格宾填料及格宾护岸结构对河道水质净化能力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以格宾护岸为研究对象,通过室内构建模拟河道装置,定量研究格宾填料及格宾护岸结构形式对河道水质净化能力的影响。选择花岗岩块石、卵石、废建筑砌块三种材料作为格宾填料,研究了三种不同填料的格宾护岸对河道水质净化能力的影响,并从微生物量及微生物活性等方面探讨了产生这些影响的内在机理;构建了以卵石为填料的直立式、阶梯式和鱼巢式三种格宾护岸结构,研究三种护岸结构对河道水质净化能力的影响,并运用River2D软件探讨了三种护岸结构对水流情况的影响。
     研究结果与结论如下:
     (1)当流速为0.015m/s,水力停留时间为135s时,随着模拟河道装置运行时间的延长,各填料对N、P营养盐及有机物的去除率均有不同程度的提高;与花岗岩块石、废建筑砌块相比,以卵石为填料的直立式格宾护岸对水体中NH3-N、TOC和DOC的去除率保持在较高的水平,运行26d后分别达65.26%、71.06%、78.06%;在运行初期,三种不同填料的格宾护岸对TP均有较高的去除率,运行12d后,以花岗岩块石、卵石、废建筑砌块为填料的格宾护岸对TP的去除率分别达89.20%、91.05%、94.71%。
     (2)以卵石为填料的直立式格宾护岸结构附着的微生物脂磷含量及微生物酶活性(除碱性磷酸酶活性外)均显著高于以花岗岩块石和废建筑砌块为填料的直立式格宾护岸结构(p<0.05),其较高的微生物量及酶活性有利于对氮素及有机物的去除。
     (3)当流速为0.015m/s,水力停留时间为135s时,随着模拟河道装置运行时间的延长,三种护岸结构对N、P营养盐及有机物的去除率均有不同程度的提高;与直立式、阶梯式格宾护岸结构相比,以卵石为填料的鱼巢式格宾护岸结构对NH3-N、TP、TOC和DOC的去除率保持在较高的水平,运行26d后分别达52.21%、65.36%、54.67%、48.21%。
     (4)在原型河道流量为20m3/s、水深为2.5m时,相较于以浆砌石为护岸材料的河段,以卵石为填料的格宾护岸河段能降低河道整体流速,最大流速由0.96m/s下降到0.94m/s;而对于三种不同护岸结构形式的格宾河道,最大流速没有发生变化,均为0.94m/s,但河段各节点流速发生变化,在河道中心流速较大的区域三种护岸结构形式的流速大小顺序为直立式>阶梯式>鱼巢式。
     (5)从对河道自净能力的影响考虑,格宾护岸中以卵石为填料,鱼巢式为护岸结构形式是最佳方案。
The study investigated the quantificational effect and the mechanism of three substratesincluding granite rubble, gravel and waste building blocks, and three structure form includingvertical, stepped and fish nest’s type on river self-purification in Gabion revetment. The effectof three structure form on flow was also investigated based on River2D software.
     The results and conclusions are as follows:
     (1) With flowing26days under velocity of0.015m/s and hydraulic retention time of135s, N, P and organic compound removal rates by all the substrates increased gradually invarying degrees. NH3-N and organic compound removal rates by gravelmaintained at a highefficiency, among which the removal rates of NH3-N,TOC and DOC were up to65.26%,71.06%and78.06%respectively after operated26days. The removal rate of TP by graniterubble, gravel and waste building blocks reached89.20%,91.05%and94.71%respectivelyafter operated12days.
     (2) Lipid phosphorus contents and enzyme activities of microbial film (exceptphosphatase activity) by gravel were significantly higher than the other two substrates(p<0.05), the higher biomass and enzyme activities enhanced removal efficiency of nitrogenand organic compound.
     (3) With flowing26days under velocity of0.015m/s and hydraulic retention time of135s, N, P and organic compound removal rates by three structure form increased gradually invarying degrees. N, P and organic compound removal rates by gravel maintained at a highefficiency, among which the removal rates of NH3-N,TP, TOC and DOC were up to52.21%、65.36%、54.67%、48.21%respectively after operated26days.
     (4) Compared to the stone masonary river, the Gabion river with gravel s substrates couldreduce the river’s flow rate,which the maximum flow rate reduced from0.96m/s to0.94m/swhen river flow at20m3/s and water depth at2.5m. For the three different structure forms ofGabion revetment river, the maximum flow rate had not changed, but each node of the river’sflow rate had changed, the size order of flow in central river was: vertical> stepped>fishnest’s.
     (5) Taking the impact of self-purification capacity on river into consideration, theoptimal scheme would be using graver as substract and the type of fish nest as structure inGabion revetment.
引文
[1] Nilsson C, Berggren K. Alterations of riparian ecosystems caused by river regulation[J].BioScience.2000,50(9):783-792
    [2] Gregory S V, Swanson F J, Mckee W A, et al. An ecosystem perspective of riparianzones[J]. BioScience.1991,41(8):540-551
    [3] Zhao L Q, Gao L, Jin H. Application of Gabion Slope Protection of Nanyang RiverChannel Regulation in Tianzhen County[J]. Advanced Materials Research.2012,374:1938-1941
    [4]赵素.河岸河床材料对水体自净能力的影响[D].广东:华南理工大学,2011
    [5]胡志超.生态格宾挡墙技术在苏北运河整治中的应用[J].中国水运.2011,11(3):133-135
    [6]丁永和,罗业辉,刘晓飞,等.生态设计理念在盐河航道中的应用和研究[J].水运工程.2011(B09):151-156
    [7]刘凯.江苏内河航道护岸结构型式优化研究[D].江苏:河海大学,2005
    [8] Ilhardt B L, Verry E S, Palik B J. Defining riparian areas[J]. Forestry And The RiparianZone.2000:7
    [9] Narumalani S, Zhou Y, Jensen J R. Application of remote sensing and geographicinformation systems to the delineation and analysis of riparian buffer zones[J]. AquaticBotany.1997,58(3-4):393-409
    [10]王海亚.生态水工学的理论方法及其在河道治理中的应用[D].湖北:武汉大学,2004
    [11] Vagnetti R, Miana P, Fabris M, et al. Self-purification ability of a resurgence stream[J].Chemosphere.2003,52(10):1781-1795
    [12]高晓琴.南通市城市生态河道构建理论及其应用[D].江苏:南京林业大学,2008
    [13]侯俊.生态型河道构建原理及应用技术研究[D].江苏:河海大学,2005
    [14]刘盈斐.多孔隙生态护岸的实验分析与设计研究[D].辽宁:大连理工大学,2007
    [15]王超,王沛芳.城市水生态系统建设与管理[M].科学出版社,2004
    [16]王文玉.生态型护岸净水箱去除城市雨水径流污染物的试验研究[D].北京:中国地质大学,2009
    [17]许士国,高永敏,刘盈斐.现代河道规划设计与治理[M].中国水利水电出版社,2006
    [18]郭屹岩.城市滨河生态适应性护岸的景观设计初探[D].北京:北京林业大学.2008
    [19]董哲仁.试论生态水利工程的基本设计原则[J].水利学报.2004,10(06)
    [20]许士国,石瑞花,黄保国,等.平原河道生态护坡工程评价和方案决策方法[J].水利学报.2008,39(3):325-331
    [21] Simon A, Collison A J C. Quantifying the mechanical and hydrologic effects of riparianvegetation on streambank stability[J]. Earth Surface Processes and Landforms.2002,27(5):527-546
    [22] Easson G, Yarbrough L D. The effects of riparian vegetation on bank stability[J].Environmental&Engineering Geoscience.2002,8(4):247-260
    [23]虢清伟,胡勇有,郑丙辉,等.护砌方式对模拟城市河道水质净化及稳定化的影响[J].环境科学学报.2006,26(5):858-864
    [24]陈庆锋,单保庆,尹澄清,等.利用生态混凝土控制城市坡面暴雨径流污染试验研究[J].环境污染治理技术与设备.2006,7(11):23-28
    [25]吴义锋,吕锡武,王新刚,等.4种生态混凝土护坡护砌方式的生态特性研究[J].安全与环境工程.2007,14(1):9-12
    [26]白晓慧,张晓红,丁路生.城市景观河道不同类型驳岸界面微生物生态研究[J].生态与农村环境学报.2007,23(3):90-92.
    [27]陈杨辉,吕锡武,吴义锋.生态护砌模拟河道对氮系污染物的去除特性[J].环境科学.2008(8):951-956
    [28]王艳颖,王超,侯俊,等.木栅栏砾石笼生态护岸技术及其应用[J].河海大学学报:自然科学版.2007,35(3):251-254
    [29] Binder W, Juerging P, Karl J. Naturnaher Wasserbau--Merkamale und Grenzen[J].Garten und Landschaft.1983,93(2):91-94
    [30] Hohmann J, Konold W. Flussbau-massnahmen an der Wutach und ihre Bewertung ausoekologischer Sicht[J]. Deutsche Wasser-wirtschaft.1992,22(4):103-107
    [31] Clausen J C, Sigmund C M, Guillard K, et al. Water quality changes from riparian bufferrestoration in Connecticut[J]. Journal of Environmental Quality.2000,29(6):1751-1761
    [32] Vinther F P, Eiland F, Lind A M, et al. Microbial biomass and numbers of denitrifiersrelated to macropore channels in agricultural and forest soils[J]. Soil Biology andBiochemistry.1999,31(4):603-611
    [33] Shepherd B, Harper D, Millington A. Modelling catchment-scale nutrient transport towatercourses in the UK[J]. Hydrobiologia.1999,395:227-238
    [34] Petts G E, Calow P. River restoration: selected extracts from the Rivers handbook[M].Blackwell science,1996
    [35]董哲仁.水利工程对生态系统的胁迫[J].水利水电技术.2003,34(7):1-5
    [36]王超,王沛芳,唐劲松,等.河道沿岸芦苇带对氨氮的削减特性研究[J].水科学进展.2003,14(3):311-317
    [37]伏永朋,赵欣,潘伟,等.格宾技术在长江三峡三斗坪镇护岸防治工程中的应用[J].地质灾害与环境保护.2006,17(2):49-53
    [38]廖可阳.波浪作用下GABION (格宾)护岸试验研究[D].长沙理工大学,2008
    [39]廖可阳,黄伦超,刘晓平. GABION柔性护岸材料特性分析及应用[J].城市道桥与防洪.2008(005):87-90
    [40]张焕洲,谢平,戴秋红,等.格宾网材在黄石长江干堤合兴堤段的应用[J].人民长江.2002,33(9):38-40
    [41]张立娟.长江口及其邻近水域碳,氮,磷的时空分布[D].北京:中国海洋大学,2009
    [42] Meiron T S, Marmur A, Saguy I S. Contact angle measurement on rough surfaces[J].Journal of colloid and interface science.2004,274(2):637-644
    [43]王晖,顾帼华,邱冠周.接触角法测量高分子材料的表面能[J].中南大学学报:自然科学版.2006,37(5):942-947
    [44]国家环保总局《水和废水检测方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002
    [45]魏谷,于鑫,叶林,等.脂磷生物量作为活性生物量指标的研究[J].中国给水排水.2007,23(9):1-4
    [46] Schlüter T, Leide J, Conrad K. Light promotes an increase of cytokininoxidase/dehydrogenase activity during senescence of barley leaf segments[J]. Journal of plantphysiology.2011,168(7):694-698
    [47]尹军,谭学军,张立国,等.测定脱氢酶活性的萃取剂选择[J].中国给水排水.2004,20(007):96-98
    [48]李宝,丁士明,范成新,等.滇池福保湾间隙水氮磷分布及其与底泥微生物和磷酸酶相互关系[J].湖泊科学.2008,20(4):420-427
    [49]王学奎.植物生理生化实验原理和技术[M].高等教育出版社,2006
    [50] Berman T. Alkaline phosphatases and phosphorus availability in Lake Kinneret[J].Limnology and Oceanography.1970,21(7):663-674
    [51] Khatoon H, Yusoff F, Banerjee S, et al. Formation of periphyton biofilm and subsequentbiofouling on different substrates in nutrient enriched brackishwater shrimp ponds[J].Aquaculture.2007,273(4):470-477
    [52] Fuerhacker M, Haile T M, Monai B, et al. Performance of a filtration system equippedwith filter media for parking lot runoff treatment[J]. Desalination.2011,142(5):356-461
    [53] Gray S, Kinross J, Read P, et al. The nutrient assimilative capacity of maerl as a substratein constructed wetland systems for waste treatment[J]. Water Research.2000,34(8):2183-2190
    [54] Calheiros C S C, Duque A F, Moura A, et al. Substrate effect on bacterial communitiesfrom constructed wetlands planted with Typha latifolia treating industrial wastewater[J].Ecological Engineering.2009,35(5):744-753
    [55]黄宇.新型BAF填料的研制及其性能测试[D].广西:广西大学,2006
    [56]庞浩然.曝气生物滤池处理喷水织机废水的研究[D].上海:上海交通大学,2009
    [57]武俊梅,王荣,徐栋,等.垂直流人工湿地不同填料长期运行效果研究[J].中国环境科学.2010(5):633-638
    [58]叶建锋,徐祖信.垂直潜流人工湿地中污染物去除机理研究[D].上海:同济大学,2007
    [59]徐丽花,周琪.不同填料人工湿地处理系统的净化能力研究[J].上海环境科学.2002,21(10):603-605
    [60]黄可谈,朱亮,李国平,等.模拟河道生物反应器原位修复受污染水源水研究[J].北京师范大学学报:自然科学版.2009(3):295-300
    [61]袁东海,景丽洁,高士祥,等.几种人工湿地基质净化磷素污染性能的分析[J].环境科学.2005,26(1):51-55
    [62]李怀正,叶建锋,徐祖信.几种经济型人工湿地基质的除污效能分析[J].中国给水排水.2007,23(19):27-30
    [63]徐德福,李映雪,郑建伟,等.基质对人工湿地污水蒸发量及净化能力的影响[J].中国环境科学.2011,31(6):927-932
    [64] Tiquia S M. Metabolic diversity of the heterotrophic microorganisms and potential linkto pollution of the Rouge River[J]. Environmental Pollution.2010,158(5):1435-1443
    [65]席劲瑛.生物滤塔工艺处理挥发性有机物(VOCs)工艺特性研究[D].北京:清华大学,2003
    [66] Suzumura M, Ingall E D. Concentrations of lipid phosphorus and its abundance indissolved and particulate organic phosphorus in coastal seawater[J]. Marine chemistry.2001,75(1-2):141-149
    [67]李东坡,武志杰,陈利军,等.长期培肥黑土脱氢酶活性动态变化及其影响因素[J].土壤通报.2005,36(5):679-683
    [68]伍治林,于鑫,朱亮,等.生产规模O3-BAC滤池中的微生物生物量和活性研究[J].环境科学.2010,31(5):1211-1214
    [69] Yang S, Lewandowski Z. Measurement of local mass transfer coefficient in biofilms[J].Biotechnology and bioengineering.1995,48(6):737-744
    [70]向红,刘武平,李璇,等.生物滤池中生物量与生物活性分析及其净水效果[J].中国给水排水.2011,27(3):48-51
    [71]黄纯农.用FDA-PI双色荧光法鉴定大麦原生质体活性[J].细胞生物学杂志.1988,10(3):133-135
    [72] Schnürer J, Rosswall T. Fluorescein diacetate hydrolysis as a measure of total microbialactivity in soil and litter[J]. Applied and Environmental Microbiology.1982,43(6):1256-1261
    [73]卢凤刚,陈贵林.氮素浓度及形态对韭菜硝酸盐及硝酸还原酶活性的影响[J].北方园艺.2011(4):41-43
    [74] Zhouyiyong. Vertical variations in kinetics of alkaline phosphatase and P specials insediments of a shallow Chinese eutrophic lake(Lake Donghu)[J]. Hydrobiologia.2001,450(1):90-98
    [75] Heath R T, Cooke G D. The significance of alkaline phosphatase in a eutrophic lake[J].Verhandlungen Internationale Vereinigung Limnologie.1975,19(12):959-965
    [76] Gage M A, Gorham E. Alkaline phosphatase activity and cellular phosphorus as an indexof the phosphorus status of phytoplankton in Minnesota lakes[J]. Freshwater Biology.1985,15(2):227-233
    [77] Aaronson S, Patni N J. The role of surface and extracellular phosphatases in thephosphorus requirement of Ochromonas[J]. Limnology and Oceanography.1976,42(18):838-845
    [78] Cotner Jr J B, Heath R T. Potential phosphate release from phosphomonoesters by acidphosphatase in a bog lake.[J]. Archiv fur Hydrobiologie. Stuttgart.1988,111(3):329-338
    [79] Z Wu, W Liang, S Cheng, et al. Studies on correlation between the enzymatic activitiesin the rhizosphere and purification of wastewater in the constructed wetland [J]. ActaScientiae Circumstantiae.2001,5(6):162-166
    [80]刘存歧,陆健健,李贺鹏.长江口潮滩湿地土壤酶活性的陆向变化以及与环境因子的相关性[J].生态学报.2007,27(9):591-595
    [81]郭屹岩.城市滨河生态适应性护岸的景观设计初探[D].北京:北京林业大学,2008
    [82] Peter Steffler J B. Two-Dimensional Depth Averaged Model of River Hydrodynamicsand Fish Habitat[DB/CD]. University of Alberta,2002
    [83] Peter Steffler. Bed Topography File Editor User's Manual[DB/CD]. University ofAlberta,2002
    [84] Cowan W L. Estimating hydraulic roughness coefficients[J]. Agricultural Engineering.1956,37(7):473-475
    [85]赵振兴,何建京.水力学[M].清华大学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700