黄土高原主要树种丛枝菌根真菌群落多样性及提高宿主抗旱性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙棘(Hippophae rhamnoides)和狼牙刺(Sophora davidii)是黄土高原地区常见的造林树种。本研究采用孢子密度、侵染率检测和变性凝胶梯度电泳(DGGE)技术相结合的方法,研究了陕西黄土高原不同纬度生态地区、不同季节、不同地貌区沙棘根际丛枝菌根(AM)真菌定殖状况和群落多样性,并分析了沙棘根际AM真菌侵染状况、群落多样性与气候、土壤因子之间的关系。基于DGGE条带基因序列系统发育树所形成的序列群,对风沙草原区、丘陵沟壑区和渭北旱塬区三个地貌区的沙棘根际AM真菌群落结构差异性进行分析。利用盆栽试验探讨了在正常水分和水分胁迫条件下,接种AM真菌对狼牙刺生长、光合作用、根叶形态、营养状况、次生代谢物、渗透调节物质和抗氧化酶的影响,以及接菌对狼牙刺根际土壤中土壤酶、球囊霉素和水稳性团聚体的影响。获得以下主要结论:
     1.不同纬度生态区沙棘根际AM真菌群落多样性及影响因素
     五个不同纬度生态区(由南向北依次为:永寿、富县、志丹、横山、榆林)年均温和年均降雨量总体变化趋势是由北向南依次增加,而海拔、土壤pH、速效磷、速效氮和有机碳变化无显著规律。沙棘根际AM真菌总侵染率和孢子密度总体趋势为由北向南依次递增,相关性分析表明,孢子密度与速效磷、总侵染率与中性-微碱性土壤pH呈显著负相关。不同纬度地区AM真菌分子多样性指数差异显著,物种丰富度、Simpsom’s和Shannon-Weiner指数富县最高,均匀度指数志丹最高,永寿物种丰富度、Shannon-Weiner和Simpsom’s指数最低,榆林均匀度最低。不同纬度地区沙棘根际AM真菌群落和环境因子间典范对应分析(CCA)可将AM真菌群落分为4个不同AM真菌种群,各种群对上述气候和土壤因子的响应各不相同。通过Monte Carlo检验表明,土壤中有效磷(P=0.025,F=2.62)和孢子密度(P=0.006,F=1.76)对AM真菌群落结构影响最为显著。
     2.沙棘根际AM真菌群落季节变化动态及影响因素
     沙棘根际土壤中土壤酶、球囊霉素、微生物量碳和氮随季节变化均具有一定规律性。不同季节沙棘根际AM真菌定殖状况差异显著,侵染率和孢子密度春季(4月)最低,秋季(10月)最高。相关性分析表明,AM真菌总侵染率与碱性磷酸酶、总球囊霉素、易提取球囊霉素、微生物量碳和量氮呈显著正相关,与过氧化氢酶呈显著负相关;孢子密度与总球囊霉素、易提取球囊霉素、微生物量碳和量氮成显著正相关,与过氧化氢酶呈显著负相关。不同季节AM真菌分子多样性指数除均匀度无显著差异外,物种丰富度、Shannon-Weiner和Simpsom’s指数随季节变化明显,以上三个多样性指数变化趋势均为从春季(4月)至秋季(10月)逐渐上升。主成分分析表明,不同季节间的AM真菌群落多样性存在极显著差异,10月AM群落典型变量值的变异(离散)最小,表明沙棘根际AM真菌在10月最为稳定。不同季节AM真菌群落和土壤酶、球囊霉素、微生物量碳和氮含量变化的CCA分析可将AM真菌群落分为3个不同AM真菌种群。通过Monte Carlo检验表明,微生物量碳(P=0.002,F=2.676)对AM真菌群落结构的季节变化影响最为显著。
     3.不同地貌区沙棘根际AM真菌群落结构分析
     黄土高原三个地貌区的沙棘根际AM真菌孢子密度和总侵染率变化趋势为:渭北旱塬区>丘陵沟壑区>风沙草原区。三个地貌区沙棘根际AM真菌DGGE图谱中含有34个条带类型,共计180个条带,其中风沙草原区条带数最少(53个),渭北旱塬区和丘陵沟壑区条带数基本相同(分别为63和64个)。三个地貌区沙棘根际AM真菌DGGE图谱聚类分析表明,渭北旱塬区AM真菌群落结构与风沙草原区、丘陵沟壑区差异显著,风沙草原区和丘陵沟壑区之间AM真菌群落结构差异不显著。从三个地貌区AM真菌DGGE条带得到25个AM真菌基因序列,这些序列通过系统发育树分析,可归纳到Glomus属的12个序列群,其中序列群Glo-C、Glo-D和Glo-G分别与G. indicum、G. constrictum和G.iranicum具有高度相似性,其他九个序列群均与Glomus属的未鉴定种具有高度相似性。12个序列群在三个地貌区分布频率具有一定差异性,Glo-A、C、D、E、G和K为三个地貌区的常见种,Glo-B、F、H、J和L为三个地貌区的偶见种,Glo-I为稀有种。
     4.干旱胁迫条件下AM真菌对狼牙刺生长及光合特性的影响
     干旱胁迫条件下,接种G. constrictum和G. mosseae狼牙刺芽干重提高27.5%和15.0%、根干重提高37.3%和17.3%、株高提高36.1%和23.4%、地径提高25.5%和10.2%;狼牙刺叶片净光合速率、最大光化学效率变化趋势为:G. constrictum> G. mosseae>未接种,三处理间差异显著;接种G. constrictum和G. mosseae的狼牙刺相对水分含量提高9.3%和6.1%、水分利用效率提高39.6%和16.2%、实际光化学量子产量提高25.0%和29.2%、光化学淬灭系数提高12.8%和12.8%,而胞间二氧化碳浓度降低29.1%和22.6%、水分饱和亏缺降低29.5%和19.1%,两接种处理间差异不显著;未接种、接种G.constrictum和G. mosseae三处理间狼牙刺叶片叶绿素相对含量、蒸腾速率无显著差异。
     5.干旱胁迫条件下AM真菌对狼牙刺营养、形态及根际土壤状况的影响
     水分胁迫条件下,狼牙刺叶片和根系中全N含量以及根系中全P含量变化趋势为:接种G. constrictum>接种G. mosseae>未接种,且三处理间差异显著;接种G.constrictum和G. mosseae叶片中全P含量提高15.4%和14.6%、叶长提高10.6%和7.7%、叶宽提高4.1%和10.0%、根尖数提高11.5%和10.4%,两接种处理间均无显著差异;狼牙刺叶面积、总根长和根表面积的变化趋势为:接种G. constrictum>接种G. mosseae>未接种,碱性磷酸酶活性和易提取球囊霉素含量变化趋势为:接种G. constrictum>接种G. mosseae>未接种,三处理间差异显著;接种G. constrictum和G. mosseae的狼牙刺根际总球囊霉素含量提高34.1%和42.6%、蔗糖酶活性提高40.5%和40.5%、脲酶活性提高61.6%和72.8%,两接种处理间均无显著差异;三处理间的狼牙刺根际过氧化氢酶活性无显著差异;接种G. constrictum和G. mosseae均显著提高了水稳性团聚体比例,其中>2mm土壤提高149.1%和13.5%、0.5-1mm提高23.8%和21.2%、0.25-0.5mm提高14.5%和8.2%、>0.25mm提高20.0%和12.5%。
     6.干旱胁迫条件下AM真菌对狼牙刺渗透调节物质和抗氧化能力的影响
     干旱胁迫条件下,根系中淀粉、叶片中游离氨基酸总量以及叶片和根系中黄酮、生物碱、多酚含量变化趋势均为:接种G. constrictum>接种G. mosseae>未接种,根系中游离氨基酸总量变化趋势为接种G. mosseae>接种G. constrictum>未接种,三处理间差异显著;狼牙刺叶片和根系中还原糖、可溶性糖、脯氨酸含量、叶片中淀粉含量以及SOD、CAT和POD活性均为接种AM真菌处理显著高于未接种处理,接种处理之间无显著差异;狼牙刺叶片中MDA、H2O2和O2-含量变化趋势是:接种G. constrictum <接种G. mosseae <未接种,三处理间差异显著;接种G. constrictum和G. mosseae的狼牙刺根系中MDA含量降低15.1%和18.6%、H2O2含量降低29.8%和24.9%、O2-含量降低20.4%和18.9%,两接种处理间无显著差异。
Hippophae rhamnoides and Sophora davidii are both common afforestation species inthe Loess Plateau, China. Fine roots and rhizosphere soil of H. rhamnoides were collectedfrom five ecological areas, three geomorphologic regions and in different seasons in the LoessPlateau. Arbuscular mycorrhizal (AM) spore density, colonization rate and communitydiversity in the rhizosphere of H. rhamnoides were analysed by using microscopy andpolymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) respectively.The relationships between climatic, edaphic factors and colonization status, communitydiversities of AM fungi were analysed by using Correlation Analysis (CA) and CanonicalCorrespondence Analysis (CCA). Based on phylogenetic tree formed by AM18S rRNA genesequences of DGGE bands, the differences of AM community structure from threegeomorphologic regions (plain-gully, hilly-gully and desert-grassland) were also analysed andcompared. The effects of AM fungi on the growth and physiological performance of S. davidiiseedlings and on the soil status of S. davidii rhizosphere under well-watered and water-stressedconditions were also investigated.
     The results are as follows:
     1. AM community diversity in the rhizosphere of H. rhamnoides from five ecologicalareas and their related affecting factors
     The overall trends of average annual rainfall and mean annual air temperature wereincreasing from north to south in five different latitudes areas (from south to north in order as:Yongshou, Fuxian, Zhidan, Hengshan, Yulin), however changes of elevation, soil pH, Olsen-P,available N and organic carbon. had no significant regularities. The overall trends of totalmycorrhizal colonization and spore density in five latitudes areas were increasingsuccessively from north to south. Spore density had an obviously negative relationship withOlsen-P, and total colonization presented obviously negative correlation with soil pH. Thedifference of diversity indices in five different latitudes areas were obviously different.Species richness, Simpsom’s and Shannon-Weiner indices were highest in Fuxian and lowestin Yongshou, evenness index was highest in Zhidan and lowest in Yulin. AM fungalcommunities in five latitudes areas were clustered into four groups in the canonical correspondence analysis (CCA) biplot, and different groups had their various responses toenvironmental factors. Olsen-P (P=0.025,F=2.62) and spore density (P=0.006,F=1.76)showed significant correlations with AM fungal communities on the basis of Monte Carlo testof CCA.
     2. Seasonal dynamic of AM community diversity in the rhizosphere of H.rhamnoides and their related affecting factors
     The seasonal dynamic of soil enzyme, glomalin, microbial biomass C and N in therhizosphere of H. rhamnoides had certain regularities. The difference of AM colonizationstatus along easonal changes in the rhizosphere of H. rhamnoides was obvious, totalcolonization and spore density were highest in autumn (October) and lowest in spring (April).AM total colonization presented obviously positive correlation with alkaline phosphatase,total and easily extractable glomalin, microbial biomass C and N, and negative correlationwith catalase. Spore density had obviously negative relationships with total and easilyextractable glomalin, microbial biomass C and N, and negative relationships with catalase.Except evenness index, species richness, Simpsom’s and Shannon-Weiner indices wereobviously different along seasonal changes, and thses three indices were increasing graduallyfrom spring to autumn. AM community diversity in different seasons were obvious differentby using the method of principal component analysis (PCA), the typical variable value of AMcommunity in autumn was lowest, and it indicated that AM community in autumn was moststable in the three seasons. AM fungal communities in the three seasons were clustered intothree groups in CCA biplot, and different groups had various responses to environmentalfactors. Microbial biomass C (P=0.002,F=2.676) showed a significant correlation with AMcommunities on the basis of Monte Carlo test of CCA.
     3. Structural analysis of AM community in the rhizosphere of H. rhamnoides fromthree geomorphologic regions
     The trends of total colonization and spore density in different geomorphologic regions wereas follows: plain-gully> hilly-gully> desert-grassland.34band-types and total180bandswere found in the DGGE pattern of AM community in the rhizosphere of H. rhamnoides fromthree geomorphologic regions. Desert-grassland area had lowest band number (51),plain-gully and hilly-gully areas had almost same band number (63and64respectively). AMcommunity structure in plain-gully area had obvious diference with those in hilly-gully anddesert-grassland areas, AM community structure between hilly-gully and desert-grasslandareas was no obvious different. A total25gene sequences were found in the AM fungalDGGE gel from three geomorphologic regions. Based on the phylogenesis analysis, thesesequences were classified in12different sequence groups of Glomus genus. Glo-C, Glo-D and Glo-G havd a high degree of similarity with G. indicum, G. constrictum and G.iranicumrespectively. Glo-A, C, D, E, G and K were common species, Glo-B, F, H, J and L wereaccidental species, and Glo-I was rare species.
     4.The effects of AM fungi on growth and physiological performance of S. davidiiunder water-stressed conditions
     Under water-stressed conditions, G. constrictum-inoculated seedlings had higher dryweight of shoot and root, root length, plant height and stem diameter than non-mycorrhizalseedlings, G. mosseae-inoculated seedlings had higher dry weight of shoot and root, plantheight and stem diameter than non-mycorrhizal seedlings; The total trends of net photosyntheticrate and maximum quantum yield were as follows: G. constrictum> G. mosseae>non-inoculation, and there were significantly different in above parameters among the threetreatments; mycorrhizal seedlings had greater relative water content, water use efficiency,actual quantum yield and photochemical quenching coefficient, and lower intercellular CO2concentration and water saturation deficit than no-mycorrhizal seedlings, there were nosignificantly different in above parameters between G. mosseae and G. constrictum-inoculatedseedlings; there were no significantly different in relative chlorophyll content andtranspiration rate among three treatments.
     5. The effects of AM fungi on nutrition and morphology of S. davidii andrhizosphere soil status under water-stressed conditions
     Under water-stressed conditions, the total trends of total N in leaves and roots and of total P inroots were as follows: G. constrictum> G. mosseae> non-inoculation, and there weresignificantly different in above parameters among the three treatments; mycorrhizal seedlingshad greater total P than no-mycorrhizal seedlings, there were no significantly different in bothparameters between G. mosseae and G. constrictum-inoculated seedlings; the total trends of leafarea, root total length, root area, alkaline phosphatase activity and easily extractable glomalin content wereas follows: G. constrictum> G. mosseae> non-inoculation, and there were significantlydifferent in above parameters among the three treatments; mycorrhizal seedlings had greatertotal glomalin content, invertase and urease enzyme activities than no-mycorrhizal seedlings,there were no significantly different in above parameters between G. mosseae and G.constrictum-inoculated seedlings; there were no significantly different in hydrogen peroxideactivity among three treatments. Inoculation with G. constrictum and G. mosseae obviouslyimproved the proportion of water stable aggregates at>2mm,0.5-1mm,0.25-0.5mm and>0.25mm.
     6. The effects of AM fungi on osmotic adjustment substances and antioxidantcapacities of S. davidii under water-stressed conditions
     Under water-stressed conditions, the total content trends of starch in roots, free aminoacids in leaves, flavonoids, alkaloids, polyphenol in leaves and roots were as follows: G.constrictum> G. mosseae> non-inoculation, the total content trends of free amino acids were asfollows: G. mosseae> G. constrictum> non-inoculation, and there were significantly differentin above parameters among the three treatments. mycorrhizal seedlings had greater contentsof reducing sugar, soluble sugar and proline, activities of SOD、CAT and POD in root andleaves and content of starch in leaves than no-mycorrhizal seedlings, there were nosignificantly different in above parameters between G. mosseae and G. constrictum-inoculatedseedlings; the total content trends of the content of MDA、H2O2and O2-in were G. constrictum
引文
安玉艳,梁宗锁,韩蕊莲.2011.黄土高原3种乡土灌木的水分利用与抗旱适应性.林业科学,47(10):8~15
    毕银丽,丁保建,全文智,李晓林.2001. VA菌根对白三叶吸收水分和养分的影响.草地学报,9(2):54~58
    陈辉,唐明.1997.杨树菌根研究进展.林业科学,33(2):181~188
    蔡晓布,钱成,彭岳林,冯固,盖京平.2005.环境因子对西藏高原草地植物丛枝菌根真菌的影响.应用生态学报,16(5):859~864
    陈云明,陈永勤.2003.人工沙棘林水文水土保持作用机理研究.西北植物学报,23(8):1357~1361
    董孝斌,高旺盛,严茂超.2004.黄土高原典型流域农业生态系统生产力的能值分析~以安塞县纸坊沟流域为例.地理学报,59(2):223~229
    方燕,唐明,孙学广,屈庆秋.2010.不同气候条件下AM真菌资源与土壤理化性质的关系.西北农林科技大学学报,38(10)76~82
    冯欣欣,唐明,龚明贵,余红霞.2011.黄土高原狼牙刺丛枝菌根与球囊霉素的空间分布.西北农林科技大学(自然科学版),39(6):96~102
    付淑清,屈庆秋,唐明,杨艳,李翠.2011.施氮和接种AM真菌对刺槐生长及营养代谢的影响林业科学,47(2):95~100
    盖京苹,冯固,李晓林.2004.我国北方农田土壤中AM真菌的多样性.生物多样性,12(4):435~440
    弓明钦,陈应龙,仲崇禄.1997.菌根研究及应用.北京:中国林业出版社
    高俊凤.2000.植物生理学实验技术.西安:世界图书出版公司
    贺学礼,李生秀.1999.不同VA菌根真菌对玉米生长及抗旱性的影响.西北农业大学学报,27(6)49~53
    贺学礼,陈程,何博.2011.北方两省农牧交错带沙棘根围AM真菌与球囊霉素空间分布.生态学报,31(6):1653~1661
    贺学礼,高露,赵丽莉.2011.水分胁迫下丛枝菌根AM真菌对民勤绢蒿生长与抗旱性的影响.生态学报,31(4):1029~1037
    贺学礼,杨静,赵丽莉.2011.荒漠沙柳根围AM真菌的空间分布.生态学报,31(8):2159~2168
    侯翠翠,宋长春,李英臣,郭跃.2011.不同水分条件下小叶章湿地表土有机碳及活性有机碳组分季节动态.环境科学,32(1):290~297
    黄志.2010丛枝菌根真菌对甜瓜抗旱性的生理效应及分子机制研究.[博士学位论文].杨凌:西北农林科技大学
    李登武,张文辉,任争争.2005.黄土沟壑区狼牙刺群落优势种群生态位研究.应用生态学报,16(12):2231~2235
    李登武,薛玲,张万红.2011.黄土丘陵沟壑区丛枝菌根真菌多样性及其分布.林业科学,7:116~122
    李根前,唐德瑞,赵一庆.2000.沙棘的生物学与生态学特性.西北植物学报,20(5):892~897
    李合生.2000.植物生理生化实验原理和技术.北京:高等教育出版社.
    李敏,张丽.2004.黄河中游黄土高原地区沙棘种植区划的探讨.沙棘,17(3):36~41
    李晓林,冯固.2001.丛枝菌根生态生理.北京:华文出版社
    李晓林,姚青.2000. VA菌根与植物的矿质营养.自然科学进展,10(6):524~531
    刘永俊,冯虎元.2010.丛枝菌根真菌系统分类及群落研究技术进展.应用生态学报,21(6):1573~1580
    刘永俊,郑红,何雷,安黎哲,冯虎元.2009.柠条根系中丛枝菌根真菌的季节性变化及影响因素.应用生态学报,20(5):1085~1091
    刘润进,李晓林.2000.丛枝菌根及其应用.北京:科学出版社,1~224
    刘润进,陈应龙.2007.菌根学.北京:科学出版社,12~47
    刘润进,焦惠,李岩,李敏,朱新产.2009.丛枝菌根真菌物种多样性研究进展.应用生态学报,20(9):2301~2307
    刘进法,夏仁学,王明元,冉青青,王鹏,罗园.2008.丛枝菌根真菌对枳利用难溶性磷酸盐及其生长的影响.华中农业大学学报,27(3):382~386
    鹿金颖,毛永民,申连英,彭士琪,李晓林.2003. VA菌根真菌对酸枣实生苗抗旱性的影响.园艺学报,30(1):29~33
    莫肖云,黄丽秀,田芳年,马连荣,欧丽兰,黄锁义.2009.超声波提取两面针中的总碱.中国野生植物资源,28(5):58~62
    潘传威,刘小芳,屈鹏飞,吴强盛.丛枝菌根真菌提高温度胁迫下枳根系抗氧化能力.长江大学学报,6:245~247
    彭岳林,钱成,蔡晓布.2006.藏北高原AM真菌种群多样性及生态分布特征.中国农学通报,22(8):507~510
    彭岳林,杨敏娜,蔡晓布.2010.西藏高原针茅草地土壤因子对丛枝菌根真菌物种多样性的影响.应用生态学报,21(5):1258~1263
    彭思利,申鸿,张宇亭,郭涛.2012.不同丛枝菌根真菌侵染对土壤结构的影响.生态学报,32(3):863~870
    曲涛,南志标.2008.作物和牧草对干旱胁迫的响应及机理研究进展.草业学报,17(2):126~135
    任嘉红,刘瑞祥,张晓刚,唐明.2004. AMF及Frankie混合接种对沙棘生长效应的研究.微生物学通报,31(2):6~9
    山宝琴,贺学礼,白春明,赵丽莉.2009.荒漠油蒿(Artemisia ordosica)根围AM真菌分布与土壤酶活性.生态学报,29(6):3044~3051
    盛敏.2009. VA菌根真菌提高玉米耐盐性机制与农田土壤微生物多样性研究.[博士学位论文].杨凌:西北农林科技大学
    石兆勇,王发园,陈应龙.2007.五指山常见热带树种的丛枝菌根真菌多样性.生态学报,27(7):2896~2903
    孙羽.2011.丛枝菌根真菌在植物生态系统中的调控作用.黑龙江农业科学,8:128~131
    唐明,陈辉,商鸿生.1999.丛枝菌根真菌(AMF)对沙棘抗旱性的影响.林业科学,35(3):8~52
    唐明,薛箑,任嘉红,胡景江,刘建朝.2003. AMF提高沙棘抗旱性的研究.西北林学院学报,18(4):29~31
    唐明,黄艳辉,盛敏等.2007.内蒙古盐碱土中AM真菌的多样性与分布.土壤学报,44(6):1104~1110
    唐明.2010.菌根真菌提高植物耐盐性.北京:科学出版社:1~185
    仝瑞建,刘雪琴,王发园,薛华清,杨晓红.2011.沙田柚根围AM真菌的生境适宜性和季节变化性.应用与环境生物学报,17(5):684~687
    王立,贾文奇,马放,李世阳,张淑娟.2010.菌根技术在环境修复领域中的应用及展望.生态环境学报,19,487~493
    王晓阳,唐琳,赵垒,栾岩妮,张振燕.2010. Folin~Ciocaileu比色法测定刺槐花中的多酚含量.食品与药品,12(09):332~335
    王发园,刘润进,林先贵,周建民.2003.几种生态环境中AM真菌多样性比较研究.生态学报,23(12):2666~2671
    王发园,林先贵.2008.丛枝菌根真菌对污染土壤中农产品质量安全的影响.土壤学报,45(6):1142~1147
    温仲明,焦峰,张晓萍,杨勤科.2004.纸坊沟流域近60年来土地利用景观变化的环境效应.生态学报,24(9):1903~1909
    吴强盛,邹英宁,王贵元.2007.丛枝菌根真菌生态学研究进展.长江大学学报(自科版),6(4):76~80
    吴强盛,夏仁学.2004. VA菌根与植物水分代谢的关系.园艺园林科学,20(1):188~192
    吴强盛,夏仁学,胡正嘉.2005.丛枝菌根对枳实生苗抗旱性的影响研究.应用生态学报,16(3):459~463
    吴强盛.2006.丛枝菌根真菌对柑橘抗旱性的作用及其机理研究.[博士学位论文].武汉:华中农业大学
    徐辉,唐明,高瑞霞,陈桂梅,李守萍.2008.土壤因子对府谷清水川流域砒砂岩区刺槐和沙棘AMF的影响.西北植物学报,28(12):2500~2505
    吴金水,林启美,黄巧云,肖和艾.2006.土壤微生物生物量测定方法及其应用.北京:气象出版社
    薛会英,张永青,彭岳林.2007.藏北草原主要植物AM真菌的初步研究.山地学报,25(3):351~358
    杨如意,陈欣,唐建军,陈静,蒋琦清,SJ Hu.2005.丛枝菌根真菌AMF群落物种多样性研究技术进展.科技通报,21(6):668~673
    杨成德,龙瑞军,陈秀蓉,徐长林,薛莉.2011.东祁连山高寒灌丛草地土壤微生物量及土壤酶季节性动态特征.草业学报,20(6):135~142
    张超,刘国彬,薛萐,余娜.2010.黄土丘陵区不同林龄人工刺槐林土壤抗蚀性演变特征.中国水土保持科学,8(2):1~7
    张海涵,唐明,陈辉,杜小刚,郑华.2007.不同生态条件下油松(Pinus tabulaeformis)菌根根际土壤微生物群落.生态学报,27(12):5463~5470
    张海涵,唐明,陈辉.2009.黄土高原典型林木根际土壤微生物群落结构与功能特征及其环境指示意义.环境科学,30(8):2432~2437
    张海涵.2011.黄土高原枸杞根际微生态特征及其共生真菌调控宿主生长与耐旱响应机制.[博士学位论文].杨凌:西北农林科技大学
    张建军,张岩,张波.2009.晋西黄土区水土保持林地的土壤水分.林业科学,45(11):63~69
    张美庆,王幼珊,张弛.1994.我国北部VA菌根真菌某些属和种的生态分布.真菌学报,3(3):166~172
    张美庆,王幼珊,刑礼军.1999. AM真菌在我国东南沿海地区各土壤气候带的分布.菌物系统,18:145~148
    张文辉,徐学华,李登武,刘国彬.2006.黄土高原丘陵沟壑区封禁30年前后狼牙刺种群动态研究.应用生态学报,17(2):182~186
    张旭红,林爱军,张莘,郭兰萍.2012.丛枝菌根真菌对旱稻根际Pb形态分布的影响.中国农学通报,28(6):24~29
    赵平娟,安锋,唐明.2007.丛枝菌根真菌对连翘幼苗抗旱性的影响.西北植物学报,27(2):396~399
    中国科学院南京土壤研究所.1978.土壤物理性质测定方法.北京:科学出版社,34~88
    周礼恺.1987.土壤酶学.北京:科学出版社,118~159
    Abbaspour H, Saeidi-Sar S, Afshari H.2011. Improving drought tolerance of Pistacia vera L. seedlings byarbuscular mycorrhiza under greenhouse conditions. Journal of Medicinal Plants Research,5(32):7065~7072
    Allen M F.1991. The ecology of mycorrhizae. Cambridge University Press, Cambridge
    Allen M F, Boosalis M G.1983. Effects of two species of VA mycorrhizal fungi on drought tolerance ofwinter wheat. New Phytologist,93:67~76
    An Z Q, Hendrix J W, Hershman D E, Henson G T.1990. Evaluation of the ‘‘most probable number’’(MPN) and wet-sieving methods for determining soil-borne populations of endogonaceousmycorrhizal fungi. Mycologia,82:576~581
    Appoloni S, Lekberg Y, Tercek M T, Zabinski C A, Redecker D.2008. Molecular community analysis ofarbuscular mycorrhizal fungi in roots of geothermal soils in Yellowstone National Park (USA).Microbial ecology,56:649~59
    Asghari H R.2008. Vesicular-arbuscular (VA) mycorrhizae improve salinity tolerance in pre-inoculationsubterranean clover (Trifolium subterraneum) seedlings.International Journal of Plant Production,2:243~256
    Augé R M, Scheckel K A, Wample R L.1986. Greater leaf conductance of well-watered VA mycorrhizalrose plants is not related to phosphorus nutrition. New Phytologist,103:107~116
    Augé R M.2004. Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science,84:373~381
    Bai C M, He X L, Tang H L, Shan B Q, Zhao L L.2009. Spatial distribution of arbuscular mycorrhizalfungi, glomalin and soil enzymes under the canopy of Astragalus adsurgens Pall. in the Mu UsSandland, China. Soil Biology and Biochemistry,41(5):941~947
    Bainard L D, Kochb A M, Gordon A M, Klironomos J N.2012. Temporal and compositional differences ofarbuscular mycorrhizal fungal communities in conventional monocropping and tree-basedintercropping systems. Soil Biology&Biochemistry,45:172~180
    Beauregard M S, Hamel C, Atul-Nayyar, St-Arnaud M.2010. Long-term phosphorus fertilization impactssoil fungal and bacterial diversity but not AM fungal community in alfalfa. Microbial Ecology,59(2):379~389
    Bedini S, Avio L, Argese E, Giovannetti M.2007. Effects of long-term land use on arbuscular mycorrhizalfungi and glomalin-related soil protein. Agriculture Ecosystems&Environment,120(2-4):463~466
    Bethlenfalvay G J, Brown M S, Franson R L.1990. The Glycine-Glomus-Bradyrhizobium symbiosis, Xrelationships between leaf gas exchange and plant and soil water status in nodulated, mycorrhizalsoybean under drought stress. Plant Physiologist,94:723~728
    Bohrer K E, Friese C F, Amon J P.2004. Seasonal dynamics of arbuscular mycorrhizal fungi in differingwetland habitats. Mycorrhiza,14:329~337
    Brito I, De Carvalho M, Goss M. J.2011. Summer survival of arbuscular mycorrhiza extraradicalmycelium and the potential for its management through tillage options in Mediterranean croppingsystems. Soil Use and Management,27:350~356
    Caravaca F, Alguacil M M, Figueroa D, Barea J M, Roldán A.2003. Re-establishment of Retamasphaerocarpa as a target species for reclamation of soil physical and biological properties in asemi-arid Mediterranean area. Forest Ecology and Management,182:48~58
    Cebulla G D, Strobel R, Kurle J E.1994. Production of monoclonal antibodies to selected arbuscularmycorrhizal fungi. Proc Ann Meeting Am. Annals of the Phytopathologicial Society of Japan,6~10
    Chavez G, Garmen A, Cerrera F.1996. Ecology of the vesicular arbuscular endomycorrhiza in maizesustainable agroecosystem in the humid tropics of Mexico.Micologia Neotropical Aplicada,9:53~66
    Chaudhry M S, Batool Z, Khan A G.2005. Preliminary assessment of plant community structure andarbuscular mycorrhizas in rangeland habitats of Cholistan desert. Pakistan.Mycorrhiza,15:606~611
    Chen L D, Gong J, Fu B J, Huang Z L, Huang Y L, Gui L D.2007. Effect of land use conversion on soilorganic carbon sequestration in the loess hilly area, loess plateau of China. Ecological Research,22(4):641~648
    Clark N M, Rillig M C, Nowak R S.2009. Arbuscular mycorrhizal fungal abundance in the Mojave Desert:Seasonal dynamics and impacts of elevated CO2. Journal of Arid Environments,73(9):834~843
    Clark R B, Zetoa S K.2000. Mineral acquisition by arbuscular mycorrhizal plants. Journal of PlantNutrition,23(7):867~902
    Colpaert I V, Van Assche J A.1993. The effects of cadmium on ectomycorrhizal Hnus sylvestris L. NewPhytologist,123:325~333
    de Oliveira A N, de Oliveira L A.2005. Seasonal dynamics of arbuscular mycorrhizal fungi in plants ofTheobroma grandiflorum Schum and Paullinia cupana Mart. of a N agroforestry system in CentralAmazonia, Amazonas State, Brazil. Brazilian Journal of Microbiology,36(3):262~270
    Daniell T J, Husband R, Fitter A H, Young J P W.2001. Molecular diversity of arbuscular mycorrhizalfungi colonising arable crops. FEMS Microbiology Ecology,36:203~209
    Davies Jr F T, Potter J R, Linuerman R G.1993. Drought resistance of mycorrhizal pepper plantsindependent of leaf P concentration-response in gas exchange and water relations. PhysiologiaPlantarum,87:45~53
    DeMars B G, Boerner R E J.1995. Mycorrhizal dynamics of three woodland herbs of contrastingphenology a long top ographic gradients. American Journal of Botany,82:1426~1431
    Dexter A R.1988. Advances in characterization of soil structure. Soil and Tillage Research,11:199~238
    Driver J D, Holben W E, Rillig M C.2005. Characterization of glomalin as a hyphal wall component ofarbuscular mycorrhizal fungi. Soil Biology and Biochemistry,37(1):101~106
    Duan X, Neuman D, Reiber J, Green C, Saxton A, Augé R.1996. Mycorrhizal influence on hydraulic andhormonal factors implicated in the control of stomatal conductance during drought. Journal ofExperimental Botany,47(10):1541
    Dumbrell A J, Ashton1P D, Naveed A, Feng G, Nelson M, Dytham C, Fitter A H, Helgason T.2011.Distinct seasonal assemblages of arbuscular mycorrhiza fungi revealed by massively parallelpyrosequencing. New Phytologist, doi:10.1111/j.1469~8137.2010.03636.x
    Farquhar G D, Sharkey T D.1982. Stomatal conductance and photosynthesis. Annual Review of PlantPhysiology,33:317~345
    Faber B A, Zasoski R J, Munns D N, Shackel K.1991. A method for measuring hyphal nutrient and wateruptake in mycorrhizal plants.Canadian Journal of Botany,69:87~94
    Feng Y, Tang, M, Chen, H, Zhang, H Q, Cong, W, Zhang, HH.2011. Community diversity of bacteria andarbuscular mycorrhizal fungi in the rhizosphere of Amorpha fruticosa L., Hippophae rhamnoides L.and Robinia pseudoacacia L. in different ecological regions of Loess Plateau in Shaanxi Province ofChina. African Journal of Microbiology Research,5(27):4787~4795
    Frostegard A,Tunlid A, Baath E.2011. Use and misuse of PLFA measurements in soils. Soil Biology&Biochemistry,43:1621~1625
    Frostegard A, Tunlid A, Baath E.2011. Use and misuse of PLFA measurements in soils. Soil Biology andBiochemistry, DOI:10.1016/j.soilbio.2010.11.021
    Gai J P, Christie P, Cai X B, Fan J Q, Zhang J L, Feng G, Li X L.2009. Occurrence and distribution ofarbuscular mycorrhizal fungal species in three types of grassland community of the Tibetan Plateau.Ecology Research,24(6):1345~1350
    Galván G A, Parádi I, Burger K, Baar J, Kuyper T W, Scholten O E, Kik C.2009. Molecular diversity ofarbuscular mycorrhizal fungi in onion roots from organic and conventional farming systems in theNetherlands. Mycorrhiza,19:317~328
    Garg N, Jali G, Kaur A.2006. Arbuscular mycorrhiza: nutritional aspects. Archives of Agronomy and SoilScience,52:593~606
    Garg N, Aggarwal N.2012. Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviationof Cajanus cajan (L.) Millsp. Genotypes grown in cadmium and lead contaminated soils. PlantGrowth Regulation,66:9~26
    Giovannetti M, Mosse B.1980. An evaluation of techniques for measuring vesicular arbuscularmycorrhizal infection in roots. New Phytologist,84:489~500
    Goicoechea N, Merino S, Sánchez-Díaz M.2005. Arbuscular mycorrhizal fungi can contribute to maintainantioxidant and carbon metabolism in nodules of Anthyllis cytisoides L. subjected to drought. Journalof Plant Physiology162:27~35
    Goicoechea N, Szalai G, Antolín1MC, Sánchez-Díaz1M, Paldi E.1998. Influence of arbuscularmycorrhizae and Rhizobium on free polyamines and proline levels in water-stressed alfalfa. Journal ofPlant Physiology153:706–711
    Gong M G, Tang M, Chen H, Zhang Q M, Xu H, Zheng C L.2011. Effects of Glomus mosseae andRhizobium on the growth of black locust seedlings and the quality of weathered soft rock soils in theLoess Plateau, China. Annual Microbiology, DOI:10.1007/s13213-011-0413-4
    Gonzalez-Dugo V.2010. The influence of arbuscular mycorrhizal colonization on soil-root hydraulicconductance in Agrostis stolonifera L. under two water regimes. Mycorrhiza,20:365~373
    Graham J H, Syvertsen J P.1985. Host determinants of mycorrhizal dependency of citrusrootstockseedlings. New Phytologist,101(4):667~676
    Graham J H, Syvertsen J P.1984. Influence of vesicular-arbuscular mycorrhiza on the hydraulicconductivity of roots of two citrus rootstocks. New Phytologist,97(2):277~284
    Gupta M L, Prasad A, Ram M, Kumar S.2002. Effect of the vesicular arbuscular mycorrhizal (VAM)fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in thecrops of different cultivars of menthol min t(Mentha arvensis) under field conditions. BioresourceTechnology,81(1):71~79
    Grime J P, Mackey J M L, Hillier S H.1987. Floristic diversity in a model system using experimentalmicrocosms. Nature,328:420~422
    Hayman K C.1979. Endogone spore numbers in soil and VA mycorrhiza in wheat as influenced by seawonand soil treatment. Transactions of the British Mycological Society,54~53
    Herman D J, Firestone, M K, Nuccio E, Hodge A.2011. Interactions between an arbuscular mycorrhizalfungus and a soil microbial community mediating litter decomposition FEMS Microbiology Ecology,80:236~247
    Husband R, Herre E A, Turner S L, Gallery R, Young J P W.2002. Molecular diversity of arbuscularmycorrhizal fungi and patterns of host association over time and space in a tropical forest. MolecularEcology,11:2669~2678.
    Hajiboland R, Aliasgharzadeh N, Laiegh S F. Colonization with arbuscular mycorrhizal fungi improvessalinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant and Soil,2010,331(1/2):313~327.
    Harley J L, Smith S E.1983. Mycorrhizal symbiosis. London: Acadamic press, Inc, Ltd,1~313
    Heinemeyer A, Fitter A H.2004. Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis:growth responses of the host plant and its AM fungal partner. Journal of Experimental Botany,55(396):525~534
    Helgason T, Daniell T J, Husband R, Fitter A H, Young J P W.1998. Ploughing up the wood-wide web?Nature,394(6692):431~432
    Herbinger K, Tausz M, Wonisch A, Soja G, Sorger A, Grill D.2002. Complex interactive effects ofdrought and ozone stress on the antioxidant defence systems of two wheat cultivars Plant. Physiologyand Biochemistry,40(6):691~696
    He X L, Mouratov S, Steinberger Y.2002. Spatial distribution and colonization of arbuscular mycorrhizalfungi under the canopies of desert halophytes. Arid Land Research&Management,16(2):149~160
    Helgason T, Daniell T J, Husband R, Fitter A H, Young J P W.1998. Ploughing up the wood-wide web?Nature,394:431
    Huang Z, Zou Z R, He C X, He Z Q, Zhang ZB, Li J M.2011. Physiological and photosyntheticresponses of melon (Cucumis melo L.) seedlings to three Glomus species under water deficit. Plantand Soil,339:391~399
    Hura T, Hura K, Grzesiak M, Rzepka A.2007. Effect of longterm drought stress on leaf gas exchange andfluorescence parameters in C3and C4plants. Acta Physiology Plant,29:103~113
    Huse S M, Huber JA, Morrison H G.2007. Accuracy and quality of massively parallel DNApyrosequencing. Gehome Biology,8(7):143
    Ianson D C, Allen M F.1986. The effects of soil texture on extraction of vesicular arbuscular mycorrhizalspores from arid soils. Mycologia,78(2):164~168
    Ipsilantis I, Samourelis C, Karpouzas D G.2012. The impact of biological pesticides on arbuscularmycorrhizal fungi. Soil Biology and Biochemistry,45:147~155
    Jeffrey D C, Peter G A, Rebecca B W.2003. The role of phosphorus availability in the response of soilnitrogen cycling, understory vegetation and arbuscular mycorrhizal inoculum potential to elevatednitrogen input. Water Air and Soil Pollution,147:141~161
    Johnson D, Marleen I Jdo, Genney D R, Anderson I C, Alexander I J.2005. How do plants regulate thefunction, community structure, and diversity of mycorrhizal fungi? Journal of Experimental Botany,56:1751~1760
    Johnson D, Vandenkoornhuyse P J, Leake J R, Gilbert L, Booth R E, Grime J P, Young J P W, Read DJ.2003. Plant communities affect arbuscular mycorrhizal fungal diversity and community compositionin grassland microcosms. New Phytologist,161:503~515
    Jumpponen A, Jones K L, Mattox D, Yaege C.2010. Massively parallel454-sequencing of fungalcommunities in Quercus spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites.Molecular Ecology,19:41~53
    Kathryn B E, Antunes P M, Stinson K, Koch A M, Klironomos J N, Cipollini D.2011. Differences inarbuscular mycorrhizal fungal communities associated with sugar maple seedlings in and outside ofinvaded garlic mustard forest patches. Biological Invasions,13(12):2755~2762
    Kandeler E, Gerber H.1988. Short-term assay of soil urease activity using colorimetric determination ofammonium. Biology and Fertility of Soils,6:68~72
    Kemper W D, Rosenau R C.1986. Aggregate stability and size distribution Klute A ed. Methods of SoilAnalysis. Part1. Physical and Mineralogical. Methods.2nd ed, WI: Agronomy Monograph AmericanSociety of Agronomy and Soil Science Society of America,425~442
    Kennedy L J, Tiller R L, Stutz J C.2002. Associations between arbuscular mycorrhizal fungi andSporobolus wrightii in riparian habitats in arid South-western North America. Journal of AridEnvironments,50:459~475
    Koide R T, Mosse B.2004. A history of research on arbuscular mycorrhiza. Mycorrhiza,14:145~163
    Kowalchuk G A, De Souza F A, van Veen J A.2002. Community analysis of arbuscular mycorrhizal fungiassociated with Ammophila arenaria in Dutch coastal sand dunes. Molecular Ecology,11(3):571~581
    Koper J, Dabkowska-Naskret H, Piotrowska A.2005. Influence of heavy metals on enzymatic activity inlessive soils of Kujawy and Pomorze region (Poland). Geophysical Research,7:105~115
    Kowalchuk G A, Stephen J R, DeBoer W, Prosser J I, Embley T M, Woldendorp J W.1997. Analysis ofammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunesby denaturing gradient gel electrophoresis and sequencing of PCR-amplified16S ribosomal DNAfragments. Applied and Environmental Microbiology,63:1489~1497
    Krüger M, Stockinger H, Krüger C, Schü ler A.2009. DNA-based species level detection ofGlomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytologist,183:212~223
    Kjoller R, Rosendahl S.2000. Detection of arbuscular mycorrhizal fungi (Glomales) in roots by nestedPCR (polymerase chain reaction) and SSCP (single stranded conformation polymorphism). Plant andSoil,226:189~196.
    Kuhn G, Hijri M, Sanders I R.2001. Evidence for the evolution of multiple genomes in arbuscularmycorrhizal fungi. Nature,414:745~748
    Landwehr M, Hildebrandt U, Wilde P.2002. The arbuscular mycorrhizal fungus Glomus geosporuminEuropean saline, sodic and gypsum soils. Mycorrhiza,12:199~211
    Lanfranco L, Wyss1P, Marzachi C, Bonfante1P.1995. Generation of RAPD-PCR primers for theidentification of isolates of Glomus mosseae, an arbuscular mycorrhizal fungus. Molecular Ecology,4(1):61~68
    Latef Abdel A A.2011. Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation ofosmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.).Mycorrhiza,21:495~503
    Lee J, Lee S, Young J P W.2008. Improved PCR primers for the detection and identification of arbuscularmycorrhizal fungi. FEMS Microbiology Ecology,65(2):339~349
    Lentendu G, Zinger L, Manel S.2011. Assessment of soil fungal diversity in different alpine tundrahabitats by means of pyrosequencing. Fungal Diversity,49:113~123
    Li F L, Bao W K, Wu N.2009. Effects of water stress on growth, dry matter allocation and water-useefficiency of a leguminous species, Sophora davidii. Agroforest Systems,77:193~201
    Liang Z B, Drijber R A, Lee D J, Dwiekat I M, Harris S D, Wedin DA.2008. A DGGE-cloning method tocharacterize arbuscular mycorrhizal community structure in soil. Soil Biology and Biochemistry40:956~966
    Liu Y J, He L, An L, Helgason T, Feng H.2008. Arbuscular mycorrhizal dynamics in a chronosequence ofCaragana korshinskii plantations. FEMS Microbiology Ecology,67:81~92
    Liu R J, Wang F Y.2003. Selection of appropriate host plants used in trap culture of arbuscularmycorrhizal fungi. Mycorrhiza,13:123~127
    Liu Y J, He L, An L Z, Helgason T, Feng H Y.2009. Arbuscular mycorrhizal dynamics in achronosequence of Caragana korshinskii plantations. FEMS Microbiology Ecology,67(1):81~92
    Lugo M A, Cabello M N.2002. Native arbuscular mycorrhizal fungi (AMF) from mountain grassland(Argentina). I. Seasonal variation of fungal spore diversity. Mycologia,94:579~586
    Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V.2010. Disclosing arbuscular mycorrhizalfungal biodiversity in soil through a land-use gradient using a pyrosequencing approach.Environmental Microbiology,12(8):2165~2179
    Maxwell K, Johnson G N.2000. Chlorophyll fluorescencea practical guide. Journal of ExperimentalBotany,51:659~668
    Marques M S, Pagano M, Scotti M R M M L.2001. Dual inoculation of a woody legume (Centrolobiumtomentosum) with rhizobia and mycorrhizal fungi in south-eastern Brazil. Agroforestry Systems,52:107~117
    Mardukhi B, Rejali F, Daei G, Ardakani M R.2011. Arbuscular mycorrhizas enhance nutrient uptake indifferent wheat genotypes at high salinity levels under field and greenhouse conditions. ComptesRendus Biologies,334:564~571
    Ma W K, Siciliano S D, Germida J J.2005. A PCR-DGGE method for detecting arbuscular mycorrhizalfungi in cultivated soils. Soil Biology and Biochemistry,37:1589~1597
    Maherali H, Klironomos J N.2007. Influence of Phelogeny on fungal community assemble and ecosystemfunctioning. Science,316:1746~1748
    Masahide, Yamato, Shiho Ikeda, Koji Iwase.2009. Community of arbuscular mycorrhizal fungi indrought-resistant plants, Moringa spp., in semiarid regions in Madagascar and Uganda. Mycoscience,50:100~105
    Michelle S S, David P J.2004. Phosphorus and intraspecific density alter plant responses to arbuscularmycorrhizas. Plant and Soil,264:335~348
    Michel Thomas, Destandau Emilie, Le Floch.2004. Gaetan Antimicrobial, antioxidant and phytochemicalinvestigations of sea buckthorn (Hippophae rhamnoides L.) leaf, stem, root and seed. Food Chemstry,131(3):754~760
    McCarthy G W, Meisinger J J, Jenniskens F M M.1995. Relationships between total-N, biomass-N andactive-N in soil under different tillage and N fertilizer treatments. Soil Biology and Biochemistry,27(10):1245~1250
    McGuire K L, Henkel T W, Cerda dela, Villa G, Edmund F, Andrew C.2008. Dual mycorrhizalcolonization of forest-dominating tropical trees and themycorrhizal status of non-dominant tree andliana species. Mycorrhiza,18:217~222
    Morton J B.1988. Taxonomy of VA mycorrhizal fungi: classification, nomenclature and identification.Mycotaxon,32:267~324
    Morton J B, Benny G L.1990. Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): anew order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families,Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycologia,80:520~524
    Murakami-Mizukann Y, Yamamoto Y, Yamaki S.1991. Analysis of indole acid and abscisic acid contentin nodule of soybean plants bearing VA mycorrhizas. Japanese Society of Soil Science and PlantNutrition,37:291~298
    Muthukumar T, Udaiyan K.2000. Growth response and nutrient utilization of Casuarina equisetifoliaseedlings inoculated with bioinoculants under tropical nursery conditions. New Forestry,40:101~118
    Muyzer G, Smalla K.1998. Application of denaturing gradient gel electrophoresis (DGGE) andtemperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek,73:127~141
    Naumann M, Schü ler A, Bonfante P.2010. The obligate endobacteria of arbuscular mycorrhizal fungi areancient heritable components related to the Mollicutes. The ISME Journal,4:862~871
    Nelson C E, Safir G R.1982. Increased drought tolerance of mycorrhizal onion plants caused by improvedphosphorus nutrition. Planta,154(5):407~413
    Nimmo J R, Perkins K S.2002Aggregates stability and size distribution/Methods of Soil Analysis,Part4-Physical Methods. Madison, Wisconsin, USA: Soil Science Society of America,Inc.317~328
    O'Connor P J, Smith S E, Smith F A.2002. Arbuscular mycorrhizas influence plant diversity andcommunity structure in a semiarid herbland. New Phytologist,154:209~218
    Oehl F, Laczko E, Bogenrieder A, Stahr K, Boesch R, van der Heijden M, Sieverding E.2010. Soil typeand land use intensity determine the composition of arbuscular mycorrhizal fungal communities. SoilBiology and Biochemistry,42(5):724~738
    Olsson P A.1999. Signature fatty acids provide tools for determination of the distribution and interactionsof mycorrhizal fungi in soil. FEMS Microbiology Ecology,29:303~310
    Olsson P A, Baath E, Jakobsen I.1997. Phosphorus effects on mycelium and storage structures of anarbuscular mycorrhizal fungus as studied in the soil and roots by fatty acid signatures. Applied andEnvironmental Microbiology,63:3531~3538
    Ortas I.2012. The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculationeffectiveness under long-term field conditions. Field Crops Research,125:35~48
    Perotto S, Brewin N J, Bonfante P.1994. Colonization of pea roots by the mycorrhizal fungus Glomusversifoime and by Rhyzobium bacteria: immunological comparison using monoclonal antibodies forplant cell surface components. Mol Plant Microbe Interactions,7:91~98
    Phillips J M, Hayman D S.1970. Improved procedures for clearing roots and staining parasitic andvesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the BritishMycological Society,55(1):158~161
    Porcel R, Aroca R, Azcon R, Ruiz-Lozano J M.2006. PIP aquaporin gene expression in arbuscularmycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. PlantMolecular Biology,60(3):389~404
    Porcel R, Azcón R, Ruiz-Lozano J M.2004. Evaluation of the role of genes encoding forD-pyrroline-5-carboxylate synthetase (P5CS) during drought stress in arbuscular mycorrhizal Glycinemax and Lactuca sativa plants. Physiological and Molecular Plant Pathology,65(4):211~221
    Porcel R, Ricardo A, Juan Manuel, Ruiz-Lozano.2012. Salinity stress alleviation using arbuscularmycorrhizal fungi. A review Agron. Sustainable development,32:181~200
    Rasmussen H N, Whigham D F.2002. Phenology of roots and mycorrhiza in orchid species differing inphototrophic strategy. New Phytologist,154(3):797~807
    Ranjard L, Poly F, Nazaret S.2000. Monitoring complex bacterial communities using culture-independentmolecular techniques: application to soil environment. Research in Microbiology,151:167~177
    Reddy S R, Pindi P K, Reddy S M.2005. Molecular methods for research on arbuscular mycorrhizal fungiin India: Problems and prospects. Current Science,89:1699~1709
    Renker C, Blanke V, Buscot F.2005. Diversity of arbuscular mycorrhizal fungi in grassland spontaneouslydeveloped on area polluted by a fertilizer plant. Environmental Pollution,135:255~266
    Requena N, Jimenez I, Toro M, Barea J M.1997. Interactions between Plant Growth PromotingRhizobacteria (PGPR), Arbuscular Mycorrhizal Fungi and Rhizobium spp. in the Rhizosphere ofAnthyllis cytisoides, a Model Legume for Revegetation in Mediterranean Semi-Arid Ecosystems. NewPhytologist,136:667~677
    Requena N, Pérez-Solís E, Azcón-Aguilar C, Jeffries P, Barea J M.2001. Management of indigenousplant-microbe symbioses aids restoration of desertified ecosystems. Applied and EnvironmentalMicrobiology,67:495~498
    Requena N, Serrano E, Ocón A, Breuniger M.2007. Plant signals and fungal perception during arbuscularmycorrhiza establishment. Phytochemistry,68:33~40
    Rillig M C, Ramsey P W, Morris S, Paul E A.2003. Glomalin, an arbuscular-mycorrhizal fungal soilprotein, responds to land-use change. Plant and Soil,253(2):293~299
    Rillig M C, Wright S F, Eviner V T.2002. The role of arbuscular mycorrhizal fungi and glomalin in soilaggregation: Comparing effects of five plant species. Plant and Soil,238:325~333
    Roldána A, Díaz-Vivancos P, Antonio Hernández J, Carrasco L, Caravaca F.2008. Superoxidedismutaseand totalperoxidase activities in relation to drought recovery performance of mycorrhizal shrubseedlings grown in an amended semiarid soil. Journal of Plant Physiology,165:715~722
    Rolleke S S, Gurtner C, Drewello U, Drewello R, Lubitz W, Weissmann R.1999. Analysis of bacterialcommunities on historical glass by denaturing gradient gel electrophoresis of PCR-amplified genefragments coding for16S rRNA. Journal of Microbiological Methods36,107~114
    Ruiz-Lozano J M, Azcón R.1995a. Hyphal contribution to water uptake in mycorrhizal plants as affectedby the fungal species and water status. Physiology Plantarum,95:472~478
    Ruiz-Lozano J M, Gómez M, Azcón R.1995b. Influence of different Glomus species on the time-course ofphysiological plant responses of lettuce to progressive drought stress periods. Plant Scicience,110:37~44
    Ruiz-Lozano J M, Collados C, Barea J M, Azcón R.2001. Clonig of cDNAs encoding SODs from lettuceplants which show differential regulation by arbuscular mycorhizal symbiosis and by drought stress.Journal of Experimental Botany52:2241–2242
    Ruiz-Lozano J M.2003. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress newperspectives for molecular studies. Mycorrhiza,13(6):309~317
    Ruiz-Lozano J M, Azcón R..2006. Hyphal contribution to water uptake in hyphal contribution to wateruptake in mycorrhizal plants as affected by the fungal species and water status. Physiologia Plantarum,95(3):472~478
    Ruiz-Sánchez M, Aroca R, Mu oz Y, Polón R, Ruiz-Lozano J M.2010. The arbuscular mycorrhizalsymbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plantssubjected to drought stress. Journal of Plant Physiology,167:862~869
    Sánchez-Blanco M J, Ferrández T, Morales M A, Morte A, Alarcón J J.2004. Variations in water status,gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola underdrought conditions. Journal of Plant Physiology,161:675~682
    Sánchez-Díaz M, Pardo M, Antolín M, Pe a J, Aguirreolea J.1990. Effect of water stress onphotosynthetic activity in the Medicago-Rhizobium-Glomus symbiosis. Plant Science,71:215~221
    Santos-González J C, Finlay RD, Tehler A.2007. Seasonal dynamics of arbuscular mycorrhizal fungalcommunities in roots in a seminatural grassland. Applied and Environmental Microbiology,73:5613~5623
    Salazara S, Sánchezb LE, Alvareza J, Valverdea A, Galindoc P.2011. Correlation among soil enzymeactivities under different forest system management practices. Ecological Engineering,37(8):1123~1131
    Schwarzott D, Schü ler A.2001. A simple and reliable method for SSU rRNA gene DNA extraction,amplification, and cloning from single arbuscular mycorrhizal spores. Mycorrhiza,10:203~207
    Schweiger P F, Jakobsen I.1998. Dose-response relationships between four pesticides and phosphorusuptake by hyphae of arbuscular mycorrhizas. Soil Biology and Biochemistry,30:141~142
    Schü ler A, Schwarzott D, Walker C.2001. A new fungal phylum, the Glomeromycota: phylogeny andevolution. Mycological Research,105:1413~1421
    Schü ler A, Walker C.2010. The Glomeromycota: a species list with new families and new genera.Gloucester: Royal Botanic Garden Edinburgh Kew, Botanische Staatssammlung Munich, and OregonState University. Freely available online at www.amf-phylogeny.com.
    Shannon C E, Weaver W.1949. The mathematical theory of communication. Urbana, Illinois: TheUniversity of Illinois Press,14
    Sheng M, Tang M, Chen H, Yang B W, Zhang F F, Huang Y H.2008. Influence of arbuscular mycorrhizaeon photosynthesis and water status of maize plants under salt stress. Mycorrhiza,18(6):287~296
    Sheng M, Tang M, Zhang F F, Huang Y H.2011. Influence of arbuscular mycorrhiza on organic solutesin maize leaves under salt stress. Mycorrhiza,21:423~430
    Singh D P, Srivastava J S, Bahadur A, Singh U P, Singh SK.2004. Arbuscular mycorrhizal fungi inducedbiochemical changes in pea (Pisum sativum) and their effect on powdery mildew (Erysiphe pisi).Journal of Plant Diseases and Protection,111,266~272.
    Singh B K, Nunan N, Ridgway K P, McNicol J, Young J P W, Daniell T J, Prosser J I, Millard P.2008.Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots. Environmentalmicrobiology,10:534~541
    Six J, Bossuyt B, Degryze H, Denef K.2004. A history of research on the link between (micro) aggregates,soil biota, and soil organic matter dynamics. Soil and Tillage Research,79:7~31
    Smith S E, Read D J.1997. Mycorrhizal Symbiosis, Second edn. London, UK: Academic Press
    Smith S E, Read D J.2008. Mycorrhizal symbiosis. London: Academic Press,1~20
    Smith S E, Smith F A, Jakobsen I.2003. Mycorrhizal fungi can dominate phosphate supply to plantsirrespective of growth responses. Plant physiology,133:16~20
    Smith S E, Read D J.2008. Mycorrhizal symbiosis. London: Academic Press,1~20
    Smith S E, Smith F A.2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigmsfrom cellular to ecosystem scales. Annual Review of Plant Biology,62:227~250
    Sonjak S, Beguiristain T, Leyval C, Regvar M.2009. Temporal temperature gradient gel electrophoresis(TTGE) analysis of arbuscular mycorrhizal fungi associated with selected plants from saline and metalpolluted environments. Plant and Soil,314:25~34
    Solís-Domínguez F A, Valentín-Vargas A, Chorover J, Maier R M.2011. Effect of arbuscular mycorrhizalfungi on plant biomass and the rhizosphere microbial community structure of mesquite grown inacidic lead/zinc mine tailings. Science of the Total Environment,409:1009~1016
    Simon L, Lalonde M, Bruns T D.1992. Specific amplification of18S fungal ribosomal genes fromvesicular-arbuscular endomycorrhizal fungi colonizing roots. Applied and EnvironmentalMicrobiology,58:291~295
    Stahl P D, Smith W K.1984. Effects of different geographic isolates of Glomus on the water relations ofAgropyron smithii. Mycologia,76:261~267
    Stancheva I, Geneva M, Djonova E, Kaloyanova N, Sichanova M, Boychinova M, Georgiev G.2008.Response of alfalfa (Medicago sativa L.) growth at low accessible phosphorus source to the dualinoculation with mycorrhizal fungi and nitrogen fixing bacteria. General and Applied PlantPhysiology,34:319~326
    Stukenbrock E H, Rosendahl S.2005. Clonal diversity and population genetic structure of arbuscularmycorrhizal fungi (Glomus spp.) studied by multilocus genotyping of single spores. MolecularEcology14:,743~752
    Subramanian K S, Charest C, Dwyer L M, Hamilton R I.1995. Arbuscular mycorrhizas and water relationsin maize under drought stress at tasseling. New Phytologist,129:643~650
    Su Y Y, Guo L D.2007. Arbuscular mycorrhizal fungi in nongrazed, restored and over-grazed grassland inthe InnerMongolia steppe. Mycorrhiza,17:689~693
    Sykorova Z, Wiemken A, Redecker D.2007. Coccurring Gentiana verna and Gentiana acaulis and theirneighboring plants in two swiss uppermontane meadows harbor distinct arbuscular mycorrhizal fungalcommunities. Applied and Environmental Microbiology,73:5426~5434
    Tawaraya K, Hashimoto K, Wagatsua T.1998. Effect of root exudate fractions from P-deficient andP-sufficient on ion plants on root colonization by the arbuscular mycorrhizal fungus Gigasporamargarita. Mycorrhiza,8:67~70
    Tang M, Chen H, Huang J C, Tian Z Q.2009. AM fungi effects on the growth and physiology of Zea maysseedlings under diesel stress. Soil Biology and Biochemistry,41(5):936~940
    Tawaraya K, Watanabe S, Yoshioda E, Wagatsuma T.1996. Effect of onion (Allium cepa) root exudates onthe hyphal growth of Gigaspora margarita. Mycorrhiza,6(1):57~59
    Ter Braak C J F, Smilauer P.1998. Canoco reference manual and user’s guide to Canoco for Windows:software for canonical community ordination (version4). Ithaca: Microcomputer Power,352
    Tisdall J M, Oades J M.1982. Organic mater and water-stable aggregates in soils. Journal of Soil Science,33:141~163
    Turner N C, Kramer P J.1980. Adaptation of plants to water and high temperature stress. Wiley, New York
    Van der Heijden M G A, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A,Sanders IR.1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variabilityand productivity. Nature,396:69~72
    van Diepen, L T A, Lilleskov E A, Pregitzer K S.2011. Simulated nitrogen deposition affects communitystructure of arbuscular mycorrhizal fungi in northern hardwood forests. Molecular Ecology MolecularEcology,20:799~811
    Veresoglou S D, Chen B D, Rillig M C.2012. Arbuscular mycorrhiza and soil nitrogen cycling. SoilBiology and Biochemistry,46:53~62
    Vijay Gadkar, Adholeya A, Satyanarayana T.1997. Randomly amplified polymorphic DNA using the M13core sequence ofthe vesicular-arbuscular mycorrhizal fungi Gigaspora margarita and Gigasporagigantea. Canadian Joumal of Microbiology,43(8):795~798
    Victoria A, Borowicz.2010. The impact of arbuscular mycorrhizal fungi on strawberry tolerance to rootdamage and drought stress. Pedobiologia,53:265~270
    Walker C, Blaszkowski J, Schwarzott D.2004. Gerdemanniagen. nov., a genus separated from Glomus andGerdemanniaceaefam. nov., a new family in the Glomeromycota. Mycological Research,108:707~718
    Walker C, Vestberg M, Demircik F.2007. Molecular phylogeny and new taxa in the Archaeosporales(Glomeromycota): Ambispora fennicagen. sp. nov., Ambispo raceaefam. nov., and emendation ofArchaeosporaceae. Mycological Research,111:137~153
    Wang F Y, Lin X G, Yin R, Wu L H.2006. Effects of arbuscular mycorrhizal inoculation on the growth ofElsholtzia splendens and Zea mays and the activities of phosphatase and urease in amulti-metal-contaminated soil under sterilized conditions. Applied Soil Ecology,31:110~119
    Wang Y R.1989. Exploitation and utilization of Hippophae rhamnoides in Shaanxi province. Xi'an, China:Shaanxi Sinence Press,11~15
    Wang H Z, Liang Z S, Hao W F, Han R L.2005. Physiological mechanism of Sophora viciifolia to adapt tosoil drought. Arid Areas,23:106~110
    Wang P, Liu J H, Xia R X, Wu Q S, Wang M Y, Dong T.2011. Arbuscular mycorrhizal development,glomalin-related soil protein (GRSP) content, and rhizospheric phosphatase activitiy in citrus orchardsunder different types of soil management. Journal of Plant Nutrition and Soil Science,174(1):65~72
    Wearn J A, Gange A C.2007. Above-ground herbivory causes rapid and sustained changes in mycorrhizalcolonization of grasses. Oecologia,153:959~971
    Wirsel S G R.2004. Homogenous stands of a wetland grass harbour diverse consortia of arbuscularmycorrhizal fungi. FEMS Microbiology Ecology,48:129~138
    Wright S F, Franke S, Morton M J B.1996. Time course study and partial characterization of a protein onhyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant and Soil,181:193~203
    Wright S F, Upadhyaya A.1996. Extraction of an abundant and unusual protein from soil and comparisonwith hyphal protein of arbuscular mycorrhizal fungi. Soil Science,161(9):575~586
    Wright S F, Upadhyaya A.1998. A survey of soils for aggregate stability and glomalin,a glycoproteinproduced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil,198:97~107
    Wu Q, Zou Y, Xia R, Wang M.2007. Five Glomus species affect water relations of Citrus tangerine duringdrought stress. Botanical Studies,48(2):147~154
    Wu F Z, Bao W K, Li F L, Wu N.2008. Effects of drought stress and N supply on the growth, biomasspartitioning and water-use efficiency of Sophora davidii seedlings. Environmental and ExperimentalBotany,63:248~255
    Wu Q S, Xia R X, Zou Y N.2008. Improved soil structure and citrus growth after inoculation with threearbuscular mycorrhizal fungi under drought stress. European Journal of Soil Biology,44:122~128
    Wu F Z, Bao W K, Zhou Z Q, Wu N.2009. Carbon accumulation, nitrogen and phosphorus use efficiencyof Sophora davidii seedlings in response to nitrogen supply and water stress. Journal of AridEnvironments,73(12):1067~1073
    Wu Q S, Zou Y N, He X H.2011. Differences of hyphal and soil phosphatase activities in drought-stressedmycorrhizal trifoliate orange (Poncirus trifoliata) seedlings. Scientia Horticulturae,129:294~298
    Wubet T, Kottke, I., Teketay D, Oberwinkler F.2003. Mycorrhizal status of indigenous trees in dryAfromontane forests of Ethiopia. Forest Ecology and Management,179:387~399
    Yamato M, Ikeda S, Iwase K.2009. Community of arbuscular mycorrhizal fungi in drought-resistant plants,moringa spp., in semiarid regions in Madagascar and Uganda. Mycoscience,50(2):100~105
    Yergeau E, Vujanovic V, St-Arnaud M.2006. Changes in communities of Fusarium and arbuscularmycorrhizal fungi as related to different asparagus culture factors. Microbial Ecology,52:104~113
    Zarei M, K nig S, Hempel S, Nekouei M K, Savaghebi G, Buscot F.2008. Community structure ofarbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead miningregion. Environmental Pollution,156:1277~1283
    Zhang H Q, Tang M, Chen H, Tian Z Q, Xue Y Q, Feng Y.2010. Communities of arbuscular mycorrhizalfungi and bacteria in the rhizosphere of Caragana korshinkii and Hippophae rhamnoides inZhifanggou watershed. Plant and Soil,326(2):415~424
    Zhang T, Tian C Y, Sun Y, Bai D S, Feng G.2012. Dynamics of arbuscular mycorrhizal fungi associatedwith desert ephemeral plants in Gurbantunggut Desert. Journal of Arid Land,4(1):43~51
    Zhang Y, Zhong C L, Chen Y, Chen Z, Jiang Q B, Wu C, Pinyopusarerk K.2010. Improving droughttolerance of Casuarina equisetifolia seedlings by arbuscular mycorrhizas under glasshouse conditions.New Foestrry,40:261~271
    Zhou J Z, Bruns M A, Tiedje J M.1996. DNA recovery from soils of diverse composition. Applied andEnvironmental Microbiology,62:3216~3221

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700