喜旱莲子草的生物防治技术、机理及资源化利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喜旱莲子草作为一种外来入侵植物,现己成为世界性恶草,对入侵地造成了严重的生态破坏、经济损失和社会影响。亟需寻找一种生态安全、经济有效的综合防治措施。本研究依托国家十一五“水体污染控制与治理”科技重大专项课题---南四湖退化湿地生态修复及水质改善技术与示范课题,以喜旱莲子草的综合防控为研究目的,以替代控制和资源化利用为突破口,通过对喜旱莲子草在山东省南四湖流域的入侵现状调研、芦苇替代控制喜旱莲子草技术及机理、喜旱莲子草基活性炭制备等的研究,以期实现对山东省南四湖流域喜旱莲子草的有效防控,并为我国北方地区喜旱莲子草的治理和资源化利用提供借鉴与指导。
     通过对山东省南四湖流域的现场踏勘和系统调研,结果表明:山东省南四湖流域喜旱莲子草的断面出现率达71.1%,正处于由入侵阶段向定居阶段甚至稳定阶段的过渡时期;该区域喜旱莲子草的分布受流域的经济发展状况、河道水文、水质、生态条件及驳岸类型的影响较大,而纬度的影响不大;喜旱莲子草在该区域的入侵,对南四湖流域的渔业、河流及湖泊的水质、生物多样性、行洪防洪存在着较大潜在风险。
     在小沙河下游进行芦苇替代控制喜旱莲子草的中试试验表明:芦苇替代控制技术有效的抑制了喜旱莲子草的生长。中试试验实施后,喜旱莲子草由毯状形态变为单株,且株长、生物量、覆盖度均有较大程度的降低。8月份的覆盖度由2009年的30.0%降至2011年的5.9%,降低了24.1个百分点。中试试验实施后,喜旱莲子的平均株长由2.0m(2009年8月)降低到0.6~1.0m(2011年8月);中试试验对于试验河道的水质有较好的改善效果。2010年5月到2011年11月,出水COD、NH3-N、TN、P043-p、TP的平均值分别为:26.00mg/L、1.43mg/L、5.40mg/L、0.21mg/L、0.47mg/L,平均去除率分别为:33.9%、35.1%、9.7%、20.1%、16.3%;中试试验实施后,试验河道的生物多样性得到有效的提高。从浮游藻类的数量上看,由实施前的94种增加到101种,细胞丰度有所降低,而生物多样性则增加明显,入湖口处的Shannon-Weaver生物多样性指数由1.17增加到3.0,表明河道水质从中污染向轻污染过渡。
     芦苇仿生植物与喜旱莲子草的共生实验结果表明:喜旱莲子草的根、茎、叶对遮荫的响应表现出较强的表形可塑性,因而地面上对光的竞争对喜旱莲子草的生物量影响不明显。化感方面,则展开了芦苇水提液对喜旱莲子草发芽、幼苗生长的影响实验。结果表明,化感作用是芦苇替代控制喜旱莲子草的主要作用。
     分析芦苇水提液对喜旱莲子草的叶绿素含量及比例、类胡萝卜素含量、酶活、根系活力、氮磷等营养物的含量等方面的影响表明:水生喜旱莲子草受到的化感抑制作用明显高于土生喜旱莲子草;随着处理浓度的增加,抑制效应随之增强,其在土生境中符合赫米西斯效应,即低促高抑的双重效应,而在水生条件下,主要表现为抑制效应;芦苇水提液对喜旱莲子草的发芽影响明显,水生境发芽数的RI在50%的处理浓度下为-0.87,土生境的RI为-0.40;而最早发芽天数较对照组均有推迟,最长芽长、单株高多芽数的RI值也表现为抑制;芦苇水提液对于幼苗生长的化感作用主要表现是生物量明显降低;芦苇水提液对喜旱莲子草的叶绿素含量表现为抑制作用;处理浓度为20%、50%的情况下,喜旱莲子草的类胡萝卜素含量较对照组低,化感抑制作用随着胁迫时间的增加先减弱后增强。在胁迫时间内,水生境、土生境中喜旱莲子草类胡萝卜素的含量较对照组平均降低43.J%和38.3%;在水生境下,喜旱莲子草的根系活力受到较强的抑制效应,而对于土生境下的喜旱莲子草的根系活力则影响不大;喜旱莲子草的过氧化氢酶(CAT)活性受到明显抑制,且随处理浓度的加大、胁迫时间的增加而呈现增强的趋势;芦苇水提液对喜旱莲子草丙二醛(MDA)存在显著的促进作用;芦苇水提液对喜旱莲子草的氮磷含量影响在不同的生境下有一定差异。综上,芦苇水提液的化感作用机理是:当芦苇水提液作用于喜旱莲子草植株后,引起了喜旱莲子草体内活性氧代谢系统失衡,破坏或降低活性氧清除剂,增加活性氧的产量,从而破坏了膜结构,降低了喜旱莲子草的叶绿素含量及类胡萝卜素含量,进而影响了光合作用,降低了喜旱莲子草的根系活力,并影响了喜旱莲子草根系对N、P等营养元素以及其它物质的吸收,最终表现为抑制喜旱莲子草的发芽和幼苗的生长发育。
     喜旱莲子草制备活性炭的结果表明:综合得率和碘吸附值考虑,三种活化剂中磷酸最做优,在浸渍比为1:4、浸渍时间为6h、制备温度为600℃、制备时间为1h的条件下,磷酸制得的活性炭的得率为37.44%,碘吸附值为752.36mmg/L;N2-吸附脱附等温线判定,活性炭样品孔径主要集中于中孔范围,孔道是狭窄的楔形孔。通过BET方程、BJH等方法计算,活性炭样品的比表面积为1100.72m2/g,总孔容为0.61cm3/g,平均孔径为2.22nm,孔径分布主要集中在2-5nm,中孔率为72%;通过傅立叶变换红外光谱仪分析,该活性炭样品中含有羧基(-COOH)、酚、烯基(-C=C)、醇羟基(R-OH)、胺基、醚基(-C-O-C)等含氧、含氮官能团;通过XRD衍射分析表明,活性炭中部分碳原子已形成较稳定的片层石墨晶体结构,但部分仍为无定形态,从而使得片层间隙增大,增加了活性炭的比表面积;通过SEM微观分析,制备的活性炭孔径以中微孔为主,表面存在发达的孔径,且孔径大小不一,呈椭圆形、裂缝形或不规则形等多种形状,而表面形态呈现凹凸不平、蜂窝状结构;活性炭对重金属的吸附实验表明:从吸附效率上看,对Fe(Ⅲ)平均吸附效率在60%以上,对Cu(Ⅱ)的吸附效率平均在40%以上。
As an exotic invasive plants, alligator weed, Alternanthera philoxeroides (Martius) Grisebach, has become the world's evil nature grass. Its invasion has caused serious ecological damage, economic losses and social impact. It is urgent to find an eco-safe, cost-effective measures to control its invasion. This study relies on the National Eleventh Five-Year "water pollution control and governance of major science and technology topics---Nansi degradation of wetland ecosystem restoration and water quality improvement technology and demonstration of subject (one of the subjects of the Huaihe River Basin water pollution control technology research and integrated demonstration projects). The purpose of this study is to invent a comprehensive technology to control and utilization alligator weed. Based on the status research of alligator weed in Shandong Province Nansihu basin, the method and mechanism of reed alternative control and the preapared way of activated carbon were researched. This research will guide the control of alligator weed in Nansi Lake basin, Shandong Province, even northern China.
     The results of site survey and system research in Nansi Lake Basin, Shandong Province showed that:the section rate of of Alternanthera philoxeroides in Shandong Province Nansihu basin was up to71.1%. And the basin was in the transitional period by the invasion phase of stable phase or even to settle in stage. The distribution of Alternanthera philoxeroides in the region was effected by the economic development of the basin, river hydrology, water quality, ecological conditions and revetment. Alternanthera philoxeroides invasion in the region leaded to large potential risks on the aspect of fisheries, rivers and lakes of the Nansi Lake basin water quality, biodiversity and flood control.
     The reed alternative control of Alternanthera philoxeroides with a pilot in the Xiaosha river downstream showed that:reed alternative control technology effectively inhibited the growth of Alternanthera philoxeroides. Before and after the implementation of the demonstration project, Alternanthera philoxeroides by the blanket-like shaped into a single plant. And plant length, biomass, coverage had a higher degree of reduction. In August, the coverage dropped from30percent in2009to5.9percent in2011, with a24.1percent reduction. Before and after the implementation of the demonstration project, xerophilous alligator weed plant length by2m in August (2009) reduced to0.6-1.0m in August (2011). The demonstration project of test river water also enhanced the water quality. From May2010to November2011, the average of the effluent of COD, NH3-N, TN, PO43--P, TP were as follows:26.00mg/L and1.43mg/L,5.40mg/L, and0.21mg/L,0.47mg/L, and average removal rates were:33.9%,35.1%,9.7%,20.1%,16.3%.The pilot river biodiversity had been effectively improved which meant the number of planktonic algae from the point of view was decreasing, before the implementation of the94kinds to101kinds of cell density, and biodiversity was increased significantly, and the estuary at the Shannon-Weaver biodiversity index increased from1.17to3.00, indicating that the river water quality was from pollution in the transition to light pollution.
     Reed bionic plant and Alternanthera philoxeroides mixed experimental showed that there were strong phenotypic plasticity of Alternanthera philoxeroides roots, stems, and leaves in respense to shade. Aquatic alligator weed by allelopathic inhibition was significantly higher than xerophilous alligator weed; Under the concentration of50%, the extract of reed had significant impact on germination of alligator weed. In hydroponics habitat conditions, the RI(allelopathic effect index. If positive, it means the performance role in promoting and the greater its value, the stronger allelopathic to promote. If negative, it means the inhibitory effect and the higher absolute value, the stronger the suppression effect was-0.87. In xerophilous habitat conditions, RI was-0.4. comparing to control group, the first germination days were all postponed under the allelopathic effect. During stress time, carotenoid content of Alligator weed in hydroponics habitat and xerophilous habitat decreased on the average of43.1%and38.3%respectively. The extract of reed had a strong inhibitory effect on the root activity of Alligator weed under the hydroponics habitat,while has little impact on that growing under native habitat. In hydroponics habitat conditions, the average allelopathy index was-0.81on root activity and the inhibition increased with the increasing of concentration of extract of reed. The extract of reed had inhibition effect on the activity of catalase (CAT), which indicated that the inhibition effect had a trend of strengthen with the increasing of concentration of reed extract and stress time. It meant the growing of concentration and sress time increased the inhibition of CAT activity, which accelerated the inactivation of enzyme. The extract of reeds had some differences effect on the contents of nitrogen and phosphorus of alligator weed in the different habitats. In xerophilous habitat conditions, the content of P decreased rapidly with the increasing of concention.In summary, the reeds and water extracts of Allelopathy Mechanism were that when the extract of reed acted on Alternanthera plant drought, it causes the imbalance of reactive oxygen species metabolic system in alligator weed, damaged or reduced the reactive oxygen species scavenger, increased production of reactive oxygen species and destroyed the mambrane strunture. Besides, it also reduced the chlorophyll and carotenoid content of alligator weed, thus affecting photosynthesis and root activity, and affected the root absorption of N and P, as well as other substances, thus inhibiting the germination and seedling growth and development of alligator weed.
     In order to improve resource utilization of Alligator weed, this paper explores the preparing process of activated carbon by Alligator weed under different activatior and conditions and studies the feasibility of optimal conditions. With phosphoric acid as an activator, the optimum preparation conditions were activation temperature600℃, activation time1h, impregnation1:4, soaking time12h. Under this condition, the yield of activated carbon was37.44%and adsorbtion of I2was752.36mg/L. According to the analysis of FTIR, the activated carbon samples containing such functional groups:carboxyl (-COOH), phenol, alkenyl (-C=C), alcoholic hydroxyl group (R-OH), amine, ether (-C-O-C), and so on. The XRD diffraction analysis showes that some carbon atoms in the activated carbon were in the formation of more stable crystal structure of the lamellar graphite, but some was still amorphous, making the lamellar gap increases, which increased the surface area of activated carbon. Determining by N2adsorption-desorption isotherms, the adsorption type of activated carbon sample was the type IV isotherm with a hysteresis loop of type H4. That indicates that pore size was mainly concentrated in the mesoporous range and the channel is a narrow wedge-shaped hole. Calculated by the BET equation and BJH methods, specific surface area of activated carbon samples was1100.720m2/g and its total pore volume was0.610cm3/g with average pore size of2.216nm, which also showed that the activated carbon mainly in the mesoporous range. The pore size distribution was mainly concentrated in the2-5nm and the rate of mesoporous range was72.0%.The analysis of SEM showed that the surface of activated carbon had developed aperture and aperture had various sizes, showing a variety of shapes of oval, crack-shaped or irregular in shape, in which the pore size was mesoporous range. The surface morphology of activated carbon is rough, showing the concave and convexuneven, honeycomb-like structure.The results of activated carbon adsorption of Fe (Ⅲ) showed that average adsorption efficiency was above60%and adsorption of Cu (Ⅱ) showed that average adsorption efficiency was above40%.
引文
[1]李博.植物竞争—作物与杂草相互作用的实验研究[M].高等教育出版社,施普林格出版社,2001.北京.
    [2]衣艳君.我国外来杂草的研究进展与展望[J].国土与自然资源研究,2005,01):83-85.
    [3]林金成,强胜.空心莲子草营养繁殖特性研究[J].上海农业学报,2004,04):96-101.
    [4]刘春花.外来种喜旱莲子草的入侵生态学[D];武汉大学,2005.
    [5]潘晓云,耿宇鹏,SOSA A, et al.入侵植物喜旱莲子草——生物学、生态学及管理[J].植物分类学报,2007,06):884-900.
    [6]翁伯琦,林嵩,王义祥.空心莲子草在我国的适应性及入侵机制[J].生态学报,2006,07):2373-2381.
    [7]NAQVI S M, RIZVI S A. Accumulation of chromium and copper in three different soils and bioaccumulation in an aquatic plant, Alternanthera philoxeroides [J]. B Environ Contam Tox,2000, 65(1):55-61.
    [8]SHEN J, SHEN M, WANG X, et al. Effect of environmental factors on shoot emergence and vegetative growth of alligator weed (Alternanthera philoxeroides) [J]. Weed Sci,2005,53):471-478.
    [9]耿宇鹏.入侵种喜旱莲子草在异质生境中的适应对策研究[D];复旦大学,2006.
    [10]张光富,陈瑞冰.外来入侵植物喜旱莲子草的研究进展[J].安徽大学学报(自然科学版),2005,06):87-93.
    [11]姜立志.入侵植物喜旱莲子草对异质环境的表型可塑性响应[D];华中师范大学,2009.
    [12]何锦峰.外来植物入侵机制研究进展与展望[J].应用与环境生物学报,2008,06):863-870.
    [13]JULIEN M H, SKARRATT B, MAYWALD G F. Potential Geographical distribution of alligator weed and its biological control by Agasicles hygrophila [J]. J Aquat Plant Manage,1995,33(JULY):55-60.
    [14]http://www.issg.org/database/species/distribution.asp?si=763&fr=l&sts=&lang=EN
    [15]娄远来.空心莲子草[Alternanthera philoxeroides(Mart.)Griseb.]的生物学、生态学与复配除草剂的增效作用及作用机理研究[D];南京农业大学,2005.
    [16]JULIEN M H, MAYWALD G F. Using CLIMEX to predict distribution of alligator weed and its potential for biological control by the flea beetle, Agasicles hygrophila [M].1996.
    [17]廖衍伦,叶能干.一种值得注意的植物—空心莲子草[J].贵州农业科学,1985,02):33-35.
    [18]陈立立,余岩,何兴金.喜旱莲子草在中国的入侵和扩散动态及其潜在分布区预测[J].生物多样性,2008,06):578-585.
    [19]余柳青,FUJII Y,周勇军,et al.水生生物型空心莲子草(Alternanthera philoxeroides)对环境因子的反应及与水稻的竞争[J].中国水稻科学,2007,02):209-214.
    [20]娄远来,邓渊钰,沈纪冬.我国空心莲子草的研究现状[J].江苏农业科学,2002,04):46-48.
    [21]陆俊姣,马瑞燕.真菌防治喜旱莲子草研究进展[J].植物保护,2008,02):10-13.
    [22]朱金文.高锰胁迫下空心莲子草的生理生化特性和草甘膦耐性研究[D];浙江大学,2008.
    [23]沈荔花.外来植物加拿大一枝黄花(Solidago canadensis L.)入侵的化感作用机制研究[D];福建农林大学,2007.
    [24]张震,徐丽,朱晓敏.喜旱莲子草对不同生境植物群落多样性的影响[J].草业学报,2010,04):10-15.
    [25]刘圣根,黄卫东,许子牧,et al.水花生、水葫芦厌氧消化产沼气的中试实验研究[J].环境工程学报,2011,06):1310-1314.
    [26]李博,陈家宽.生物入侵生态学:成就与挑战[J].世界科技研究与发展,2002,02):26-36.
    [27]谭万忠.空心莲子草对几种作物的损失测定[J].杂草学报,1994,08):28-32.
    [28]曾强国,苏文杰,彭梅芳,et al.外来入侵植物空心莲子草的防治研究[J].农业环境与发展,2011,02):18-21.
    [29]SAINTY G, MCCORKELLE G, JULIEN M. Control and spread of Alligator Weed Alternanthera philoxeroides (Mart.) Griseb., in Australia:lessons for other regions [J]. Wetlands Ecology and Management,1998,05):195-201.
    [30]SCHOOLER S S, YEATES A G, WILSON J R U, et al. Herbivory, mowing, and herbicides differently affect production and nutrient allocation of Alternanthera philoxeroides [J]. Aquat Bot,2007,86(1): 62-68.
    [31]娄远来,沈晋良.水花生的根、茎、叶形态解剖特征及生态适应性[J].江苏农业学报,2005,04):277-282.
    [32]http://sannong.newssc.org/system/2009/09/10/012316818.shtml
    [33]http://wzdaily.66wz.com/wzrb/html/2007-07/03/content_7938036.htm
    [34]喻亮.锰胁迫下空心莲子草的生理特性及耐草甘膦的生化机制研究[D];新疆大学,2009.
    [35]高宗军,李美,高兴祥,et al.24种除草剂对空心莲子草的生物活性[J].中国农学通报,2010,21):256-261.
    [36]SCHOOLER S, COOK T, BOURNE A, et al. Selective herbicides reduce alligator weed (Alternanthera philoxeroides) biomass by enhancing competition [J]. Weed Sci,2008,56(2):259-264.
    [37]JULIEN M H, SCOTT J K, ORAPA W, et al. History, opportunities and challenges for biological control in Australia, New Zealand and the Pacific islands [J]. Crop Protection,2007,26(3):255-265.
    [38]张黎华,冯玉龙.外来入侵杂草的生物防治及生防因子对本地非目标种的影响[J].生态学报,2007,02):802-809.
    [39]LU J, ZHAO L, MA R, et al. Performance of the biological control agent flea beetle Agasicles hygrophila (Coleoptera:Chrysomelidae), on two plant species Alternanthera philoxeroides (alligatorweed) and A-sessilis (joyweed) [J]. Biol Control,2010,54(1):9-13.
    [40]GAGNE R J, SOSA A, CORDO H. A new neotropical species of Clinodiplosis (Diptera cecidomyiidae) injurious to alligatorweed, Alternanthera philoxeroides (amaranthaceae) [J]. Proceedings of the Entomological Society of Washington,2004,106(2):305-311.
    [41]BUCKINGHAM G R. Biological control of alligatorweed, Alternanthera philoxeroides, the world's first aquatic weed success story [J]. Castanea,1996,61(3):232-243.
    [42]陈燕芳,郭文明,丁吉林,et al.空心莲子草生物防除研究进展[J].杂草科学,2008,01):9-12.
    [43]李宏科,李萌,李丹.空心莲子草及其生物防治[J].世界农业,2000,02):36.
    [44]STEWART C A, CHAPMAN R B, EMBERSON R M, et al. The effect of temperature on the development and survival of Agasicles hygrophila Selman & Vogt (Coleoptera:Chrysomelidae), a biological control agent for alligator weed (Alternanthera philoxeroides) [J]. New Zeal J Zool,1999, 26(1):11-20.
    [45]林冠伦,孙进东,王远,et al.美国、澳大利亚空心莲子草的生物防治研究[J].生物防治通报,1988,02):94-96.
    [46]POMELLA A W V, BARRETO R W, CHARUDATTAN R. Nimbya alternantherae a potential biocontrol agent for alligatorweed, Alternanthera philoxeroides [J]. Biocontrol,2007,52(2):271-288.
    [47]桑卫国.我国外来杂草入侵特点的初步分析[J].中国农业科技导报,2002,05):59-61.
    [48]HOWARD T G, GOLDBERG D E. Competitive response hierarchies for germination, growth, and survival and their influence on abundance [J]. Ecology,2001,82(4):979-990.
    [49]郭慧霞.替代控制对紫茎泽兰的影响[J].河南职技师院学报,1996,01):24-28.
    [50]皇甫超河,张天瑞,刘红梅,et al.三种牧草植物对黄顶菊田间替代控制[J].生态学杂志,2010,08):1511-1518.
    [51]周早弘,戴凤凤.运用植物替代控制豚草的蔓延和传播[J].江西植保,2003,02):68-70.
    [52]SAXENA M K. Aqueous leachate of Lantana camara kills water hyacinth [J]. J Chem Ecol,2000, 26(10):2435-2447.
    [53]鲍观娟,王笑,豆威,et al.三种替代植物对紫茎泽兰幼苗的生态控制效果;proceedings ofthe中国植物保护学会2009年学术年会,中国湖北武汉,F 2009[C].
    [54]唐龙.刈割、淹水及芦苇替代综合控制互花米草的生态学机理研究[D];复旦大学,2008.
    [55]李贺鹏.外来入侵植物互花米草控制的生态学研究[D];华东师范大学,2007.
    [56]李愈哲,尹昕,魏维,et al.乡土植物芦苇对外来入侵植物加拿大一枝黄花的抑制作用[J].生态学报,2010,24):6881-6891.
    [57]中国科学院.中国植物群[M].北京:科学出版社,2002.
    [58]王勇林.空心莲子草的化学成分及抗病毒活性的研究[D];中国协和医科大学,2007.
    [59]李琼娅,范文乾,马卓,et a1.空心莲子草化学成分和药理活性研究进展[J].时珍国医国药,2007,02):334-335.
    [60]顾克余,王伟义,茆训东,etal.菜用水花生的开发利用[J].农牧产品开发,2000,10):24-26.
    [61]陈凯,乔广行.空心莲子草的综合利用研究进展[J].杂草科学,2009,03):9-13.
    [62]方显出,方平夷.稻草加空心莲子草栽培双孢菇试验初探[J].食用菌,2008,01):27.
    [63]Latif A. Bio-gas production from alligator weeds semiannual reports[D]. Lorman:Alcon State University,1976
    [64]秦蓉.奉贤微污染景观水体生物生态修复技术小试研究[D];华东师范大学,2010.
    [65]秦蓉,徐亚同,何淑英,et a1.富营养化水体的生物修复与植株残体的资源化利用[J].上海化工,2008,09):1-4.
    [66]王清明.沼气非粪便原料简介[J].科学种养,2011,03):53.
    [67]李俭安.空心莲子草作为生物钾肥应用于水稻生产的研究[J].湖南农学院学报,1986,04):23-33.
    [68]陈斌,吉训凤,季应明,et al.沤制水花生作麦稻基肥的效应研究[J].土壤通报,2000,04):180-194.
    [69]BASSETT I E, BEGGS J R, PAYNTER Q. Decomposition dynamics of invasive alligator weed compared with native sedges in a Northland lake [J]. New Zeal J Ecol,2010,34(3):324-331.
    [70]马辉华,胡久清.高钾植物——空心莲子草形态结构的研究[J].湖南农学院学报,1984,03):73-78.
    [71]ANJANA B, S. M. Compostion of Indian aquatic plants in relation to utilization as animal forage [J]. JAquatPlant Manage,1990,28):69-73.
    [72]彭克勤,胡笃敬.空心莲子草k-+吸收的动力学研究[J].植物生理学报,1986,02):187-193.
    [73]谭苹,张学俊.空心莲子草的化学成分及其应用[J].公共卫生与预防医学,2007,05):50-52.
    [74]王良才,孙芳.空心莲子草的质量标准研究[J].安徽农业科学,2011,23):14041-14044.
    [75]庞金华,沈瑞芝,程平宏.三种植物对COD的耐受极限与净化效果[J].农业环境保护,1997,05):18-22+49.
    [76]黄辉,赵浩,饶群,et al.浮萍与水花生净化N、P污染性能比较[J].环境科学与技术,2007,04):16-18.
    [77]宋志忠,王莉,金曼,et al.重金属胁迫条件下空心莲子草的生长和营养特征分析(英文)[J].基因组学与应用生物学,2011,05):614-619.
    [78]S. J. Gregg and K. S. W. Sing. Adsorption,surface area and porosity[M].New York:Academic Press, 1982.
    [79]郑经堂,张引枝,王茂章.多孔碳材料的研究与开发[J].碳素技术[J],1995,(3):13-17.
    [80]WU F C, TSENG R L, JUANG R S. Preparation of activated carbons from bamboo and their adsorption abilities for dyes and phenol [J]. J Environ Sci Heal A,1999,34(9):1753-1775.
    [81]WANG S Y, TSAI M H, LO S F, et al. Effects of manufacturing conditions on the adsorption capacity of heavy metal ions by Makino bamboo charcoal [J]. Bioresource Technol,2008,99(15):7027-7033.
    [82]WALTON K S, CAVALCANTE C L, LEVAN M D. Adsorption equilibrium of alkanes on a high surface area activated carbon prepared from Brazilian coconut shells [J]. Adsorption,2005,11(2):107-111.
    [83]TAN I A W, AHMAD A L, HAMEED B H. Adsorption of basic dye using activated carbon prepared from oil palm shell:batch and fixed bed studies [J]. Desalination,2008,225(1-3):13-28.
    [84]TAM M S, ANTAL M J, JAKAB E, et al. Activated carbon from macadamia nut shell by air oxidation in boiling water [J]. Ind Eng Chem Res,2001,40(2):578-588.
    [85]WANG G, LI A M, LI M Z. Sorption of nickel ions from aqueous solutions using activated carbon derived from walnut shell waste [J]. Desalin Water Treat,2010,16(1-3):282-289.
    [86]SUN K, JIANG J C. Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam [J]. Biomass Bioenerg,2010,34(4):539-544.
    [87]WANG J, WU F A, WANG M, et al. Preparation of activated carbon from a renewable agricultural residue of pruning mulberry shoot [J]. Afr J Biotechnol,2010,9(19):2762-2767.
    [88]SUZUKI R M, ANDRADE A D, SOUSA J C, et al. Preparation and characterization of activated carbon from rice bran [J]. Bioresource Technol,2007,98(10):1985-1991.
    [89]SUN Y, ZHANG J P, YANG G, et al. Preparation of activated carbon with large specific surface area from reed black liquor [J]. Environ Technol,2007,28(5):491-497.
    [90]SENTHILKUMAAR S, KALAAMANI P, PORKODI K, et al. Adsorption of dissolved Reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste [J]. Bioresource Technol, 2006,97(14):1618-1625.
    [91]SANTHI T, MANONMANI S, SMITHA T. Removal of malachite green from aqueous solution by activated carbon prepared from the epicarp of Ricinus communis by adsorption [J]. J Hazard Mater, 2010,179(1-3):178-186.
    [92]SHI Q Q, ZHANG J, ZHANG C L, et al. Preparation of activated carbon from cattail and its application for dyes removal [J]. J Environ Sci-China,2010,22(1):91-97.
    [93]CHEN S H, ZHANG J, ZHANG C L, et al. Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis [J]. Desalination,2010, 252(1-3):149-156.
    [94]WANG L, ZHANG J A, ZHAO R, et al. Adsorption of 2,4-dichlorophenol on Mn-modified activated carbon prepared from Polygonum orientale Linn [J]. Desalination,2011,266(1-3):175-181.
    [95]王洋.木质原料的组成对H_3Po-4法活性炭孔隙结构的影响[D];东北林业大学,2011.
    [96]顾辉.南水北调沿线城市水环境建设的思考[J].水科学与工程技术,2006,01):30-48.
    [97]田家怡,田静,申保忠,et al.南水北调东线工程输水沿线浮游植物分布与多样性[J].山东科学,2008,01):28-34.
    [98]http://www.nsbd.gov.cn/zx/gcgh/
    [99]http://www.cgp.gov.cn/ReadNews.asp?NewsID=4969
    [100]胡润峰.南水北调东线命悬南四湖[J].经济月刊,2003,09):22-24.
    [101]http://www.ecofirst.cn/newshow.asp?id=985&nam=%C9%BD%B6%AB%B6%AF%CC%AC
    [102]沈健英,黄渊智.环境因子对空心莲子草出苗和生长的影响[J].上海农业学报,2006,01): 34-38.
    [103]http://bbs.typhoon.gov.cn/read.php?tid=37482
    [104]俞红.中国外来物种入侵的社会经济因素影响及区域比较分析[D];华中农业大学,2011.
    [105]http://www.stats-sd.gov.cn/2007/tjsj/tjsj.asp?lbbm=1
    [106]何丽,吴宜进,但长军,et al.近百年全球气温变化对长江流域旱涝灾害的影响[J].中国农业气象,2007,04):364-370.
    [107]刘刚.模型预测发现气候变暖将改变水生外来物种的全球入侵格局[J].农药市场信息,2011,12):34-35.
    [108]http://xmecc.xmsme.gov.cn/2010-6/2010629145606.htm
    [109]尹云鹤,吴绍洪,陈刚.1961—2006年我国气候变化趋势与突变的区域差异[J].自然资源学报,2009,12):2147-2157.
    [110]刘珂,许吟隆,陶生才,et al.多模式集合对中国气温的模拟效果及未来30年中国气温变化预估[J].高原气象,2011,02):363-70.
    [111]沈吉,张祖陆,杨丽原等.南四湖一环境与资源与研究[M].地震出版社,2008:75-94.
    [儿2]况琪军,马沛明,胡征宇,等.湖泊富营养化的藻类生物学评价与治理研究进展[J].安全与环境学报,2005,5(2):87-91.
    [113]PIEMEISEL, CARSNER. Replacement control:changes in vegetation in relation to control of pests and disease [J]. The Botanical Review,1954,01):1-32.
    [114]鲍观娟.替代牧草与紫茎泽兰的竞争机制及野外竞争效应研究[D];西南大学,2010.
    [115]E. L. Rice (胡敦孝等译).天然化学物质与有害生物防治[D].北京:科学出版社,1988:9-10.
    [116]孔垂华.植物化感作用研究中应注意的问题[J].应用生态学报,1998,03):109-113.
    [117]Rice, E. L. Allelopathy (2nd ed)[R]. Academic Press Inc. New York,1-5,1984:309-315.
    [118]胥耀平.植物相邻关系中的化感作用研究[D];西北农林科技大学,2006.
    [119]周天.黄蒿化感作用的研究[D];东北师范大学,2007.
    [120]LI F M, HU H Y. Isolation and Characterization of a Novel Antialgal Allelochemical from Phragmites communis [J]. Applied and environmental microbiology,2005,11):6545-53.
    [121]Nakai S, Zhou S, Hosomi M, Tominaga M. Allelopathic growth inhibition of cyanobacteria by reed[J].Allelpathyjournal,2006,18(2):277-286.
    [122]陈业兵,王金信,吴小虎等.银胶菊的花对小麦的化感作用机制[J].植物保护学报.2010,37(6):552-555.
    [123]张立军,樊金娟.植物生理学实验[D].北京,中国农业大学出版社,2008.
    [124]HARNDEN J, MACDOUGALL A S, SIKES B A. Field-based effects of allelopathy in invaded tallgrass prairie [J]. Botany,2011,89(4):227-234.
    [125]CHAZDON, R.L., PEARCY, R.W., LEE, D.W. Photosynthetic responses of tropical forest plants to contrasting light environments[C]. In Tropical forest plant ecophysiology (S.S. Mulkey, R.L. Chazdon & A.P. Smith, eds.). Chapman & Hall, New York,1996.5-55.
    [126]Anderson J,Wentworth M,Walters P G,et al. Absence of the Lhcbl and Lhcb2 proteins of the light-harvesting complex of photosystem Ⅱ effects on photosynthesis,grana stacking and fitness[J].Plant J,2003,35(3):350-361.
    [127]Kolyo D,Mira B,Detelin S.Relationship between the degree of carotenoid depletion and function of the photosynthetic apparatus [J].Photochemistry and Photobiology Biology,2009,96:49-56.
    [128]周莉,刘莉.类胡萝卜素生物合成的调控因素及其对光合作用的影响[J].天津农业科学,2011,05):5-8.
    [129]童富淡,胡家恕,陈进红,et al.不同育秧方式对早稻叶片SOD活性、电解质渗透率和发根力 的影响[J].浙江农业大学学报,1997,06):74-8.
    [130]耿广东.辣椒(Capsicum annuum L.)化感作用及其机理研究[D];西北农林科技大学,2005.
    [131]何华勤.水稻化感作用及其分子机理研究[D];福建农林大学,2004.
    [132]马燕.黄花蒿化感作用的研究[D];西北农林科技大学,2007.
    [133]陈淑芳.植物化感作用影响因素的探讨[J].中国农学通报,2009,23):258-261.
    [134]于福科.沙打旺抑制瑞香狼毒的化感作用机理[D];中国科学院研究生院(教育部水土保持与生态环境研究中心),2006.
    [135]王玉新.毛竹活性炭的制备及其应用研究[D];天津大学,2007.
    [136]韩彬.稻草秸秆基活性炭的制备与应用[D];东华大学,2009.
    [137]王秀芳.高比表面积活性炭的制备、表征及应用[D];华南理工大学,2006.
    [138]周玉,武高辉.材料分析测试技术[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [139]张利波.烟杆基活性炭的制备及吸附处理重金属废水的研究[D];昆明理工大学,2007.
    [140]牛耀岚,马承愚,李登新等.KOH活化废弃麻制备活性炭及其结构表征[J.高等学校化学学报.2010,31(10):1929-1933.
    [141]夏洪应,彭金辉,张利波,et al.微波辐射-水蒸气法制备烟杆基颗粒活性炭[J].化学工程,2007,01):48-51.
    [142]张淑琴,童仕唐.活性炭对重金属离子铅镉铜的吸附研究[J].环境科学与管理,2008,04):91-94.
    [143]刘风华,宋存义,宋永会.活性炭对含铜制药废水的吸附特性[J].环境科学研究,2011,03):308-312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700