, Chung I K, Kim J I,et al. Subchronic oral toxicity of microcystin in common carp (Cyprinuscarpio L.) exposed to M icrocystis under laboratory conditions[J]. Toxicon, 2004 (44):821-827.
    Livingstone D R. Contaminant-stimulated reactive oxygen species production and oxidative dam-age in aquatic organisms. Marine Pollution Bulletin,2001,42:656-666.
    Lynch D V, Thompson J E. Lipoxygenase-mediated production of superoxide anion in senescing plant tissue [J]. FEBS Letters,1984,173:251-254.
    M. SMUTNA, L VORLOVA, Z SVOBODOVA. Pathobiochemistry of Ammonia in the Internal Environment of Fish (Review) [J]. Acta Vet. Brno,2002,71:169-181.
    Mehrer I, Mohr H. Ammonium toxicity:description of the syndrome in Synapis alba and the search for its causation[J]. Physiologia Plantarum,2006,77 (4):545-554.
    Ni L Y. Effects of water column nutrient enrichment on the growth of Potamogeton maackianus AoBeen [J]. Journal of Aquatic Plant Management,2001,39:83-87.
    Nimptsch J, Pflugmacher S. Ammonia triggers the promotion of oxidative stress in the aquatic macrophyte Myriophyllum mattogrossense [J].Chemosphere,2007,66:708-714.
    Oruc Ozcan E, Uner N, Tamer L. Comparison of Na+- K+ -ATPase Activities and Malondialde-hyde Contents in Liver Tissue for Three Fish Species Exposed to Azinphosmethyl[J]. Bulle-tin of Environmental Contamination and Toxicology,2002,69:271-277.
    Ozimek T, Van Donk E, Gulati R D. Growth and nutrient uptake by two species of Elodea in ex-perimental conditions and their role in nutrient accumulation in a macrophytedom inated lake. Hydrobiolog ia,1993,251:13-18.
    Papageorgiou G, Iliadis S, Botsoglou N, et al. Lipid peroxidation of rat myocardial tissue follow-ing daunomycin administration[J]. Toxicology,1998,126:83-91.
    Pu Y H, Li W. Ecological studies on Potamogeton malaianus in China. Journal of Wuhan Botani-cal Research,1999,17:65-72.
    Rabe E. Stress physiology-the function significance of the accumulation of nitrogen-containing compounds [J].Journal of Horticultural Science,1990,65:231-243.
    Richie J J, Skowronski L, Abraham P, et al. Blood glutathione concentrations in a large-scale hu-man study[J]. Clinical Chemistry,1996,42:64-70.
    Romen, Siauy. Heavy metal distribution in different fish species from the Manritania coat [J]. Science of the Total Environment,1999,232 (3):169-175.
    Scott G R, Sloman K A, Rouleau C, et al.Cadmium disrupts behavioral and physiological re-sponsestoalarm substance in juvenile rainbow trout(Oncorhynchu smykiss)[J].Exp Bio,2003, 206(11):779-791.
    Shaffi S A. Ammonia Toxicity: Metabolic disorder in nine freshwater teleosts[J]. Toxicology Let-ters,1980,6:349-356.
    Shin R, Berg R H, Schachtman D P. Reactive oxygen Species and Root Hairs in Arabidopsis Root Response to Nitrogen, Phosphorus and Potassium Deficiency [J]. Plant and Cell Physiology, 2005,46:1350-1357.
    Shin R, Schachtman D P. Hydrogen peroxide mediates plant root cell response to nutrient depriva-tion [J]. PNAS,2004,23:8827-8832.
    Skrzydlewska E, Farbiszewski R. Glutathione consumption and inactivation of glutathione-related enzymes in liver, erythrocytes and serum of rats after methanol intoxication[J]. Archives of toxicology,1997,71:741-745.
    Stadtman ER. Protein oxidation and aging[J]. Science,1992,257(5074):1220-1224.
    Sun F H, Zhou Q X. Oxidative stress biomarkers of the polychaete Nereis diversicolor exposed to cadmium and petroleum hydrocarbons [J]. Ecotoxicology and Environmental Safety,2008,70: 106-114.
    Tay SLA, Chew S F, Ip Y K. The swamp eel Monopterus albus reduces endogenous ammonia production and detoxifies ammonia to glutamine during aerial exposure[J]. Journal of Ex-perimental Biology,2003,206:2931-3940.
    Trimmer M, Nicholls J C, Deflandre B. Anaerobic ammonium oxidation measured in sediments along the thames estuary, United Kingdom[J]. Applied and Environm- ental Microbiol-ogy,2003,69(11):6447-6454.
    Tsuji K, Naito S, Kondo F, et al. Stability of microcystins from cyanobacteria: effect of light on decomposition and isomerization [J].Environmental Science and Technology,1994,28(1): 173-177.
    Vallee B L. The function of metallothionein[J]. Neurochemistry International,1995,27 (1): 23-30.
    Wang C, Zhang S H, Wang P F, et al. Metabolic adaptations to ammonia-induced oxidative stress in leaves of the submerged macrophyte Vallisneria natans [J]. Aquatic Toxicology,2008,87: 88-98.
    Xu J B, Yuan X F, Lang P Z. Determination of catalase activity and catalase inhibition by ultra-violet spectrophotometry[J].China Environmental Chemistry,1997,16:73-76.
    Yan C Z, Zeng A Y, Jin X C, et al. Physiological effects of ammonia-nitrogen concentrations on Hydrilla verticillata[J]. Acta Ecologica Sinica,2007,27 (3):1050-1055.
    Zhang H, Zhang J, Chen Y, et al. Influence of intracellular Ca2+ mitochondria membrane potential, reactive oxygen species, and intrancellular ATP on the mechanism of micro-cystin-LR induced apoptosis in Carassius auratus lymphocytes in vitro[J]. Environmental Toxicology,2007,22(6):559-564.
    曹凑贵.生态学概论(第二版).北京:高等教育出版社,2006年.
    曹特,倪乐意.金鱼藻抗氧化酶对水体无机氮升高的响应.水生生物学报,2004,28(3):299-202.
    陈贵良,姚林,张艳淑.镉对鲫鱼主要脏器中锌、铜含量的影响[J].环境与职业医学,2004,21(4):332-333.
    陈建勋,王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社,2002:120-121.
    范媛媛,袁妙淼,邓梅峰等.高浓度氮磷胁迫对伊乐藻SOD,POD和CAT活性的影响[J].氨基酸和生物资源,2007,29(3):38-41.
    胡晓磐,周建华,时夕金.水环境镉对鲫鱼淋巴细胞DNA合成的影响[J].实用预防医学,2004, 11(6):1106-1107.
    焦雯珺,闵庆文,林焜,等.植物氮素营养诊断的进展与展望[J].中国农学通报,2006,22(12):351-355.
    李雁鸣,梁振兴,梅楠.冬小麦叶片衰亡及其形态生理变化[J].北京农学院学报,1988,3(2):58-66.
    陆桂华,马倩.2009年太湖水域”湖泛”监测与分析[J].湖泊科学,2010,22(4):481-487.
    陆开宏.蓝藻水华与两种藻食性水生动物的相互作用[D].青岛:中国海洋大学博士学位论文,2009.
    罗义,施华宏,王晓蓉等.2,4-二氯苯酚诱导鲫鱼肝脏自由基的产生和脂质过氧化[J].环境科学,2005,26(3):29-32.
    马陶武,周科,朱程等.铜锈环棱螺对镉污染沉积物慢性胁迫的生物标志物响应[J].环境科学学报,2009,29(8):1750-1756.
    秦伯强,胡维平,陈伟民等.太湖水环境演化过程与机理[M].北京:科学出版社,2005.
    盛东,徐兆安,高怡.太湖湖区”黑水团”成因及危害分析.水资源保护.2010,26(3):41-52.
    孙存普,张建中,段绍瑾.自由基生物学导论[M].合肥:中国科学技术大学出版社,1999.
    孙小静,秦伯强,朱广伟.蓝藻死亡分解过程中胶体态磷、氮、有机碳的释放[J].中国环境科学,2007,27(3):341-345.
    王斌,李伟.不同N,P浓度条件下竹叶眼子菜的生理反应.生态学报,2002,22(10):1616-1621.
    王小冬,秦伯强,高光等.伊乐藻对高浓度氮磷营养盐的耐受性.生态学杂志,2009,28(12):2561-2566.
    王晓蓉.环境化学[M].南京:南京大学出版社,2007.
    王瑞祥,武岩鹏,唐谟堂.Cd(Ⅱ)-NH 3-Cl--H2O体系配合平衡.有色金属,2010(4):2-5.
    魏天柱,董海林.非离子态氨对鲤鱼种的毒性实验[J].河北渔业,2008(12):22-32.
    吴庆龙,谢平,杨柳燕等.湖泊蓝藻水华生态灾害形成机理及防治的基础研究[J].地球科学进展,2008,23(11):1115-1123.
    谢平.水生动物体内的微囊藻毒素及其对人类健康的潜在威胁[M].北京:科学出版社,2006.
    徐立红,张甫元,陈毅瑜.分子生态毒理学研究进展及其在水环境保护中的意义[J].水生生物学报,1995,19(2):171-185.
    颜昌宙,曾阿妍,金相灿等.不同浓度氨氮对轮叶黑藻的生理影响[J].生态学 报,2007,27(3):1050-1055.
    杨柳燕,肖琳.环境微生物技术[M].北京:科学出版社,2003.
    杨震,章惠珠,孔莉.长江南京段沉积物中铜镉形态对水生生物富集的影响[J].中国环境科学,1999,16:200-203.
    尹颖,孙媛媛,郭红岩等.芘对苦草的生物毒性效应[J].应用生态学报,2007,18(7):1528-1533.
    曾巾,杨柳燕,肖琳等.湖泊氮素生物地球化学循环及微生物的作用[J].湖泊科学,2007,19(4):382-389.
    张淑华,李巧,潘熙萍等.微囊藻毒素MC_LR的研究进展.现代预防医学,2009,36(17):3236-3239.
    中国科学院上海植物生理研究所a,上海市植物生理学会.现代植物生理学实验指南[M].北京:科学出版社,2004:95-96.
    中国科学院上海植物生理研究所b,上海市植物生理学会.现代植物生理学实验指南[M].北京:科学出版社,2004:138-139.
    周启星,孔繁翔,朱琳.生态毒理学[M].北京:科学出版社,2004.
    周永欣,张甫英,周仁珍.氨对草鱼的急性和亚急性毒性[J].水生生物学报,1986,10(1):32-38.
    朱增银,陈灿,贾海霞.不同氮源对苦草生长及生理指标的影响.植物资源与环境学报.2006,15(4):48-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700