不同施肥处理对黄绵土有机质和氮素流失影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原地区分布大面积的黄绵土,是世界范围内严重的水土流失区。研究该地区的黄绵土农耕地施肥对有机质和氮素流失影响规律,有利于提高农业生产中氮肥的有效的利用,达到农业在较少投入下能够得到较高的经济产量,为作物生长需要的养分量与减少环境污染之间建立平衡关系。本文采用室内人工模拟降雨,研究黄绵土4种施氮处理下产流过程中有机质和氮素流失特征,得出如下主要结论:
     1)不同施肥处理径流泥沙流失特征研究表明,施肥可以延长初始产流时间,与对照处理相比较,高肥、中肥、低肥延长的初始产流时间分别为对照的5.5倍、5.2倍、2.6倍,高肥处理延长的初始产流时间最长;不同处理径流量变化趋势基本相同即先迅速增大至最大值后趋于稳定,产流末期又急剧下降;而含沙量变化与径流量不同,降雨初期含沙量急剧下降,随后在整个径流过程中达到稳定。在对径流和泥沙累计流失过程回归分析后得出,不同施肥处理下,径流流失量与降雨时间存在显著的幂函数相关关系,而泥沙流失量与降雨时间存在显著的线性相关关系。与对照处理相比较,增施氮肥后可以不同程度减少径流和泥沙流失量。
     2)不同施肥处理下有机质流失特征研究表明,各种施肥处理泥沙中有机质含量变化总趋势相似,先急剧下降,在产流12min达到稳定含量之后略有波动但波动不大,对照处理有机质含量变化最不稳定;不同施肥处理有机质累计流失量曲线高低依次是:对照>低肥>中肥>高肥处理,高肥处理累计流失量最少;各处理有机质流失量与降雨时间存在y=a+bln(x)的对数回归方程相关关系。施肥不同有机质流失量不同,回归分析得出施肥量与有机质流失量之间存在T=97.2161e-0.004805q的指数函数关系。有机质在泥沙中存在富集现象,各种施肥处理下富集率大小依次是:对照>低肥>高肥>中肥,中肥处理富集率最低,施肥可以降低泥沙对有机质的富集作用,但其对降低有机质富集作用关系比较复杂,并非简单的正相关关系。
     3)不同施肥处理下全氮流失特征研究表明,不同施肥处理的全氮含量变化不同,在整个降雨过程中全氮含量变化是:高肥>中肥>低肥>对照;不同施肥处理全氮累计流失量变化与其含量变化不同,施肥后减少了全氮流失总量,与对照相比,高肥、中肥、低肥处理全氮减少量分别为对照的67.7%、45.6%、44.1%,且施肥处理与全氮流失量存在T=97.2161e-0.004805q指数函数相关关系。而全氮累计流失量与降雨时间也存在相关性,回归分析得出y=a+bLn(x)对数相关关系。全氮在泥沙中有富集现象,不同施肥处理对全氮富集作用与有机质相反,其中高肥处理富集率显著高于其他处理,而中肥和低肥处理富集率基本相同,对照处理富集率最低。增施氮肥可以减少全氮流失总量,但却加剧了全氮的富集作用。
     4)不同施肥处理下铵态氮、硝态氮流失特征表明,不同施肥处理径流中铵态氮和硝态氮浓度随降雨时间延长变化趋势基本相似:高肥、中肥、低肥处理先急剧下降到稳定浓度至降雨结束;径流中以硝态氮流失为主,铵态氮的流失极少;但二者流失量与降雨时间均存在显著的线性相关关系。泥沙中铵态氮含量变化趋势是先降低后又逐渐增大至最大值,降雨后期又减少至产流初期时的含量,而硝态氮含量变化趋势是先缓慢增加至最大,随降雨时间延长又略有下降;与径流相比泥沙中流失的铵态氮和硝态氮总量都比较小,但不同施肥处理硝态氮和铵态氮与降雨时间都存在显著对数函数关系。侵蚀过程过程中铵态氮和硝态氮流失总量中以硝态氮为主,且硝态氮主要源于径流中的流失。
Loessial Soil is widely distributed in the Plateau Loess, which suffered from severe soil erosion in the worldwide. Studying on soil nutrient loss is one of the most important way for the region to reduce its soil and water loss, increase agricultural production, improve the ecological environment, and increase income of farmers on the Loess Plateau. Studying on effects of fertilization treatments on nitrogen and organic matter loss in loessial soil, is beneficial to improving efficient use of nitrogen fertilizer in agricultural production, obtaining higher economic yield with less investment in agriculture field, and balancing relationship between crop nutrient needs and the reduction of environmental pollution. Based on simulation rainfall condition, this paper mainly study on characteristics of nitrogen and organic matter loss by runoff period under four kinds of nitrogen treatments., and the main conclusions are as follows:
     (1) The characteristics of runoff and sediment loss under different fertilization treatments showed that, fertilization can extend the initial runoff time, comparing with the CK, the initial runoff lag time of high nitrogen、medium nitrogen and low nitrogen were 5.5 times,5.2 times and 2.6 times respectively, that was, the initial runoff lag time of high nitrogen is the longest; under different fertilization treatments the runoff had the same variation trend which increased to the maximum initially, and then kept stabilize, but fell sharply at last; on the other hand, the variation trend of sediment concentration was different,which initially fell sharply, then sediment concentration was stable in remain runoff process. Furthermore, according to regression analysis of runoff and sediment accumulated loss, we found that there was a significant power function correlation between the runoff and rainfall time, while the significant linear correlation between sediment loss and rainfall time under different fertilization treatment. Comparing with the CK, increased application of nitrogen fertilizer can reduce runoff and sediment loss at varying degrees.
     (2) The characteristics of loss organic matter under different fertilization treatments showed that, the total variation trend of organic matter content under different fertilization treatments was similar, which sharply decreased at first, then reached the steady value when runoff time was 12 min, then, had little fluctuation; organic matter followed curves under different fertilization treatments were:: CK>low nitrogen>medium nitrogen>high nitrogen, and loss of high nitrogen was the least; However, the relationship between organic matter loss content and rainfall time under different treatments can be described by the regression equation:y= a+b Ln (x). Different fertilization had different organic matter total loss, according to regression analysis, the relationship between fertilization and organic matter loss can be described by the exponential function:T=97.2161e-0004805q.Organic matter has enrichment effect in sediment, enrichment rates under different fertilization treatments were: CK>low nitrogen>high nitrogen>medium nitrogen, and medium nitrogen had the lowest enrichment rate. So fertilization can reduce the enrichment of sediment on organic matter, but its relationship with lowering organic matter enrichment were not simple positive correlation.
     3) The characteristics of total nitrogen loss under different fertilization treatments showed that, the variation of the concentration of total nitrogen loss was different under different fertilization treatments, during the whole process of the rainfall, the content of total nitrogen were all follow the order of:high nitrogen> medium nitrogen>low nitrogen>CK. However, the variation of the cumulative total nitrogen loss was different from the variation of the content. Compared to the CK, the total quantity of the total nitrogen loss decreased after fertilization, which were separately 67.7%, 45.6% and 44.1%. The relationship between fertilization and total nitrogen can be described by the loss exponential equation:T=97.2161e-0004805q. Besides, there was also a correlation ship between total nitrogen loss content and rainfall time under different treatments, the logarithm correlation function of which was y= a+b Ln(x). Total nitrogen has enrichment effect in sediment, but the effect of different fertilization treatments was negative to organic matter. Furthermore, the enrichment rate of high nitrogen was significantly higher than others, while the enrichment rates of medium and low nitrogen were almost the same and that of the CK was the lowest, increased application of nitrogen fertilizer could decrease the concentration, but enhance the enrichment effect of total nitrogen.
     4) The characteristics of ammonium and nitrate nitrogen under different fertilization treatments showed that, the concentration of ammonium and nitrate nitrogen in the runoff under different fertilization treatments prolonged with the duration of rainfall simulation. The concentration of high nitrogen、medium nitrogen and low nitrogen decreased sharply and then went to a steady value till the end of the rainfall event. The main loss in the runoff was nitrate nitrogen, and the amount of ammonium nitrogen was little. However, there were significant linear relation between the loss of both type of nitrogen and rainfall time. The varying trend of ammonium nitrogen in sediment was decreasing to the lowest and then increasing gradually to the highest, and, at last decreasing to the primary concentration as the beginning of the runoff. While the varying trend of the nitrate nitrogen was increasing slowly to the highest, then decreasing with the rainfall time lasting. Compared to the loss of ammonium and nitrate nitrogen in the runoff, that in sediment was smaller, but both the ammonium and nitrate nitrogen under different fertilization treatments had significant logarithm relationship with rainfall time. According to regression analysis, During soil erosion process, loss style of nitrogen was mainly nitrate nitrogen which was mainly in runoff.
引文
[1]黄秉维.谈黄河中下游水土保持问题[J].中国水土保持,1983,V0l.(1):8~13.
    [2]杨文治,余存祖.黄土高原区域治理与评价[M].北京科学出版社,1992:305~307.
    [3]黄自立,张文孝.陕北黄绵土的性质与改良作用[J].陕西水土保持研究,1996,5(6):132~138.
    [4]黄自立.陕北地区黄绵土分类的研究[J].土壤学报,1987,24(3):267~274.
    [5]陈永宗.黄土高原土壤侵蚀规律研究工作回顾[J].地理研究,1987,6(1):76~85.
    [6]张春伦,朱兴明,胡思农.缓释尿素施肥及氮素利用率研究[J].土壤肥料,1998,13(6):17~20.
    [7]贾恒义,等.黄土高原地区土壤养分资源分区及其评价[J].水土保持学报.1994,.8(3):22~26.
    [8]赵娟,等.黄土高原典型小流域径流泥沙观测面临的问题与对策[J].中国水土持,2006,10(5):51~57.
    [9]冯伟,等.黄土高原地区城市化过程中水土流失对生态环境的影响[J].水土保持通报,2004,24(6):26~33.
    [10]Food and Agricultural Organization of the United Nations[R]. FAO Fertilizer Yearbookl998 Roma:FAO,1999,48:201.
    [11]张福锁,米国华,刘建安.玉米氮效率遗传改良与应用[J].农业生物技术学报,1997,7(2):112~1171.
    [12]王小彬,蔡典雄,张镜清,高绪科.旱地玉米N吸收及其N肥利用率研究[J].中国农业科学,2001,34(2):179~1861.
    [13]李建奇,黄高宝,牛俊仪.氮磷营养对覆膜春玉米产量和品质的影响[J].干旱地区农业研究,2005,23(5):62~671.
    [14]Kramarev S M, Skripnik L N. Increasing the protein content in maize grain by optimizing the nitrogen nutrition of plants[J]. Kukuruzai Sorgo,2000,(1):13~16.
    [15]R A Young,G A Onstad(王玲译).坡地土壤侵蚀与养分流失过程的研究[J].水土保持通报,1991,11(3):14~19.
    [16]张兴昌,邵明安.黄土丘陵区小流域土壤氮素流失规律[J].地理学报,2000,55(9):617~626.
    [17]史德明.土壤侵蚀.中国大百科全书[M].中国农业出版社.1990,1236~1237.
    [18]史德明.如何正确理解有关水土保持术语的讨论[J].土壤侵蚀与水土保持学报,1998,4(4):89-91.
    [19]Deizan M M, etal. Size distribution of eroded sediment from two tillage system[J]. Transaction of the A.S.A.E,1987,30(6):44~50.
    [20]Flanagan D C,Forster C R.Strom Pattern effecf on nitrogen and phosphorus in surface runoff[J].Transactions of the A.S.A.E,1989,32(2):133~37.
    [21]Y.Wan,S.A.El-Swalfy.Sediment Enrichment Mechanisms of Organic and Phosphorus in a
    Well-Aggreated Oxisol[J].J.Environ.Qyal,1998,27:132-138.
    [22]F.Ghidey,E.Alberts.Temporal and Spatial Patterns of Nitrate in a Claypan [J].Soil.Environ. Qual,1999,Vol.28:584~594.
    [23]Moore.P.D,C.W.Robbins.Reducing phosphorus losses from surface-irrigated fields[J].Emerging polyacry lamide technology Environ.Qual,1998,Vol.27:305-312.
    [24]Gburek. W.1., A.N. Sharply. Hydrologic controls on phosphorus loss from upland agricultural watersheds[J]. J. Environ. Qual,1998,Vol.27:267~277.
    [25]K.A. Sminth, Dd.R. Jackson, P.J.A. Withers. Nutrient losses by surface run-off following the application of organic manures to arable land. Phosphorus[J].Environmental Pollution,2001, Vol.112:53-60.
    [26]B.J.Chambers, T.W.D.Garwood, R.J.Unwin.Controlling Soil Water Erosion and phosphorus losses from Arable landing England and Wales [J]. J.Environ. Qua 1,2000,Vol.29:145~150.
    [27]Ollcy J.M. Murry identifying sediment sources in a Gullied catchments using natural and anthropogenic radioactivity [J]. Water resources research,1993,26(4):1037~1043.
    [28]内田太郎,木本秋津,大手信人,等.荒山地の土砂生产过程に关すゐ原位置[J].砂防学会言志,1999,51(5).
    [29]Moore. P. A. Jr. and D. M. Miller. Decreasing Phosphorus solubility in Poultry litter with aluminum. Calcium and iron amendment [J]. Environ. Quall,1994,Vol.23:325-330.
    [30]Bullock D G, Bullock D. Quadratic and quadratic-plus-plateau models for predicting optimal nitrogen rate of corn comparison [J]. Agronomy Journal,1994,86(1):191-195.
    [31]Zingg A W. Degree and length of land slope as it affects soil loss in runoff [J].Agricultural.
    [32]塜本良则.森林、水、土の保全、湿动带の水文地形学[M].朝仓店,1998.
    [33]陈静生,于涛.黄河流域氮素流失模数研究[J].农业环境科学学报,2004,23(5):833~838.
    [34]同延安,张文孝,等.不同氮肥种类在壤土及黄绵土中的转化[J].土壤通报,1998,25(8):107~108.
    [35]刘文国,王林权,张兴昌,邵明安,李林海.坡面水分和养分渗透模拟研究[J].西北农林科技大学学报(自然科学版),2003,10:68-72.
    [36]黄满湘,章申,唐以剑,等.模拟降雨条件下农田径流中氮的流失过程.土壤与环境[J].2001,Vol.10(1):6~11.
    [37]晏维金,章申,等.模拟降雨条件下生物可利用磷在地表径流中的流失和预测[J].环境化学,1999:6:22~28.
    [38]罗春燕,涂仕华,庞良玉,等.降雨强度对紫色土坡耕地养分流失的影响[J].水土保持学报,2009:4(5):37~41.
    [39]康玲玲,朱小勇,王云璋,等.不同雨强条件下黄土性土壤养分流失规律研究[J].土壤学报,
    1999,6(4):536~543.
    [40]王洪杰,李宪文,史学正,等.不同土地利用方式下土壤养分的分布及其与土壤颗粒组成关系[J].水土保持学报,2003,2(13):48~53.
    [41]黄丽,丁树文,董舟,等.三峡库区紫色土养分流失的试验研究[J].土壤侵蚀与水土保持学报,1998,4(1):8-13.
    [42]郑剑英.黄土丘陵沟壑区典型小流域侵蚀产沙过程模型[J].地理学报,1996,51(2):108-117.
    [43]张兴昌,邵明安,等.不同植被对土壤侵蚀和氮素流失的影响[J].水土保持研究,2000,20(6):1039~1043.
    [44]张兴昌,邵明安.水蚀条件下土壤氮素径流流失的影响因素[D].土壤物理与生态环境建设研究文集,2001.
    [45]李香兰,等.施肥对土壤有机质的影响研究[J].陕西农业科学,2000,12(7):13~15.
    [46]黄云风,张珞平,洪华生,等.不同土地利用对流域土壤侵蚀和氮、磷流失的影响[J].农业环境科学学报,2004,23(4):735-739.
    [47]吴希媛,张丽萍,等.不同雨强下坡地氮流失特征[J].生态学报,2007,27(11):32-34.
    [48]蔡崇法,张光远,等.人工降雨条件下紫色土养分流失特点的试验研究[J].华中农业大学学报,1999(12),增刊.
    [49]黄满湘,章申,张国梁,等.北京地区农田氮素养分随地表径流流失机理[J].地理学报,2003,58(1):147~154.
    [50]李香兰,宋才炽.安塞新修黄绵土农地有机质分解及土壤有效态养分变化[J].水土保持研究,1996,3(2):29~35.
    [51]张付申.不同施肥处理对塿土和黄绵土有机质氧化稳定性的影响[J],河南农业大学学报,1996,30(1):80~84.
    [52]汪涛,朱波,等.不同施肥制度下紫色土坡耕地氮素流失特征[J],水土保持学报,2005,19(5):65-68.
    [53]张建华,赵燮京,林超文,等.川中丘陵坡耕地水土保持与农业生产的发展[J].水土保持学报,2001,15(1):81~84.
    [54]马琨,王兆骞,等.不同雨强条件下红壤坡地养分流失特征研究[J].水土保持学报2002,16(3):15-19.
    [55]王全九,等.降雨条件下黄土坡面溶质随地表径流迁实验研究[J].水土保持学报,1993,7(1):11-17.
    [56]陈静生,等.黄河流域氮素流失模数研究[J].农业环境科学学报,2004,23(5):833-838.
    [57]付伟章,等.氮素流失机制的定量化研究[J].水土保持科技情报,2004,1:19~22.
    [58]李艳梅,等.黄绵土坡面土壤矿质氮素径流流失与入渗特征研究[J].农业环境科学学报,2007,26(1):246~251.
    [59]党廷辉,郭胜利,郝明德.黄土旱塬长期施肥下硝态氮深层累积的定量研究[J].水土保持研究,2003,10(1):58~61.
    [60]李世清,王瑞军,李紫燕,等.半干旱半湿润农田生态系统不可忽视的土壤氮库—土壤剖面中累积的硝态氮[J].干旱地区农业研究,2004,22(4):1~13.
    [61]古巧珍,杨学云,孙本华,等.旱地塿土长期定位施肥土壤剖面硝态氮分布与累积研究[J].干旱地区农业研究,2003,21(4):48-52.
    [62]袁新民,杨学云,同延安,等.不同施氮量对土壤硝态氮累积的影响[J].干旱地区农业研究,2001,19(1):8-14.
    [63]Bronson K F,Onken A B,Keeling JW,etal.Nitrogen response in cotton as affected by tillage system and irrigation level[J].Soil Sci Soc AmJ,2001,65:1153~1163.
    [64]倪九派,魏朝富,等.三峡库区坡耕地土壤养分流失的实验研究[J].水土保持学报,2008,22(5):38-43.
    [65]黄丽,张光远,丁树文,等.侵蚀紫色土土壤颗粒流失的研究[J].水土保持学报,1999,13(1):35-39.
    [66]许峰,蔡强国,吴淑安,等.坡地农林复合系统土壤养分过程研究进展[J].水土保持学报,2000,14(1):82~87.
    [67]Wischmeier W H,Smith D D. Predicting rainfall-erosion losses from cropland east of the Rocky Mountains[R].USDA Agricultural handbook,1965.
    [68]Haith D A, Merrill D E. Evaluation of a daily rainfall erosive model [J].Transaction of the ASAE,1987,30(1):90-93.
    [69]Foster G R. Haan C T, etal. In Hydrologic Modeling of Small Water-sheds[C]. Modeling the erosion process MI:ASAE,1982.
    [70]McCool D K,Brown L C,Foster G R, etal. Revised slope steepness factor for the Universal Soil Loss Equation[J]. Transactions of the ASAE,1987,30:1387~1396.
    [71]Renard K G,Foster G R,Weesies G A,etal. RUSL E:A guide to conservation planning with the revised uni-versal soil loss equation[R].USDA Agricultural Hand-book,1997.
    [72]Ahuja,L.R,Characterization and modeling of chemical trandfer to runiff[J].Adv.Soil Sci,1986, 4:149-158.
    [73]孟庆华,杨林章.三峡库区不同土地利用方式的养分流失研究[J].生态学报,2000,20(6):1028-1033.
    [74]陈永宗.黄土高原土壤侵蚀规律研究工作回顾[J].地理研究,1987,Vo1.6(1):76-85.
    [75]叶芝菡,刘宝元,等.土壤侵蚀过程中的养分富集率研究综述[J].中国水土保持科学,2009,12(3):102~111.
    [76]佘雕,吴发启.坡耕地侵蚀泥沙养分富集规律研究[J].西北林学院学院,2007,22(3):29~31.
    [77]巨晓棠,刘学军,张福锁.冬小麦/夏玉米轮作中NO3-N在土壤剖面的累积及移动[J].土壤学报,2003,40(4):538~546.
    [78]王立春赵兰坡等不同施肥方式对黑土春玉米田硝态氮和铵态氮的影响[J].东北林业大学学报,2009,37(12):85-87.
    [79]延安地区地理志[M].陕西人民出版社,1983:58~60.
    [80]陕西省气象志[M].陕西省气象局,1960:74~75.
    [81]中国农业土壤志[M].农业部全国土壤普查办公室主编,1964:198~202.
    [82]陕西省2006年经济形势分析报告[M].陕西省信息中心,2007.01.27.
    [83]姜春云.关于陕北地区治理水土流失建设生态农业的调查报告.陕西省榆林地区和延安市就防治水土流失、建设生态农业问题所作的调查报告,1997.07.
    [84]张兴昌,邵明安.坡地土壤氮素与降雨径流的相互作用机理及模型[J].地理科学进展,2000,19(2):128~135.
    [85]Sharpley A N. The enrichment of soil phosphorous in runoff sediment[J]. Environ.Qual,1983, 9:521-526.
    [86]刘秉正,李光录,吴发启,等.黄土高原南部土壤养分流失规律[J].水土保持学报,1995,9(2):77~86.
    [87]汪涛,朱波,武永锋,等.不同施肥制度下紫色土坡耕地氮素流失特征[J].水土保持学报,2005,19(5):65~68.
    [88]傅涛.坡耕地土壤侵蚀研究进展[J].水土保持学报,2001,15(3):125~128.
    [89]刘南成主编.自然地理学[M].北京:科学出版社,2000,8:250~57.
    [90]王玉芬.坡面径流泥沙计算方法新探[J].中国水土保持,1999,1(12):26~27.
    [91]唐涛,郝明德,单凤霞.人工降雨条件下秸秆覆盖减少水土流失的效应研究[J].水土保持研究,2007,14(4):1~3.
    [92]南京农业大学主编.土壤农化分析[M].北京:农业出版社.
    [93]卫伟,陈利顶,傅伯杰,巩杰.半干旱黄土丘陵沟壑区降水特征值和下垫面因子影响下的水土流失规律[J].生态学报,2006,26(11):3847~3853.
    [94]Brown L C. Norton L D. Surface residue effects on soil erosion from ridges of different soils and formation. Transaction of the ASAE[J].1994,37(5):1515~1524.
    [95]Hamsen E M, Djurhuus J. Nitrate leaching as affected by long term N fertilization on a coarse sand Soil Use and Management,1996,12:199~204.
    [96]Cookson W R, Rowarth J S, Cameron K C. The effect of autumn applied N-labeled fertilizer on nitrate leaching in a cultivated soil dung winter. Nutrient Cycling in Agroeco systems,2000, 56:99-107.
    [97]Havis R N,Alberts E Nutrient leaching from field decomposed corn and soybean residue under simulated rainfall. Soil Science Society of America Journal,1993,6:211~218.
    [99]南方红壤退化机制与防治措施研究专题组.中国红壤退化机制与防治[M].北京:中国农业出版社,1998:122.
    [100]司友斌,王慎强,陈怀满.农田氮磷的流失与水体富营养化[J].土壤学报,2000(4):188-193.
    [101]朱兆良,文启孝.中国土壤氮素[M].南京:江苏科学技术出版社,1992:99.
    [102]李光录,赵晓光.水土流失对土壤养分流失的影响研究[J].西北林学院学报,1995,10(增):28-33.
    [103]Torstensson G, Aronsson H. Nitrogen leaching and crop availability in mannered catch crop system in Sweden Nutrient Cycling in Agroecosystems,2000,56:139~152.
    [104]Bergstr6m LF, Kirchmann H. Leaching of total nitrogen from nitrogen labeled pour manure and in organic nitrogen fertilizer[J]. Journal of Environment Quality,1999,28:1283~1290.
    [105]韩建刚,李占斌.紫色土壤氮素不同流失形式的比较研究[J].中国农学通报,1999,21(10):209-212.
    [106]Maehito Mihara. Nitrogen and Phosphorus losscs due to soil erosion during a Typhoon Japan. agric [J]. Engineering Res,2001,78(2):209~216.
    [107]李永梅,杜彩琼,林春苗,王小红.铵态氮肥施入土壤中的转化[J].云南农业大学学报,2003,18(1):26~29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700