“旱三熟”种植区保护性耕作的效应及模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
保护性耕作技术自20世纪60年代传入我国后,国内科研工作者开展了大量关于保护性耕作的研究工作。但现有研究、示范大多是在我国北方干旱、半干旱地区开展,其研究对象通常是一年一熟制或者一年两熟制为主,且耕作措施较为单一。而针对西南旱三熟种植区农田配套保护性耕作模式的研究尚少,对该区保护性耕作条件下的土壤养分、农田生态、水分时空分布、作物生长发育响应以及水分利用率规律的认识也较为缺乏。有鉴与此,本研究于2007年11月~2009年11月在重庆市北碚区西南大学教学实验农场开展,试验以西南地区的“小麦/玉米/甘薯”和“马铃薯/玉米/甘薯”农作制度下旱作农田为研究对象,探明保护性耕作条件下农田养分、生态、水分的变化规律以及作物对保护性耕作措施响应特征。以当地气象和试验数据为基础,借助SPSS和DPS统计软件,对不同保护性耕作模式进行比较分析,为西南旱作区保护性耕作技术推广应用提供科学依据。主要研究结果如下:
     1、在土壤养分方面,五种保护性耕作模式均改善了土壤养分的供应状况。RSD(垄作+秸秆覆盖+腐熟剂)、TSD(平作+秸秆覆盖+腐熟剂)、RS(垄作+秸秆覆盖)、TS(平作+秸秆覆盖)处理较对照T有机质提高率分别为:28.27%、21.30%、16.54%、19.16%,容重分别下降了3.33%、3.00%、4.00%、2.67%,显著增加了全钾、全氮、碱解氮在土壤中的含量。而R(垄作)处理除了提高有机质含量,其他指标与传统对照无显著差异。针对土壤养分含量的动态变化情况,由于每一种耕作模式都包括不同的保护性耕作措施,农田耕层土壤养分含量的动态变化复杂,与单一的秸秆覆盖处理不尽相同。
     2、在农田生态环境方面,有秸秆覆盖的处理RSD、TSD、RS、TS无论从蚯蚓数量还是从生物量上均比无秸秆覆盖CK与R高,但是总体上看,RS与TS的效果要比RSD与TSD好。同时,RSD、TSD、RS、TS模式显著降低了7月份5cm与10cm土层的在14:00时的温度,缓解了高温对玉米生长后期造成伤害,而垄作措施对此影响不大。在杂草控制方面,秸秆覆盖相处理对于无秸秆覆盖处理无论从杂草高度、密度、还是生物量上都具有极显著效果,而起垄与平作两种措施没有出现显著差异,控制效果从高到低的顺序为:RS>TS>TSD>RSD>T(CK)>R。
     3、在农田土壤水分方面,连续两年大田试验表明各个处理均提高了0-80cm土层土壤贮水量,其顺序从高到低依次为RSD>RS>TSD>TS>R>T(CK);在土壤水分的垂直动态变化方面,0~40cm土壤含水变化剧烈在21.45%-30.78%之间,40-60cm土层变幅相对较小,60-80cm土层相对比较稳定。这说明了保护性耕作有利于提高土壤贮水量,增加土壤水库库存量,同时对0-40cm土层土壤水分影响要明显大于40~80cm土层。
     4、在作物生长发育和生理特性方面,与传统耕作相比,保护性耕作处理显著提高了小麦成熟期时旗叶和倒数第二叶的叶面积,净光合速率也提高了2.90%-5.74%。整个灌浆—成熟过程(4.17~5.12)中,分配指数增加了238.46%-242.31%。在连续两年玉米苗期根系发育状况考察中,与传统耕作相比,保护性耕作处理增加了玉米苗期的根长、根表面积,显著增加了直径1.0-2.5 mm范围内的根长;苗期玉米根系活力分别提高19.12%-27.46%,根冠比分别提高36.72%-37.50%,根系生物量分别提高62.53%-77.37%。这说明了保护性耕作措施不但有利于作物根系发育,也促进了作物地上部分的生长发育,从而提高叶的净光合速率与植株的分配指数。
     5、在粮食产量和水分利用效率方面,各模式的两年系统平均粮食产量排列顺序为:RSD>RS>TSD>TS>R>T(CK)。垄作处理包括RSD、RS、R能显著增加薯类作物的产量,处理R、TS、RS、TSD、RSD的耗水量比T(CK)均有减少的趋势。各个处理水分利用效率与降水生产效由高到低的顺序均为:RSD>RS>TSD>TS>R>T(CK)。
     6、在经济效益比较分析方面,与对照传统耕作(T)相比,其他各处理的产出、纯收入均显著提高,其中产出提高了4.41%-17.40%、纯收入提高了5.36%-15.37%;产投比提高了3.84%-19.21%,排列顺序由高到低为RS>RSD>R>T(CK)>TSD>TS。
     通过本试验研究发现,针对旱三熟种植区,以上五种保护耕作模式对土壤养分和土壤水分具有良好的调节作用,能够调节土温、控制杂草和促进蚯蚓生长,使农田生态环境处于良好的自我动态调节状态,显著增加了作物产量与效益,提高了水分利用率,其中以RSD、RS的综合效果最好,值得在西南旱三熟种植区大力推广
Since the 1960s when conservation tillage technology came into our country, scientists have carried out a number of studies. However, researches and demonstration are mostly conducted in arid and semi-arid areas of northern China and the study usually focus on one crop a year or two crops a year system, and tillage treatment is single. There is little study on conservation tillage models of three crops a year system in southwest China and the law of soil nutrients, agricultural ecology, water distribution, crop growth and development, and water use efficiency under the condition of conservation tillage is also lacking. Given this situation, this study was implemented in experimental farmland of Southwest University, Beibei District, in Chongqing City, from November 2007 to November 2009. Taking dry field under "wheat/corn/sweet potato" and the "Potato/corn/sweet potato" tri-crop intercropping system as a study object, the experiments were conducted to investigate soil nutrient, farm ecology and soil moisture and crop response to conservation tillage. Using local meteorological and experimental data, and the statistical software SPSS and DPS to compare different tillage patterns, it may provide the scientific basis for promotion of conservation tillage in this area. The major findings are as follows:
     1. In soil nutrient's aspect, the five modes of conservation tillage all improved soil nutrient supply. Compared to T, the improvement rate of the SOM of RSD, TSD, RS, TD models were respectively by 28.27%,21.30%,16.54%,19.16%, decreasing the rate of bulk density by 3.33%,3.00%,4.00%,2.67%, significantly increased the content of total potassium, total nitrogen, nitrogen in the soil. While the other indexes of R were not significantly different from those of tradition, except the SOM. Dynamic changes of soil nutrients are more complex than a single straw mulch treatment because each of tillage models includes some different tillage methods.
     2. In the aspect of field's ecological environment, straw mulching treatments like RSD, TSD, RS, and TS were higher than no straw mulching treatments CK and R in terms of the number of earthworms or biomass. But in all, the effects of RS and TS were better. At the same time, RSD, TSD, RS, TS model significantly reduced soil temperature in the 5cm and 10cm at 14:00 hours in July enhance easing the high-temperature damage on maize in late growth stages. However, compared to traditional tillage, R's effect was not remarkable. In the weed control aspect, straw mulching treatments had more efficient than straw mulching treatments in terms of weed height, density, or biomass, while the ridge's effect was not remarkable. The order of control results from the high to lower is as follow:RS> TS> TSD> RSD> T (CK)> R.
     3. In the aspect of soil moisture, two consecutive years of field trials showed that each treatment increases the soil water storage in 0~80cm soil layer. The order of soil water storage from the high to lower is as follows:RSD>RS>TSD>TS>R> T(CK). In the aspect of the vertical dynamic change of soil moisture,0~40cm of soil water content changed dramatically between 21.45%~30.78%, amplitude in 40~60cm soil layer is relatively small,60~80cm soil layer is relatively stable. This indicates that conservation tillage will help improve soil water storage capacity, increase soil reservoir stocks, while its effects on 0~40cm layer of soil moisture is significantly greater than 40~80cm soil layer.
     4. In the aspect of Growth and physiological characteristics of crops, compared to traditional tillage, conservation tillage significantly increased the area of the flag leaf and penultimate leaf, increased the net photosynthetic rate by 2.90%~5.74% in maturity stage of wheat. The process of maturation (4.17-5.12), the distribution of index rising trends increased by 238.46%~242.31%. Two consecutive years of field trials showed that conversation tillage significantly increased root length in the diameter range of 1.0~2.5 mm, root surface area in the seedling stage of maize, meanwhile increased root vigor by 19.12%~27.46%, root-shoot ratio by 36.72%~37.50%, root biomass by 62.53%~77.37%. This indicates that conservation tillage is not only beneficial to root development, but also promoted the growth of plants, thereby enhancing the leaf net photosynthetic rate and plant distribution index.
     5. In the aspect of grain yield and water use efficiency, the order of the average grain yield is as follow:RSD> RS> TSD> TS> R> T (CK). Tillage treatments including RSD, RS, and R significantly increased the yield of potato crops. And compared with treatment T, the trend of R, TS, RS, TSD and RSD were decreasing. The order of various water use efficiency and production efficiency of precipitation is as follow:RSD> RS> TSD> TS> R> T (CK).
     6. In the respect of benefit analysis, compared with treatment T, the output, net income of other treatments were significantly increased, the output by 4.41%~17.40%, net income by 5.36%~15.37%, output ratio by 3.84%~19.21%. The order of benefit analysis is as follow:RS> RSD> R> T (CK)> TSD> TS.
     From the experimental study, it can be concluded that the five conservation tillage models have good regulation effects on soil nutrient and soil moisture, including the regulation of soil temperature, the control of weed, the promotion of earthworms, and the significant improvement of crop yield, economic benefit and WUE. Integrated effect of RSD, RS are the best, and are worthy of promotion in the region of tri-crop intercropping system in southwest China.
引文
[1]白大鹏,赵建强,陈明昌等.整秸秆覆盖免耕条件下黄土高源旱地的养分消长研究[J].土壤学报,1997,34(1):103-106
    [2]蔡典雄,王小彬,高绪科.关于持续性保持耕作体系的探讨[J].土壤学进展,1993,21(1):1-8
    [3]农业部农业机械化管理司编保护性耕作技术手.2002年5月北京.
    [4]师江澜,,刘建忠,吴发启.保护性耕作研究进展与评述[J].干旱地区农业研究.2006,24 (1):206-211
    [5]张燕卿,张玉龙.旱区保护性耕作技术研究进展与应用前景[J].干旱地区农业研究.2009,27(1):119-121
    [6]John E. Monrrision美国保护性的过去和未来[J].中国机械化旱作节水农业国际研讨会2000年11月21日,北京:35-39
    [7]CTIC.2000 CTIC News Release [M].September 27.2000. Website:www.ctic.purdue.edu
    [8]赵化春,王晓丽.少耕法与免耕法的起源及发展前景[J].吉林农业科学,1991(1):85-88
    [9]Benites JR, Derpsch R, McGarry D Current Status and Future Growth Potential of Conservation Agriculture in the World Context [J]. ISTROC 2003:120-128
    [10]Paustien K, Cole V, Sauerbeck D, etal.CO2 mitigation by agriculture [A]. Paustien K. Climatic change [C]. Boca Raton,FL:CRC Press,1998.
    [11]Gao, NW and WY, Li Chinese Conservation Tillage.ISTROC Australia, 2003:465-470
    [12]Tebrugge,F. and A, Bohrnsen Farmers and experts opinion on no-tillage in West-Europe and Nebraska, paper presented at Iworld congress on conservation Agriculture[J], Madrid,Spain,October 1-5,2001ISTROC,:774-779
    [13]李向东,郭天则,高旺盛等.河南传统农业作物起源与耕作制度演变[J].中国农学通报,,2006 22(8):574-579
    [14]中国耕作制度研究会.中国少免耕与覆盖技术研究.北京:科学出版社,1991.
    [15]张飞,赵明,张宾.我国北方保护性耕作发展中的问题[J].中国农业科技导报,2004,6(3):36-39
    [16]高焕文,李问盈,李洪文.中国特色保护性耕作技术[J].农业工程学报,,2003,19(3):1-4
    [17]罗永潘.我国少耕与免耕技术推广应用情况与发展前景[J].耕作与栽培,1991,2(1):1-7
    [18]赵其斌,郝强.漫谈保护性耕作的现状与发展前景[J].农业机械,2001,(12);26-27
    [19]贾建国.农业部“十五”重点推广50项技术保护性耕作机械化技术[J].世界农业,2001,11(2):34-35
    [20]高旺盛.论保护性耕作技术的基本原理与发展趋势[J].中国农业科学,2007,40(12):2702-2708
    [21]郑华平.保护性耕作措施的综合效应研究及其生态与经济效益评价. 学位论文
    [22]吴婕,朱钟麟.秸秆覆盖还田对土壤理化性质及作物产量的影响[J].西南农业学报,2006,19(2):192-195.
    [23]Blevins R L, Thomas G W,Smith M S,Frye W W,Comelius P L. Changes in soil properties after 10 years continuous non-tilled and conventionally tilled com [J]. Soil and Tillage Research,1983,3:135-146.
    [24]Lal R No-tillage effects on soil properties under different crops in western Nigenia [J].Soil Sci,Soc Am Proc,1976,40:762-768.
    [25]王茄.旱地玉米免耕整秸秆覆盖土壤养分、结构和生物的研究[[J],山西农业学,1994.22(3):17-19.
    [26]孙海国.植物残体对土壤结构性状的影响[J],生态农业研究,1998,6(3):39-41.
    [27]吴崇海.高留麦茬的整体效应与配套技术研究[J].干旱地区农业研究,1996.14(1):43-48.
    [28]吴敬民.秸秆还田效果及其在土壤培肥中的地位[[J].土壤学报,1991,25(5):211-215
    [29]邵景安,唐晓红,魏朝富,谢德体.保护性耕作对稻田土壤有机质的影响[J].生态学报,2007,27(11):4434-4436.
    [30]张星杰,刘景辉,李立军.保护性耕作对旱作玉米土壤微生物和酶活性的影响[J].玉米科学,2008,16(1):91-95.
    [31]王殿武,褚达华.少免耕对旱地土壤物理性质的影响[J].河北农业大学学报,1992,15(2):28-33
    [32]张俊鹏,孙景生,刘祖贵.不同麦秸覆盖量对夏玉米田棵间土壤蒸发和地温的影响[J].干旱地区农业研究,2009,27(1):95-100
    [33]宋丽.黄瓜生理性病害发生原因及对策[J].现代园艺,2009,3:63-64
    [34]周礼恺,张志明,陈恩凤.黑土的酶活性[J].土壤学报,1981,18(2):158-165
    [35]陈恩凤.土壤酶的生物学意义(代序)[C]//中国科学院林业研究所,中国科学院土壤肥料研究所,吉林农业大学.全国土壤酶学研究文集.沈阳:辽宁科学技术出社,1988:2-5.
    [36]关松荫,张德生,张志明.土壤酶及其研究法[M].北京:农业出版社,1986
    [37]周礼恺.土壤酶活性的总体在评价土壤肥力水平中的作用[J].土壤学报,1983,20(4):413-417.
    [38]苗琳,王立,黄高宝.保护性耕作对旱地麦田土壤酶活性的影响[J].干旱地区农业研究,2009,27(1):6-10.
    [39]刘振友.我国保护性耕作的发展应用[J].农机化研究,2005(7):312-314
    [40]杜兵,李问盈,邓健等.保护性耕作表土作业的田间试验研究[J].中国农业大学学报,2000,5(4):65-67
    [41]杨学明,张晓平,方华军,等.北美保护性耕作及对中国的意义[J].应用生态学报,2004,2(15):335-340.
    [42]Li P S. Discussion on effect of land ownership on rural ecological environment [J].Rural Ecol Environ,1999,(15):59-62
    [43]Peng H S. Problems challenging chinese land and conservation strategies [J]. Ecol Econ,1993, (5):18-22.
    [44]Yang R Z. Soil erosion from arable land and cont rol policy in China [J].Sci Soil Cons,1994,(14):32-36.
    [45]吴涌泉,屈明,孙芬,等.秸秆覆盖对土壤理化性状、微生物及生态环境的影响[J].中国农学通报,2009,25(14):263-268
    [46]张雪松,曹永胜,曹克强.保护性耕作与小麦主要土传病害问题和治理对策[J].西北农林科技大学学报(自然科学版),2005,33(增刊):47-48.
    [47]More M J. Effect of cover crop mulches on weed emergence, weed biomass, and soybean (Glycine max) development [J].Weed Technology,1994,8:512-518.
    [48]李香菊,王贵启,李秉华,等.麦秸覆盖与除草剂相结合对免耕玉米田杂草的控制效果研究[J].华北农学报,,2003,18:99-101.
    49籍增顺.旱地农业持续发展技术研究[J].生态农业研究,1999,7(1):47-50.
    [50]Blevins R L. Tillage effects on sediment and soluble nutrient losses from a Maury silt loam soil[J]. J Environ Qual,1990,19 (4):683-686和William F. Schillinger.Minimum and delayed conservation tillage for wheat-fallow farming [J]. Soil Sci Soc Am J,2001,65:1203-1209.
    [51]高国雄,吴发启,闫维恒.保护性耕作是防止沙尘暴发生的有效途径[J].水土保持通报,2004,24(1):66-68
    [52]王世学,高焕文,李洪文.冷寒风沙区保护性耕作种植试验[J].农业工程学报,2003,19(3):66-68.
    [53]谢瑞芝,李少昆,金亚征.中国保护性耕作试验研究的产量效应分析[J].中国农业科学,2008,41(2):397-404
    [54]Su Z Y, Zhang J S, Wu W L, Cai D X, Lv J J, Jiang G H, Huang J, Gao J, Hartmann R, Gabriels D. Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China. Agricultural Water Management,2007,87:307-314.
    [55]Govaerts B, Sayre K D, Deckers J. Stable high yields with zero tillage and permanent bed planting? Field Crops Research,2005,94:33-42.
    [56]Tebrugge F, During R A. Reducing tillage intensity-a review of results from a long-term study in Germany. Soil & Tillage Research,1999,53:15-28.
    [57]Uri N D. Perceptions on the use of no-till farming in production agriculture in the United States:an analysis of survey results. Agriculture, Ecosystems and Environment, 2000,77:263-266.
    [58]Lal R, Griffin M, Apt J, Lave L, Morgan M G. Managing soil carbon. Science, 2004,304(16):393
    [59]康红,朱保安,洪利辉.免耕覆盖对旱地土壤肥力和小麦产量的影响[J].陕西农业科,,2001(9):1-3.
    [60]余泳昌,刘晓文,李明枝.夏玉米免耕秸秆覆盖机械化栽培技术的研究[J].河南农业大学学报,2002,36(4):309-312.
    [61]贾树龙,孟春香,任图生.耕作及残茬管理对作物产量及土壤性状的影响[J].河北农业科学,2004,8(4):37-40.
    [62]李少昆,王克如,冯聚凯.玉米秸秆还田与不同耕作方式下影响小麦出苗的因素作物学报[J].2006,32(3):463-465.
    [63]赵廷祥.农业保护性耕作与生态环境保护[J].农村牧区机械化,2002,(4):7-8.
    [64]鲁向晖,隋艳艳,王飞.保护性耕作技术对农田环境的影响研究[J].干旱地区农业研究,2007,25(3):66-70
    [65]王彩绒,田霄鸿,李生秀.沟垄覆膜集雨栽培对冬小麦水分利用效率及产量的影响[J].中国农业科学,2004,37(2):208-214.
    [66]何国亚,曾祖俊.麦玉苕旱三熟持续高产研究.持续高产高效种植模式的理论与实践[M].北京:中国农业出版社,1995,172-180.
    [67]高阳华,唐云辉,冉荣生.重庆市伏旱发生分布规律研究[J].贵州气象,2002,26(3):6-11.
    [68]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学技术出版社,2000.
    [69]白宝璋,金锦子,白崧,等.玉米根系活力TTC测定法的改良[J].玉米科学,1994,2(4):44—47
    [70]王同朝,卫丽,王燕,等.夏玉米垄作覆盖对农田土壤水分及其利用影响[H].水土保持学报,2007,21(2):129-132.
    [71]Deibert E J, Utter R A. Earthworm (Lumbricidae) survey of North Dakota fields placed in the US conservation reserve program [J]. Journal of Soil and Water Conservation,2003,58(1):39-45.
    [72]黄道友,陈桂秋,王克林,等.红壤丘陵区地表水资源动态与合理调蓄利用研究[J].水科学进展,2004,15(3):370-375.
    [73]赵聚宝,梅旭荣,薛军红,等.秸秆覆盖对旱地作物水分利用效率的影响[J].中国农业科学,1996,29(2):59-61.
    [74]李友军,吴金芝,黄明,等.不同耕作方式对小麦旗叶光合特性和水分利用效率的影响[J].农业工程学报,2006,22(12):44-48
    [75]吴涌泉,屈明,孙芬,等.秸秆覆盖对土壤理化性状、微生物及生态环境的影响[J].中国农学通报,2009,25(14):263-268.
    [76]李全起,陈雨梅,于舜章,等.覆盖与灌溉条件下农田耕层土壤养分含量的动态变化[J].水土保持学报,2006,2(1):37-40
    [77]邹聪明,王国鑫,胡小东,等.秸秆覆盖对套作玉米苗期根系发育与生理特征的影响[J].中国生态农业学报2010,18(3):1-5
    [78]李成军,吴宏亮,康建宏,等.保护性耕作下玉米田土壤水温效应[J].安微农学通报,2009,15(11):115-117.
    [79]李毅,邵明安.新疆农田作物覆膜地温极值的时空变化[J].应用生态学报,2004,15(11):2039-2044.
    [80]乔玉辉,曹志平,王宝清,等.不同培肥措施对低肥力土壤生态系统蚯蚓种群数量的影响[J].生态学报,2004,24(4):700-705.
    [81]彭晚霞,宋同清,邹冬生等.覆盖与间作对亚热带丘陵茶园生态的综合调控效果[J].中国农业科学,2008,41(8):2370-2378.
    [82]肖润林,向佐湘,徐华勤,等.间种白三叶草和稻草覆盖控制丘陵茶园杂草效果[J].农业工程学报,2008,24(11):183-186.
    [83]Huang G B, Zhang R Z. Conservation tillage effects on spring wheat and field pea in the western Loess Plateau China[J].Soil management for sustainability.Proceeding of international soil tillage research organization 16th triennial conference,2003. 7(2):51-59.
    [84]王法宏,王旭清,任德昌.土壤深松对小麦根系活性的垂直分布及旗叶衰老的影响[J].核农学报,2003,17(1):56-61
    [85]姜东.谢祝捷,曹卫星,等.花后干旱和渍水对小麦光合特性和物质运转的影响[J].作物学报,2004,30(2):175-182
    [86]李名扬.植物学[M].北京:中国林业出版社,2003:9
    [87]王启现,王璞,杨相勇,等.不同施氮期对玉米根系分布及其活性的影响[J]. 中国农业科学,2003,36(12):1469—1475
    [88]李秧秧,刘文兆.土壤水分与氮肥对玉米根系生长的影响[J].中国生态农业学报,2001,9(1):13—15
    [89]杨文钰,樊高琼,任万军,等.烯效唑干拌种对小麦根叶生理功能的影响[J].中国农业科学,2005,38(7):1339—1345
    [90]Sattelmacher B, Horst W J, Becker H C. Factors that contribute to genetic variation for nutrient efficiency of crop plants [J]. Z.Pflanzen.Bodenk,1994,157:215-22
    [91]萧浪涛,王三根.植物生理学[M].北京:中国农业出版社,2004:1
    [92]王玉凤,王庆祥,商丽威.钙对NaCl胁迫下玉米幼苗根系活力和有机渗透调节物质含量的影响[J].玉米科学,2008,16(2):66—70
    [93]于舜章,陈雨海,周勋波,等.冬小麦期覆盖秸秆对夏玉米土壤水分动态变化及产量的影响[J].水土保持学报,2004,18(6):175—178
    [94]汪可欣,王丽学,吴琼,等.保护性耕作措施对夏玉米产量和水分利用效率的影响[J].节水灌溉,2009,1:31-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700