北京郊区河岸带自然性评价与生态恢复
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恢复和重建人为干扰导致的退化河岸带生态系统是目前恢复生态学、流域生态学等学科研究的重要内容之一。河岸带退化主要表现在结构的不稳定化和功能的退化。河岸带生态系统的自然性评价,就是对由人类活动引起的河岸带生态系统的退化程度进行诊断,以此发出预警,为管理者、决策者提供目标依据,更好地利用、保护和管理好河岸带。河岸带自然性评价是河溪近自然治理中的重要部分。建立指标体系对河岸带自然性状况进行评价,不仅有助于提高河岸带管理质量,而且可以提供不同河溪之间进行比较的基准,同时,还可评估受损河岸带生态恢复的成效,从而提高管理决策能力。
     为了探讨河岸带在人为干扰影响下的退化程度,借鉴国内外在生态恢复方面的研究成果,结合北京郊区的具体情况,采用野外调查与定量分析相结合的方法,以安达木河上游河岸带作为参考河岸带,通过对河岸特性、自然条件、河岸生物特性、人类活动进行系统调查,在大量野外调查数据的基础上,采用模糊综合评价方法,构建河岸带自然性评价体系,并对参考河岸带河岸带自然性进行评价,初步探讨不同河溪利用方式对河岸带植物多样性的影响,分析主要影响因素,为河岸带生态恢复提供理论和技术支持。得出的结论如下:
     (1)建立评价体系。从结构(18个指标)和功能(13个指标)两方面选则相互匹配的31个指标,将河岸带生态系统的自然性分为以下四个等级:Ⅰ未受到人为干扰(自然状态);Ⅱ受到轻微人为干扰(近自然状态);Ⅲ受到剧烈人为干扰(退化状态);Ⅳ完全人工化(极度退化状态)。
     (2)以安达木河上游河岸带为例,利用该评价体系对其进行评价,其结果表明,安达木河上游河岸带处于近自然状态,与定性分析的结果一致。说明该评价体系可行。
     (3)主要干扰因素。安达木河上游河溪(含河岸带)利用划分为耕种、养殖、修渠坝及引水、修建水库、旅游、造人工林和自然保护区7种方式,其中,养殖、修建水库等利用方式造成了河岸带植被结构的单一化,物种丰富度低、多样性差且不均匀,可以认为是人为干扰引起的退化。而自然保护区内的河岸带不仅植被结构完整,物种丰富度高,植物多样性较好而且均匀度高,可以作为河岸带自然性评价的本底值。
     (4)生态恢复主要植物选择。北京郊区河岸带主要的优势树种包括柳(Salix)、杨(Populus)、榆(Ulmus)等,这些种类多数有对抗或逃避干扰的能力,并具有高产和损坏后很强的再生能力,适宜作为生物工程护岸可选择的植物种。
Restoration and reconstruction of degraded riparian ecosystem caused by natural and anthropogenic disturbances is one of the important issues in restoration ecology and watershed ecology. The degradation of riparian ecosystem appeared as the instabiliting of its structure and the invalidation of its functions. Natural degree assessing is an important issue in stream restoration and establishing an assessing index is necessary.
     To discussing the degradation degree of riparian zone in the influences of human disturbing, this paper has presented the assessment theory and method of riparian zone ecosystem. The full-around definition and the function of riparian zone has been expressed and descripted. On the base of the feature of riparian zone, the comprehensive assessment includes structure stability assessment, and functional service assessment. There are many influent factors on these assessments. After these influent factors had been known, the assessment index system could have been constructed. Because of the hierarchy and fuzzy characteristic of the index system, the hierarchy-fuzzy method has been applied, and the assessment models have been formed.
     (1) The near-natural assessment system of small scale riparian zone ecosystems use the researches in natural conditions to be reference sites, and evaluate the near-natural degree of structures and functions of degraded small scale riparian zone ecosystems which is disturbed by human activities or sudden natural changes. The near-natural assessment system of small scale riparian zone in the suburb of Beijing is on the base of plentiful field data, choosing 18 structure indicators and 13 function indicators to construct the assessment index system. it The near-natural degrees of riparian zone ecosystem can be devided into four grades:Ⅰnatural grade ( no artificial disturbs);Ⅱnear-natural grade (minimal artificial disturbs );Ⅲdegraded natural grade ( serious artificial disturbs);Ⅵcomplete man-made grade.
     (2) The natural assessment system of riparian zone ecosystem in suburb of Beijing is used to assess Undamu River riparian zones.It offers the necessary suggestions to the riparian environment protection.
     (3) Human activity disturbing represent as the stream use. Degenerated riparian zone represent as the decreasing or disappearing of vegetation. The paper compartmentalized the stream use to seven parts, they are culture, breed aquatics, trench and dam, reservoir, travel sites, man-made forestry and nature reserve. During these stream use, breed aquatics and reservoir has made the riparian zone structure singleness, and there are high diversity in nature reserve riparian zone.
     (4) Bioengineering is an effective measure to protect river bank. In this paper, the functions of riparian forest are discussed, and the technologies of ecological riparian protection and their types are stated and on the basis of these principles and investigating results, the fitting woody plants and their peculiarity and propagating technique are provided in detail to be the theoretical foundation for realizing the ecological restoration and scientific management of river resources.
引文
[1].蔡庆华,唐涛,刘建康.河流生态学研究中的几个热点问题[J].应用生态学报,2003,14(9):1573-1577.
    [2].蔡锡安,夏汉平,崔玉炎.广州流溪河河岸缓冲带生态治理的优良草种筛选试验[J].生态环境 2004,13(3):342-346.
    [3].陈 吉 泉 . 河 岸 植 被 特 征 及 其 在 生 态 系 统 和 景 观 中 的 作 用 [J]. 应 用 生 态 学报,1996.7(4):439-448.
    [4].陈廷贵,张金屯.十五个物种多样性指数的比较研究[J].河南科学,1999,17:55-58.
    [5].陈 婷 , 杨 凯 . 城 市 河 岸 土 地 利 用 对 河 流 廊 道 功 能 影 响 初 探 [J]. 世 界 地 理 研究,2006,15(3):82-87.
    [6].程龙飞,孙树林,裴洪军.香根草——铰链式混凝土块护岸系统机理分析[J].岩土工程学报,2005,27(5):562-566.
    [7].代全厚,张力,刘艳军等.植物根系固土护堤功能研究[J].吉林水利,1998,(10):27-29.
    [8].邓红兵,王青春,王庆礼等.河岸植被缓冲带与河岸带管理[J].应用生态学报,2001,12(6):951-954.
    [9].邓红兵,王庆礼,蔡庆华.流域生态学——新学科、新思想、新途径[J]. 应用生态学报, 1998, 9(4): 443-449.
    [10]. 邓 红 兵 , 肖 宝 英 , 代 力 民 等 . 溪 流 粗 木 质 残 体 的 生 态 学 研 究 进 展 [J]. 生 态 学报,2002,22(1):87-93.
    [11]. 邓红兵等. 河岸植被缓冲带与河岸带管理. 应用生态学报,2001,12(6):951-954
    [12]. 董哲仁,孙东亚等.生态水利工程原理与技术[M].中国水利水电出版社,2007.
    [13]. 董哲仁.保护和恢复河流形态多样性[J].水利学报,2003(11):53-56.
    [14]. 董哲仁.河流健康的内涵[J].中国水利,2005,4:15-18.
    [15]. 董哲仁.河流生态恢复的目标[J].中国水利,2004,10:6-9.
    [16]. 董哲仁.河流形态多样性与生物群落多样性[J].水利学报,2003,11:1-6.
    [17]. 董哲仁.生态水工学的理论框架[J].水利学报,2003(1):1-6.
    [18]. 董哲仁等. 生态——生物方法水体修复技术[J].中国水利,2002(3):8-10.
    [19]. 范 小 华 , 谢 德 体 , 魏 朝 富 . 河 岸 带 生 态 系 统 管 理 模 型 研 究 进 展 [J]. 中 国 农 学 通报,2006,22(1):277-282.
    [20]. 丰华丽,王超,李勇.流域生态需水量的研究[J].环境科学动态,2001,(1):27-37.
    [21]. 封福记,杨海军,于智勇.受损河岸带生态系统近自然修复试验的初步研究[J].东北师大学报自然科学版,2004,36(1):101-106.
    [22]. 封福记,杨海军,于智勇.受损河岸生态系统近自然修复实验的初步研究[J].东北师大学报自然科学版,2004,36(1):101-106.
    [23]. 傅伯杰,陈利顶,景观多样性的类型及其生态意义[J].地理学报,1996,51(5): 454~462.
    [24]. 高甲荣,王芳,朱继鹏等.河溪生态系统自然性评价指标体系[J].中国水土保持科学,2006,4(5):66-70.
    [25]. 高甲荣,王芳.密云水库集水区河岸生物工程措施初探[J].北京水务,2006,(2):38-41.
    [26]. 高甲荣,肖斌,牛建植.河溪近自然治理的基本模式与应用界限[J].水土保持学报,2002,16(6):84-91.
    [27]. 高甲荣,肖斌.荒溪近自然管理的景观生态学基础——欧洲阿尔卑斯山地荒溪管理研究述评[J]. 山地学报,17(3):244-249.
    [28]. 高甲荣.近自然治理——以景观生态学为基础的治理工程[J].北京林业大学学报,1999,21(1): 78-82.
    [29]. 高阳,高甲荣,陈子珊等.河溪近自然治理评价指标体系探讨以及应用[J].水土保持研究,2007,14(6):404-408.
    [30]. 高 阳 , 高 甲 荣 , 刘 瑛 等 . 河 道 近 自 然 恢 复 措 施 及 其 生 态 作 用 [J]. 水 土 保 持 研究,2007,14(1):95-97.
    [31]. 郭怀成,黄凯,刘永等.河岸带生态系统管理研究概念框架及其关键问题[J].地理研究,2007,26(4):789-798.
    [32]. 郭会哲,樊巍,宋绪忠.河岸带植被结构功能及修复技术研究进展[J].河南林业科技,2005,25(4):1-3.
    [33]. 郝卫民,王士达,王德铭.洪湖底栖动物群落结构及其对水质的初步评价[J].水生生物学报,1995, (2):125-134.
    [34]. 侯碧清,刘克旺,周光辉.株洲市郊天然植物群落的调查与分析[J].中南林学院学报,2004,24(4):96-103.
    [35]. 胡海泓.生态型护岸及其应用前景[J].广西水利水电,1999(4):57-59.
    [36]. 姜德文.荷兰等欧洲国家生态修复所见所思[J].中国水土保持,2004,(5):4-5.
    [37]. 靖立玲.北京河流规划新思考[J].北京水利,2002,(5):17-18.
    [38]. 居江.河道生态护坡模式与示范应用[J].水利科学研究,2003,(6):28-29.
    [39]. 李锦育,陈衍派.由近自然生态工程谈河川整治[J].海峡两岸山地灾害与环境保育研究,2002:381-386.
    [40]. 李锦育,余博滢.近自然生态工法评估指标之建立[J]. 海峡两岸山地灾害与环境保育研究,2002:509-515.
    [41]. 李锦育,卓秉毅.河川粒径分析方法之评估[J].海峡两岸山地灾害与环境保育研究,2002(3):141-145.
    [42]. 李鹏,赵忠,李占斌等. 植被根系与生态环境相互作用机制研究进展[J].西北林学院学报,2002,17(2):26-32.
    [43]. 李小平,张利权.土壤生物工程在河道坡岸生态修复中应用与效果[J].应用生态学报,2006,17(9):1705-1710.
    [44]. 刘定辉,李勇.植物根系提高土壤抗侵蚀性机理研究[J].水土保持学报,2003,17(3):34-37.
    [45]. 刘瑛,高甲荣,陈子珊等.北京郊区两种生态护岸方式温湿度效应对比[J].水土保持研究,2007,14(6):219-223.
    [46]. 罗利民,田伟君,翟金波.生态交错带理论在生态护岸构建中的应用[J].自然生态保护,2004, (11): 26-30.
    [47]. 牟长城,倪志英,李东等.长白山溪流河岸带森林木本植物多样性沿海拔梯度分布规律[J].应用生态学报,2007,18(5):945-952.
    [48]. 彭少麟,任海,张倩媚.退化湿地生态系统恢复的一些理论问题[J].应用生态学报,2003,14(11):2026-2030.
    [49]. 秦明周.美国土地利用的生物环境保护工程措施——缓冲带[J].水土保持学报,2001,15(1): 119-121.
    [50]. 任海,彭少麟.恢复生态学导论[M].北京:科学出版社,2001:65-66.
    [51]. 尚宗波,高琼.流域生态学——生态学研究的一个新的领域[J].生态学报,2001,21(3):468-473.
    [52]. 邵波,方文,王海洋.国内外河岸带研究现状与城市河岸林带生态重建[J].西南农业大学学报,2005,5(6):45-48.
    [53]. 史敏华,王棣,李任敏.石灰岩区主要水保灌木根系分布特征与根抗拉力研究初报[J].山西林业科技,1994,(1):17-19.
    [54]. 孙儒泳,李博,诸葛阳等.普通生态学[M].北京:高等教育出版社,2000:137-138.
    [55]. 唐涛,蔡庆华,刘建康. 河流生态系统健康及其评价. 应用生态学报,2002,13(9):1191-1194
    [56]. 王庆锁, 王襄平, 罗菊春等. 生态交错带与生物多样性[J]. 生物多样性, 1997, 5(2): 126-131.
    [57]. 王薇,李传奇.景观生态学在河流生态修复中的应用[J].中国水土保持,2003,(6):36-38.
    [58]. 王羊宝,季爱明,胡卫红.从植物防护工程的特点看河道水土保持植物的配置原则[J].江苏水利,2004,10.
    [59]. 王玉敏,周孝德.流域生态需水量的研究进展[J].水土保持学报,2002,16(6):142-144
    [60]. 王芝芳,杨亚川,赵作善等.土壤——草本植被根系复合体抗水蚀能力的土壤力学模型[J].中国农业大学学报,1996,1(2):39-45.
    [61]. 魏梓兴,蔡恭杰,吴阿娜等.河流管理中引入河流健康状况评价的意义与思考[J].中国水利,2004,17:18-20.
    [62]. 吴 阿 娜 , 杨 凯 , 车 越 等 . 河 流 健 康 状 况 的 表 征 及 其 评 价 [J]. 水 科 学 进展,2005,16(4):602-608.
    [63]. 吴刚,蔡庆华.流域生态学研究内容的整体表述[J].生态学报,1998,18(6):575-581.
    [64]. 吴兆录,郑寒,杨正彬.西双版纳乡村河溪利用方式及变化研究[J].生态学杂志,2002,21(3): 29-32.
    [65]. 夏继红,严忠民.国内外城市河道生态型护岸研究现状及发展趋势[J].中国水土保持,2004,(3):20-21.
    [66]. 夏继红,严忠民.国内外城市河道生态型护岸研究现状及发展趋势[J].中国水土保持,2004,(3):20-21.
    [67]. 夏继红,严忠民.生态河岸带的概念及功能[J].水利水电技术,2006,37(5):14-18.
    [68]. 夏继红,严忠民.生态河岸带研究进展与发展趋势[J].河海大学学报(自然科学版),2004,32(3):252-255.
    [69]. 徐健,周寅康,金晓斌等.基于生态保护对土地利用分类系统未利用地的探讨[J].资源科学,2005,25(2):137-141.
    [70]. 闫德千,刘国经,杨海军等.亚热带城市水源地受损河岸植物群落修复方法研究[J].北京林业大学学报,2007,29(3):40-45.
    [71]. 杨海军,封福记,赵亚楠等.受损河岸生态修复技术[J].东北水利水电,2004,22(6):51-60.
    [72]. 杨海军,李永祥.河流生态修复的理论与技术[M].吉林:吉林科学技术出版社,2005: 122.
    [73]. 杨海军,内田泰三,盛连西等.受损河岸生态系统修复研究进展[J].东北师大学报自然科学版,2004,36(1):95-99.
    [74]. 殷会娟,冯耀龙.河流生态环境健康评价方法研究[J].中国农村水利水电,2006,(4):55-57.
    [75]. 尹澄清.内陆水——陆交错带的生态功能及其保护与开发前景[J].生态学报,1995,15(3): 331-334.
    [76]. 由文辉.谈河岸带的生态管理[J].上海建设科技,2002,1:27-28.
    [77]. 岳隽,王仰麟.国内外河岸带研究的进展与展望[J].地理科学进展,2004,24(5):33-40.
    [78]. 曾 小 , 车 越 , 吴 阿 娜 .3 种 河 流 健 康 综 合 性 评 价 方 法 的 比 较 [J]. 中 国 给 水 排水,2007,23(4):92-96.
    [79]. 张建春,彭补拙.河岸带及其生态重建研究[J].地理研究,2002,21(3):373-383.
    [80]. 张 建 春 , 彭 补 拙 . 河 岸 带 研 究 及 其 退 化 生 态 系 统 的 恢 复 与 重 建 [J]. 生 态 学报,2003,2(1):56-63.
    [81]. 张建春.河岸带功能及其管理[J].水土保持学报,2001,15(6):143-146.
    [82]. 赵 福 洲 , 杨 戈 , 乔 纯 . 美 国 有 关 树 木 控 制 岸 蚀 的 研 究 [J]. 水 土 保 持 科 技 情报,2002,(3):13-14.
    [83]. 赵进勇,孙东亚,董哲仁.河流地貌多样性修复方法[J].水利水电技术,2007,38(2):78-83.
    [84]. 赵彦伟,杨志峰.城市河流生态系统健康评价初探[J].水科学进展,2005,16(3):349-355.
    [85]. 赵玉涛,余新晓,程根伟等.粗木质残体(CWD)的水文生态功能——当前森林水文研究中被忽视的重要环节[J].山地学报,2002,20(1):12-18.
    [86]. 钟勇.美国水土保持中的缓冲带技术[J].国外水利,2004.10:63-65.
    [87]. 周德培,张俊云.植被护坡工程技术[J].人民交通出版社,2003:62-101.
    [88]. 周睿,胡玉喆,熊颖等.岷江上游河岸带土地覆盖格局及其生态学解释[J].植物生态学报,2OO7,31(1):2-10.
    [89]. 朱强,俞孔坚,李迪华.景观规划中的生态廊道宽度[J].生态学报,2005,25(9):2407-2413.
    [90]. 朱清科,陈丽华,张东升等.贡嘎山森林生态系统根系固土力学机制研究[J].北京林业大学学报, 2002,24(4):64-67.
    [91]. 诸葛亦斯,刘德富,黄钰铃.生态河流缓冲带构建技术初探[J].水资源与水工程学报,2006,17(2):63-67.
    [92]. A. H. Fitter. Functional significance of root morphology and root system architecture. Ecological Interactions in Soil. 1985:87-104
    [93]. Allen EB, Niering WA. Riparian restoration[J]. Restoration Ecology,1997,5(4S): 1.
    [94]. Alpert P, Griggs FT, Peterson DR. Riparian forest restoration along large rivers: Initial results from the Sacramento River project[J]. Restoration Ecology,1999, 7(4):360- 368.
    [95]. Anderson M G, Richards K S. Slope Stability. Chapter 6, Green Way D. R., Vegetation and Slope Stability[M]. John Wilay&SonsLtd,1987:112-140.
    [96]. Andersson E, Nilsson C,Johansson ME. Effects of river fragmentation on plant dispersal and riparian flora[J]. Regulated Rivers: Research and Management,2000,16:83-89.
    [97]. Bayley PB. Understanding large river flood plain ecosystems[J]. BioScience,1995,45: 153-158.
    [98]. Belsky AJ , Matzke A, Uselman S. Survey of live stock influences on stream and riparian ecosystems in the western United States[J]. Journal of Soil and Water Conservation,1999,54:419-431.
    [99]. Belt, F.H, J.O.Laughlin, T.Merrill.1992.Design of forest riparian buffer strips for the protection of water quality: Analysis of scientific literature. Idaho forest, Wildlife and Range Policy Analysis Group Report 8.Moscow
    [100]. Berg, D. R. 1990. Active Management of Streamside Forests. M. S. Thesis, University of Washington, Seattle, Washington, USA.
    [101]. Connell JH. Diversity in tropical rain forests and coral reefs. Science[J],1978,199: 1302-1310.
    [102]. Dawson TE, Ehleringer JR. Streamside trees that do not use stream water[J]. Nature, 1991, 350:335-337.
    [103]. DeGraff, R.M, M. Yamasaki. 2000. Bird and mammal habitat in riparian areas. In Riparian management in forests of the continental eastern United States, Dolloff, 139-156
    [104]. Frostegard A, Tunlid A, Baath E. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals[J]. Appl Environ Microbial ,1993,59:3605-3617.
    [105]. G. Vercambre et al. Architectural analysis and synthesis of the plum tree root system in an orchard using a quantitative modeling approach. Plant and Soil 251. 2003: 1-11
    [106]. Gilliam JW. Riparian wetlands and water quality[J].Journal of Environmental Quality, 1994,23:896-900.
    [107]. Goodwid CN, Hawkins CP, Kershner JL. Riparian restoration in the western United States: Overview and perspective[J]. Restoration Ecology,1997,5:4-14.
    [108]. Greenwood H, O’Dowd DJ , Lake PS. Willow(Salix ×rubens) invasion of the riparian zone in southeastern Australia: Reduced abundance and altered composition of terrestrial arthropods[J]. Diversity and Distributions,2004,10:485-492.
    [109]. Gregory SV, Swanson FJ, McKee A, et al. An ecosystem perspective of riparian zones: Focus on links between land and water[J]. BioScience,1991,41(8):540-551.
    [110]. Groffman PM, Bain DJ , Band LE, et al. Down by the riverside: Urban riparian ecology[J]. Frontiers in Ecology and the Environment,2003,1:315-321.
    [111]. Gustafsson B. Scope and limits of the market mechanism in environmental management[J]. Ecological Economics,1998,24:259-274.
    [112]. Harris R, Olson C. Two stage system for prioritizing riparian restoration at the stream reach and community scales[J]. Restoration Ecology,1997,5:34-42.
    [113]. Hawkins CP, Bartz KL, Neale CMU. Vulnerability of riparian vegetation to catastrophic flooding: Implications for riparian restoration[J]. Restoration Ecology,1997 5:75-84.
    [114]. Holmes TP, Bergstrom JC, Huszar E, et al. Contingent valuation, netmarginal benefits, and the scale of riparian ecosystem restoration[J]. Ecological Economics,2004,49: 19-30.
    [115]. Hughes FMR. Flood plain biogeomorphology[J]. Progress in Physical Geography, 1997,21: 501-529.
    [116]. Jansson R, Nilsson C, Renofalt B. Fragmentation of riparian floras in rivers with multiple dams[J]. Ecology,2000,81:899-903.
    [117]. Johnson, R. R. and C. H. Lowe. 1985. Can the development of riparian ecology. In: Riparian ecosystems and their management: reconciling conflicting uses (R. R. Johnson, C. D. Ziebell, D. R. Patton et al. (Tech. Coors.),USDA Forest Service General Technical Report RM~120, 112~116.
    [118]. Jordan D ,Kremer R J, Bergfield W A,et al. Evaluation of microbial methods as potential indicators of soil quality in historical agricultural fields[J]. Biol Ferti Soils, 1995,19(14):297-302.
    [119]. Karlen D L , Gardner J C , Rosek M J. A soil quality framework for evaluating the impact of CRP [J]. J Produc Agric,1998,11(1):56-60.
    [120]. Kazuniko Kimura et al. Accurate root length measurement by image analysis. Plant and Soil 216. 1999: 117-127
    [121]. Lee K H, Isenhart TM, Schultz R C. Sediment and Nutrientremoval in an established multi -species riparian buffer [J].Journal of Soil and Water Conservation.2003(1).
    [122]. Lena B M vought, Gilles Pinay, Ann Fuglsang, et al. Structure and function of buffer strips from a water quality perspective in agricultural landscapes[J]. Landscape and Urban Planning, 1995 (3):323-331.
    [123]. Lowrance R, Leonard R, Sheridan J1Managing riparian ecosystems to control non-point pollution [J]. Journal of Soil and Water Conservation, 1985, 40 (1):87-91.
    [124]. Mander U, Kuusemets V, Krista L, et al. Efficiency and dimensioning of riparian buffer zones in agricultural catchments[J]. Ecological Engineering, 1997, 8: 299-324.
    [125]. Margaret S P. River Engineering, New Jersey [M]. Inc : Englewood Cliffs ,1986,1 - 331.
    [126]. Margaret S, Petersen. River Engineering [M]. New Jersey, Inc. Englewood cliffs, 1986.159-268
    [127]. Meehan, W. R. fed.).1991.Influences of Forest and Rangeland Management on Salmonoid Fishes and Their Habitats. American Fisheries Special Publication No. 19, Bethesda. Maryland, USA.
    [128]. Naiman, R. J. (ed). 1992. Watershed Management: Balancing Sustainability and Environmental Change. Springer-Verlag, New York, USA.
    [129]. Naiman, R. J.J.,H. Decamps, and M. Pollock. 1993.The role of riparian corridors in maintaining regional biodiversity. Ecology. 3:209 一 212.
    [130]. Nilsson, C. 1992. Conservation management of riparian communities. In: Ecologicalprinciples of nature conservation (L. Hansen, ed.).Elsevier Applied Science. London. England. 352-372.
    [131]. R.P.C. Morgen, R.J. Rickson. Slope stabilization and Erosion Control: A Bioengineering Approach. E & F N Spon, London, 1995,35-41
    [132]. Raedeke, K. J. (ed). 1988. Streamside Management: Riparian Wildlife and Forestry Interactions. Proceedings of A Symposium on Riparian Wildlife and Forestry Interactions. Contribution No. 59. University of Washington, Seattle, Washington, USA.
    [133]. Stenberg B. Monitoring soil quality of arable land: microbiological indicators[J]. Acta Agric Scand Section B ,Soil and Plant Sci ,1999,49(1):1-24.
    [134]. United Stated Department of Agriculture Chapter 18 Soil Bioengineering for Upland Slope Protection and Erosion Reduction [A].Natural Resources Conservation Service [M].1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700