生态护坡材料与河流水质关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前对生态护坡的研究大多集中在生态护坡的定义、生态护坡植物种植对水质的净化,而对于如何合理的选择生态护坡材料及生态护坡材料与河流水质之间的相互影响程度鲜有研究。本文从三个方面,进行生态护坡材料与河流水质关系的实验研究:
     (1)护坡材料的使用对河流水质的影响分析;(2)河流水质对护坡材料的影响分析;(3)生态护坡材料对降解污染物、保护河流水质、提高河流自净能力的作用分析。
     主要研究结论如下:
     (1)混凝土护坡材料对河流水质及周围环境的影响实验研究表明,混凝土护坡材料在使用初期释放碱度,使周围环境pH升高。混凝土护坡材料表面局部环境的pH值可达10.2~13,不利于生态护坡种植植物的生长。碱度释放程度和释放速度与护坡
     材料的种类和孔隙度有关。土壤对混凝土材料释放碱度有一定缓冲作用,可使混凝土周围pH值降低1.5~2.0左右。
     (2)混凝土护坡材料在水中释放的碱度物质与河流中物质产生化学沉淀作用,对河道水中的高分子有机物及含氮、磷化合物有一定去除效果。
     (3)提出新概念“污染物-面积负荷率”,指与河水接触的单位面积护坡材料在单位时间内能够降解污染物的质量。此定义中的污染物包括化学需氧量(COD)、总氮(TN)、总磷(TP)。
     (4)在放置护坡材料的实验装置初期运行的1~7天,河水中有机物的下降以物理吸附作用为主,平均有机物去除率在16%~26%,COD-面积负荷为3.7~6.9 g / m2?d;连续运行10天后,有机物去除率有所降低,平均有机物去除率值4.67%~13.32%,COD-面积负荷率为0.77~3.26 g / m2?d。
     (5)混凝土护坡材料对水中氮、磷也有不同程度净化作用。混凝土护坡材料对TN的净去除率为26.2%~41.5%,TN-面积负荷率为78.0~178.0 mg / m2?d;对TP的净去除率为43.9%~67.3%,TP-面积负荷率为11.2~20.5 mg / m2?d。
     本文设计了模拟动态水流的小型实验装置,确定了实验方法,论文在实验基础上设计了一种快速现场测试护坡材料碱度方法,对实际工程选材及施工操作具有实际指导意义和应用价值,并创新性的提出生态护坡材料净化水质的评价指标。为今后继续深入研究河道护坡材料和水环境关系奠定了基础。
Most researches on ecological bank focus on its definition and the water purification of planting vegetations presently. What should be known is how to choose the better Eco-slope protection material and the impact between Eco-slope protection materials and river quality. This paper is based on experiment about the relationship, which can epitomize in three parts:⑴The impact on water quality by applying the Eco-slope protection material;⑵The impact on Eco-slope protection material because of the river flowing and freezing;⑶Analysis on the level of degrading pollutants, protecting the water quality and improving the river self-purification.
     Main collusions
     ⑴The experiment results show that the eco-slope protection material release alkalinity at the first days, which cause the increasing of the PH. The highest value of the PH is 10.2~13 nearby the materials. The soil around the materials can reduce the value of PH to 8.2~11.5.
     ⑵When the alkalinity of the eco-slope protection material spread to the river, it can arise chemical reaction which can degrade the pollutants such as nitrogen compounds and phosphorus compounds.
     ⑶In this paper, the concept pollutants - area containment rate is first mentioned, which means that the degraded pollutants weight by per area of the eco-slope protection material in unit time. Chemical oxygen demand, total nitrogen and total phosphorus are included in the pollutants.
     ⑷In the first seven days of the experiment running, the decrease of the pollutants is caused by physisorption, the average removal level is 16%~26%. Chemical oxygen demand- area containment rate is 3.7~6.9 g / m2?d.In the next 10 days, the average removal level is 4.67%~13.32% and chemical oxygen demand- area containment rate is 0.77~3.26 g / m2?d.
     ⑸Eco-slope protection material can degrade nitrogen compounds and phosphorus compounds. The removal level of nitrogen compounds is 26.2%~41.5%, The removal level of nitrogen compounds is 43.9%~67.3%. The total nitrogen-area containment rate is 78.0~178.0 mg / m2?d.The total phosphorus -area containment rate is 11.2~20.5 mg / m2?d.
     The experimental setup, experimental methods and the first evaluation in this paper can be the scientific basis for the further study of the relationship between eco-slope protection materials and water quality
引文
[1]董哲仁.水利工程对生态系统的胁迫.水利水电技术,2003 (7):1-5
    [2]杨芸.论多自然型河流治理法对河流生态环境的影响.四川环境,1999 ,18 (1) :19-24
    [3]戴尔·米勒.美国的生物护岸工程.水利水电快报,2000 (12) :8-10
    [4]查得·劳伦斯.美生态学家提出保护河岸地带方法.水利技术监督,1998 (3) :44-45
    [5]保洛·迪·皮特罗.土壤生物工程与生态系统.水利水电快报,2002 ,23 (4) :32-33
    [6]周跃.植被与侵蚀控制:坡面生态工程基本原理探索.应用生态学报,2000 ,11 (2) :297-300
    [7]周跃,Watts D.欧美坡面生态工程原理及应用的发展现状.土壤侵蚀与水土保持学报,1999 ,5 (1) :79-85
    [8] Gray D H, Sotir B R. Biotechnical and soil bioengineeringslope stabilization : a practical guide for erosion control.Toronto: John Wiley&Sons, 1996:180 182
    [9] Sotir R B. Soil bioengineering experiences in North America.∥Barker D H. Vegetation and Slopes Stabilization,protection and ecology. London: Thomas Telford, 1995:190-201
    [10] Brow F, Clark J . The west coast road in st lucia, an approach to slope stabilization.∥Barker D H. Vegetation and Slopes Stabilization, protection and ecology. London:Thomas Telford, 1995
    [11] Williams TM, Hook DD, Lipscomb DJ, Zeng X, Albiston JW. Effectiveness of Best Management Practices to Protect Water Quality in the South Carolina Piedmont, p. 271–7. In the Tenth Biennial Southern Silvicultural Research Conference, 2000, USDA For. Serv., South. Res. Stat., Gen. Technical Report SRS-30.
    [12] Frazee JW. Effects of forest harvesting best management practices on surface water quality in the Virginia coastal plain. MS Thesis, Virginia Polytechnic Institute and StateUniversity, 1996, 210p.
    [13] Florida Department of Environmental Protection. Biological assessment of effectiveness of forestry best management practices. Bureau of Laboratories, Division of Administrative and Technical Services, Florida Department of Environmental Protection.Tallahassee, FL, 1997. 18p.
    [14]陈志山.用于水污染治理的生态混凝土技术[J ] .建筑材料学报,2001 ,4
    [15]蔡婧,李小平,陈小华.河道生态护坡对地表径流的污染控制[J].环境科学学报. 2008,7.第28卷第7期
    [16]吴义锋,吕锡武,陈杨辉,王新刚.生态护砌改善河道水质的中试研究[J].中国给水排水2007年6月,第23卷第11期
    [17]许国东,高建明,吕锡武.多孔混凝土水质净化性能[J].东南大学学报(自然科学版) 2007年5月第37卷第3期
    [18]孟志良,吴仲兵,钱觉时.大掺量粉煤灰混凝土的孔隙液相碱度[J].重庆建筑大学学报,1999 ,21 1 .
    [19]吴义锋,吕锡武,王新刚,陈杨辉. 4种生态混凝土护坡护砌方式的生态特性研究[J].安全与环境工程.2007,14(1)
    [20]黄君礼.水分析化学[M]中国建筑工业出版社1997.
    [21]张自杰.排水工程[M].中国建筑工业出版社,2000.6
    [22]郑兴灿,李亚新.污水除磷脱氮技术[M]中国建筑工业出版社1998.11
    [24] C.P.Leslie Grady,Jr,Glen T.Daigger,Henry C.Lim. Biological Wastewater Treatment Second Edition,Revised and Expended
    [25]吴义锋,吕锡武,王新刚,陈杨辉. 4种生态混凝土护坡护砌方式的生态特性研究[J].安全与环境工程.2007,14(1)
    [26] Kadri Meier,Valdo Kuusements, Jaan Luig,et al. Riparian buffer zones as elements of ecological networks: Case study on Parnassius Mnemosyne distribution in Estonia [J].Ecological Engineering,2005,24:531-537
    [27] Morten L P,Nikolai F,Jens S,et al. Restoration of Skjern River and its valley-short-term effects on river habitats, macrophytes and macroinvertebrates [J].Ecological Engineering,2007,9(1):1-7
    [28] Coppin N J , Richarids I G(eds) . Use of vegetation in civil engineering , CIRIA: Butterworths , 1990
    [29] Nordin A R. Bioengineering to ecoengineering. Part one : the many names. International Group of Bioengineers Newsletter ,1993 (3):125-128
    [30] Morgan R R C , Rickson R J . Slope stabilization and erosion control : A bioengineering approach. London: E&E N Spon,1995
    [31]姚武.绿色混凝土[M].化学工业出版社,2006.
    [32] Diederik P.L. Rousseau,Peter A.Vanrolleghem,Niels DePauw.Model-based design of horizontal subsurface flow constructed treatment wetlands:a review[J].Water Rescarch,2004,38:1484-1493
    [33]孔令裕。倪晋仁,典型人工湿地去污模型之间的关系(Ⅰ)[J].应用基础与工程科学学报,2007,15(2):149-155
    [34]孔令裕。倪晋仁,典型人工湿地去污模型之间的关系(Ⅱ)[J].应用基础与工程科学学报,2007,15(2):149-155
    [35] Robert H,Kadlec.The inadequacy of first-order treatment wetland models[J].Ecological Engineering 2000,15(1-2):105-119
    [36] Cynthia Mitchell,Dennis McNevin.Alternative analysis of BOD removal in subsurface flow constructed wetlands employing Monod kinetics[J].Water Reasearch,2001,35:1295-1303
    [37]黄娟.人工湿地的氮转移规律和影响因素研究[D].东南大学博士论文,2007,4:82-96
    [38] Naiming Wang,William J. Mitsch. A detailed ecosystem model of phosphorus dynamics in created riparian wetlands[J].Ecological Modeling,2000,126:101-130
    [39]孔令裕,倪晋仁.典型人工湿地去污模型之间的关系(Ⅱ)[J].应用基础与工程科学学报,2007,15(3):302-307
    [40]孔令裕,倪晋仁.人工湿地去污模型的统一结构特征[J].生态学报,2007,27(4):1428-1433
    [41] C.P.Leslie Glen T.Daigger,Henry C.Lim(著).张锡辉,刘勇弟(译).废水生物处理(第2版):改编与扩充[M],化学工业出版社,2003
    [42]刘佳,王泽民,李亚峰,等.潜流人工湿地系统对污染物的去除和转化机理[J].环境保护科学,2005,31(1):136-164
    [43]姜健飞,胡良剑,唐俭.数值分析及其Matlab实验[M],科学出版社,2004,6:136-164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700