武汉市典型蔬菜硝酸盐污染状况及采后阻控措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于农药、化肥的不合理施用及工业“三废”的排放等导致农产品污染突出,主要表现为农产品中硝酸盐、农药残留、重金属等含量不同程度超过标准规定范围。武汉市城市常住人口超过890万,是重要的蔬菜流通和消费市场,硝酸盐作为蔬菜重要的不良品质指标值得关注。本研究基于对蔬菜硝酸盐采取农艺削减措施的前提下,通过市场取样和室内模拟相结合的方法,揭示了武汉市典型蔬菜硝酸盐和亚硝酸盐的污染状况,探讨了储放环境条件对蔬菜硝酸盐含量的影响,明确了几种实用的食前处理方式去除蔬菜硝酸盐的效果。主要结果如下:
     (1)武汉城区市售蔬菜硝酸盐污染问题突出,尤其是叶菜类蔬菜,其硝酸盐含量平均为3482.2mg·kg-1;不同类型蔬菜硝酸盐含量差异明显,其顺序从大到小依次为叶菜类、根茎类、瓜果类、豆类。在所调查的81个蔬菜样品中,硝酸盐含量达到严重污染等级的占35.8%、重度污染占8.6%、中度污染占9.9%、轻度污染占45.7%,其中超过严重污染等级的全部为叶菜类,占全部叶菜类样品数的58.3%。市售蔬菜亚硝酸盐含量均小于4mg·kg-1,在食用安全范围内。
     (2)温度条件对叶菜类和根茎类的蔬菜硝酸盐含量影响明显。在4d储放时间内,小白菜硝酸盐含量在0-5℃、10-15℃和20~25℃条件下分别在2350.4-3386.6mg·kg-1、2725.9-4068.9mg·kg-1和3138.2-6663.5mg·kg-1范围内波动;初始含量为1695.4mg·kg-1的白萝卜随储放时间延长硝酸盐含量持续上升,0-5℃、10-15℃和20-25℃条件下分别增加到2071.5mg·kg-1、1941.5mg·kg-1和1792.3mg·kg-1。在上述三种储放条件下,小白菜和白萝卜的亚硝酸盐含量均不超过lmg.kg-1,低于对人畜安全的含量标准。
     (3)湿度条件对叶菜类和根茎类蔬菜硝酸盐含量的影响规律存在差异。大白菜在10~15℃条件下储放1d后,70%-75%、80%-85%和90%-95%三种湿度环境下硝酸盐含量分别增加33.2%、13.2%和0.6%;70%-75湿度条件下储放2-5d内,其硝酸盐含量持续增加,到第5d增加了41.0%,而80%-85%湿度条件下第5d增加了13.0%;在90%-95%湿度条件下2-4d内硝酸盐含量呈上升趋势,到第5d却降低了15.8%。白萝卜在10~15℃条件下储放5d,70%~75%湿度条件下,第5d其硝酸盐含量持续增加了56.6%;80%-85%湿度条件下,储放1d后硝酸盐含量降低6.6%,而2-5d一直高于储放前的含量,增加率最高达20.0%;90%-95%湿度条件下前4d内硝酸盐含量变化平缓,第5d却降低19.3%。
     (4)淘米水、食盐水、食用白醋和果蔬洗涤剂均能不同程度地降低蔬菜硝酸盐含量。小白菜的优化清洗方式为在4%食用白醋溶液中浸泡l0min,该处理可降低23.4%的硝酸盐;降低小白菜硝酸盐的各洗涤因素作用从大到小依次为:洗涤剂种类、浸泡时间、洗涤剂浓度。进一步优化正交试验,各因素的作用从大到小依次则为:蔬菜类型、洗涤剂种类与其浓度的交互作用、洗涤剂种类、洗涤剂浓度、洗涤剂种类与浸泡时间的交互作用、浸泡时间;就去除硝酸盐的最佳效果而言,小白菜在1‰食盐水浸泡30min,其降低率达32.5%;菠菜在2‰食盐水浸泡60min,其降低率达23.7%;洗涤方式对白萝卜硝酸盐的去除效果不明显。
     (5)食前对叶菜类蔬菜进行短时间漂烫能有效降低其硝酸盐含量。比较0.5min、1.0min和2.0min三种漂烫处理结果,0.5min漂烫去除蔬菜硝酸盐的效果最佳,该处理可使小白菜和菠菜中硝酸盐含量分别降低26.9%和14.5%。蔬菜经三种漂烫处理后亚硝酸盐可增加6.2~11.6倍,但含量均低于1mg·kg-1。
     (6)去皮处理可降低根茎类和瓜果类蔬菜中硝酸盐含量或亚硝酸盐含量。去皮可使白萝卜硝酸盐含量降低3.0%-9.4%,使黄瓜硝酸盐含量降低10.4%-30.7%,使茄子亚硝酸盐含量降低3.6%~75.0%。
Recently, irrational pesticides, unbalanced fertilizers, and emission of industrial wastes have caused agricultural products to be polluted seriously, including that the contents of nitrate, pesticide residues and heavy metals in agricultural products have exceeded corresponding standards to a certain extent. Wuhan is an important vegetable circulation and consumer market with more than 890 million permanent residents. Nitrate which was the significant harmful factor of vegetable quality is worthy paying close attention. In this paper, based on agronomic reduction measures, it was shown that the pollution status of nitrate and nitrite in typical vegetable in Wuhan City, discussed that the influence of storage conditions on the contents of nitrate in vegetables, and definited that effect of reducing nitrate in vegetables by some handling process after collection with the method of combining market sampling and laboratory simulation. Main results were summarized as follows:
     (1) The present pollution status of nitrate in vegetables were serious in Wuhan City, especially in leaf vegetables, whose average concentration was 3482.2mg·kg-1; the nitrate contents varied significantly in different types vegetables, and the descending sequence was:leaf vegetables, root vegetables, melon and fruit vegetables, beans. Among 81 investigated vegetable samples, the proportion which nitrate contents reached a severe pollution grade which accounted for 35.8%, heavy pollution for 8.6%, moderate pollution for 9.9%, and mild pollution for 45.7%, respectively, and most serious in leaf vegetables, moreover, the vegetables which exceeded the severe pollution grade were all leaf vegetables, and the proportion which nitrate contents exceeded the severe pollution grade accounted for 58.3% in leaf vegetables. All the vegetables were lower than 4mg·kg-1 in nitrite contents in Wuhan City, which were lower than in corresponding hygienic criterion.
     (2) Temperature conditions influenced the nitrate contents of leafy vegetables and root vegetables significantly. Under the conditions of 0~5℃,10~15℃or 20~25℃, nitrate contents in pakchoi were within 2350.4-3386.6mg·kg-1, 2725.9~4068.9mg·kg-1 and 3188.2~6663.5mg·kg-1, respectively, during four days storage period. The nitrate content of white radish in which initial value was 1695.4mg·kg-1 showed a pesistent ascending trend, nitrate content of white radish were reached 2071.5mg·kg-1,1941.5mg·kg-1 and 1792.3mg·kg-1, respectively, under the conditions of 0~5℃,10~15℃and 20~25℃. Under above three kinds of storage temperature, nitrite contents of both pakchoi and white radish were below 1mg·kg-1, which were below safety standards and will not cause harm to people and livestoke.
     (3) Under three humidity conditions, the dynamic laws of the nitrate contents in leafy vegetables differed from in root vegetables under the condition of 10~15℃. During the storage period, cabbages were stored under conditions of RH70%~75%, RH80%~85% or RH90%~95% for one day, whose nitrate contents increased by 33.2%,13.2% and 0.6%, respectively; under condition of RH70%~75%, nitrate contents were increased continuous in day 2~5, and increased by 41.0% on day 5, while increased by 13.0% under condition of RH80%~85%; under condition of RH90%-95%, nitrate contents were increased in day 2~4, but decreased by 15.8% on day 5. Under the condition of 10~15℃, white radish were stored for 5 days under the condition of RH70%~75%, whose nitrate contents were increased by 56.6% on day 5; under the condition of RH80%~85%, nitrate contents of white radish were decreased by 6.6% after one day, and which were more than initial value in day 2~5, and the highest yield can reach to 20.0%; nitrate contents kept stable in day 1~4 under condition of RH90%~95%, and which were decreased by 19.3%.
     (4) Rice washing water, salt solution, vinegar solution and detergent can reduce nitrate contents in vegetables in varying degrees. The optimal treatment decreasing nitrate contents in pakchoi was immersed for 10 minutes in 4%white vinegar solution, which can decrease nitrate contents by 23.4%. The descending sequence of various influencing factors on pakchoi was as follows:detergent types, immersion time, detergent concentration. To optimize experimental factors and levels furtherly, the descending sequence of various factors was as follows:vegetable types, interaction of detergent types and its concentration, detergent types, detergent concentration, interaction of detergent types and immersion time, immersion time. Considering the preferably treatment for decreasing nitrate contents, the treatment for pakchoi was immersed for 30 minutes in 1‰salt solution, whose reduction rate was 32.5%; the treatment for spinach was immersed for 60 minutes in 2‰salt solution, whose reduction rate was 23.7%; however, all above treatments were useless to reduce nitrate contents in white radish.
     (5) Scalding treatment for a short time can reduce nitrate contents in leafy vegetables just before serving. Results of scalding for 0.5minute, 1.0minute or 2.0minute showed that the effect of 0.5 minute scalding was the best to reduce nitrate contents in vegetables, and through 0.5 minute scalding treatment, nitrate contents of pakchoi and spinach were reduced by 26.9% and 14.5%, respectively. Moreover, nitrite content in scalding vegetables were increased by 6.2-11.6 times, while the amount is no more than 1mg·kg-1.
     (6) Peeling treatment could be helpful to reduce nitrate or nitrite contents in root vegetables, melon and fruit vegetables. It could reduce the nitrate contents by 3.0%~9.4% for white radishes,10.4%~30.7% for cucumbers. And the nitrite contents could be reduced by 3.6%~75.0% for eggplant.
引文
[1]农业大词典编辑委员会.农业大词典[M].北京:中国农业出版社,1998:1514~1515.
    [2]Schreiner M. Vegetable crop management strategies to increase the quantity of phytochemicals[J]. European Journal of Nutrition,2005,40(2):85~94.
    [3]赵冰.蔬菜品质学概论[M].北京:化学工业出版社,2003:1-10.
    [4]王正银,胡尚钦,孙彭寿.作物营养与品质[M].北京:中国农业出版社,1999:1-30.
    [5]中华人民共和国国家技术监督局.GB/T 15401-1994.水果、蔬菜及其制品亚硝酸盐和硝酸盐含量的测定[S].北京:中国标准出版社,1994:1-5.
    [6]中华人民共和国国家技术监督局.GB/T5009.33-2003.食品中亚硝酸盐与硝酸盐的测定[S].北京:中国标准出版社,2003:1-8.
    [7]中华人民共和国国家技术监督局.GB/T 19338-2003.蔬菜中硝酸盐限量[S].北京:中国标准出版社,2003:1-3.
    [8]中华人民共和国国家技术监督局.GB/T 15198-1994.食品中亚硝酸盐限量卫生标准[S].北京:中国标准出版社,1994:1-3.
    [9]沈明珠,翟宝杰,车惠茹,等.蔬菜硝酸盐累积的研究Ⅰ: 不同蔬菜硝酸盐、亚硝酸盐含量评价[J].园艺学报,1982,9(4):41~48.
    [10]顾洪如.日本农业生产标准化[J].世界农业,2000,(7):16~17.
    [11]段昌群,王红华,杨双兰.无公害蔬菜生产理论与调控技术[M].北京:科学出版社,2006:100~150.
    [12]王历.HACCP在食品卫生监督中的应用[J].中国卫生事业管理,2000,(3):183.
    [13]王正银,徐卫红,李会合.蔬菜营养与品质[M].北京:科学出版社,2009:102~128.
    [14]徐卫红,王正银.蔬菜中有害无机成分的累积与调控[J].土壤农化通报,1998,13(1):58~62.
    [15]王晶.蔬菜中硝酸盐的危害和标准管理[J].中国蔬菜,2003,(2):1-3.
    [16]陆正松,赵玲,张硕,等.土壤污染、施肥对稻米和蔬菜品质的影响[J].土壤肥料,2001,(4):13~16.
    [17]王朝辉,李生秀,田霄鸿.不同氮肥用量对蔬菜硝态氮累积的影响[J].植物营养与肥料学报,1998,4(1):22~28.
    [18]Santamaria P, Elia A, Serio F. Fertilization strategies for lowering nitrate content in leafy vegetables:Chicory and rocket salad cases[J]. Journal of Plant Nutrition,1998,21(9): 1791~1803.
    [19]McKnight G M, Duncan C W, Leifert L, et al. Dietary nitrate in man:friend or foe[J]. British Journal of Nutrition,1999,81:349~358.
    [20]Archer D L. Evidence that ingested nitrate and nitrite are beneficial to health[J]. Journal of Food Protection,2002,65(5):872~875.
    [21]Benjamin N, McKnight G Managing Risks of Nitrates to Humans and the Environment[J]. New York:Springer,1999:281~288.
    [22]Dykhuizen R S, Frazer A, Duncan C, et al. Managing Risks of Nitrates to Humans and the Environment[J]. New York:Springer,1999:295~316.
    [23]Goldin B R, Gorbach S L. Phytoestrogens:possible role in preventing human disease[J]. Nutrition,1996,12:216~217.
    [24]Belder A J, MacAlister R, Radomski M W, et al. Effects of S-nitroso-glutathione in the human forearm circulation:evidence for selective inhibition of platelet activation[J]. Cardiovascular Research,1994,28:691~694.
    [25]McKnight G M, Smith L M, Drummond R S, et al. Chemical synthesis of nitric oxide in the stomach from dietary nitrate in humans[J]. Gut,1997,40:211~214.
    [26]Vermeer IT, Pachen D M, Dallinga J W, et al. Volatile N-nitrosamine formation after intake of nitrate at the ADI level in combination with an aminerich diet[J]. Environmental Health Perspectives,1998,106(8):495~498.
    [27]Ward M H, Cantor K P, Riley D, et al. Nitrate in public water supplies and the risk of bladder cancer[J]. Epidemiology,2003,14:183~190.
    [28]徐文军,王希平.硝酸盐对蔬菜的污染与防治[J].北方园艺,2003,(6):54~55.
    [29]Phillips W E J. Naturally occurring nitrate and nitrite in foods in relation to infant methaemoglobinaemia[J]. Food and Cosmetics Toxicology,1971,9(2):219~228.
    [30]Speijers G J A. Nitrate, toxicological evaluation of certain food additives and contaminants in food. WHO Food Additives Series. Geneva:World Health Organization.1996,35:325~360.
    [31]Backman C, Granli J. Human health aspects of nitrate intake from food and water[J]. Chemistry, Agriculture and the Environment,1991,17:373~388.
    [32]Kelley J R, Duggan J M. Gastric cancer epidemiology and risk factors[J]. Journal of Clinical Epidemiology,2003,56(1):1~9.
    [33]Vermeer I T, Pachen D M, Dallinga J W, et al. Volatile N-nitrosamine formation after intake of nitrate at the ADI level in combination with an aminerich diet[J]. Environmental Health Perspectives,1998,106(8):495~463.
    [34]Dich J, Jrvinen R, Knekt P, et al. Dietary intakes of nitrate, nitrite and NDMA in the finish mobile clinic health examination survey[J]. Food Additives and Contaminants,1996,13: 541~545.
    [35]Jaworska G. Nitrates, nitrites, and oxalates in products of spinach and New Zealand spinach. Effect of technological measures and storage time on the level of nitrates, nitrites, and oxalates in frozen and canned products of spinach and New Zealand spinach[J]. Food Chemistry,2005a,93:395~401.
    [36]Jaworska G Content of nitrates, nitrites, and oxalates in New Zealand spinach[J]. Food Chemistry,2005b,89:235~242.
    [37]Crawford N M, Glass ADM. Molecular and physiological aspects of nitrate uptake in plants (Reviews) [J]. Trends in Plant Science,1998,3(10):389~395.
    [38]Hendriksen G H, Raman D R, Walker L P, et al. Measurements of net fluxes of ammonium and nitrate at the surface of barley roots using ion-selective microelectrodes. II Patterns of uptake along the root axis and evaluation of the mocroelectrode flux estimation technique[J]. Plant Physiology,1992,99:734~747.
    [39]王少先,章和珍,张保根,等.蔬菜硝酸盐污染及其防治[J].江西农业学报,1998,10(4):86-90.
    [40]Taisser M A B, El-Iraqui S M, Huissen M H. Nitrate and nitrite contents of some fresh and processed Egyptian vegetables[J]. Food Chemistry,1986,19(4):265~275.
    [41]梁斌.加工方法及存放时间对蔬菜亚硝酸盐含量的影响[J].安徽预防医学杂志,2004,10(4):206~207.
    [42]陈振德,陈建美,何金明,等.不同基因型大白菜硝酸盐积累研究简报[J].山东农业科学,2002,(2):25~26.
    [43]Stantamaria P, Elia A, Gonnelia M. Azoto, imbianchimento, produzionese accumulo dimitrati in indivia allevata in idrocoltura[J]. Italus Hortus,1995,2(3):32~38.
    [44]王朝辉,李生秀.菠菜不同器官的硝态氮与水分、全氮、全磷的关系[J].植物营养与肥料学报,1996,2(2):144-152.
    [45]Mccall D, Willumsen J. Effects of nitrogen availability and supplementary light on the nitrate content of soil-grown lettuce[J]. Journal of Horticultural Science & Biotechnology,1999, 74(4):458~463.
    [46]陈宝明.菠菜叶片中硝态氮代谢库的测定[J].植物生理学通讯,2002,38(2):124~126.
    [47]Lin J K, Yen J Y. Changes in the nitrate and nitrite contents of fresh vegetables during cultivation and post-harvest storage[J]. Food and Cosmetics Toxicology,1980,18(6): 597~603.
    [48]巨晓棠,张福锁.我国氮肥施用状况与环境问题[M].北京:中国农业大学出版社,2003:30~58.
    [49]李会合.氮钾对酸性菜园土壤莴笋品质的效应及机理研究[博士学位论文].重庆:西南农业大学,2005:28~50.
    [50]张英鹏,林成永,章永松,等.杭州市郊菜园土壤的养分状况及其障碍因子研究[J].浙江大学学报(农业与生命科学版),2003,29(3):244~250.
    [51]叶春.蔬菜中硝酸盐和亚硝酸盐的污染[J].食品工程,2007,(2):26-28.
    [52]姚春霞,陈振楼,陆利民,等.上海市郊菜地土壤和蔬菜硝酸盐含量状况[J].水土保持学报,2005,19(1):84~88.
    [53]王文生,杨少桧.果品蔬菜保鲜包装应用技术[M].北京:印刷工业出版社,2007:2-46.
    [54]怀凤涛,刘宏宇,郭庆勋.蔬菜采后处理与保鲜加工[M].哈尔滨:黑龙江科学技术出版社,2008:12~41.
    [55]王宪泽,程炳嵩,张国珍.蔬菜中的硝酸盐及其影响因子[J].植物学通报,1991,8(3):34~37.
    [56]徐超,吴良欢,巨晓棠,等.田间施用硝化抑制剂DMPP对小青菜贮藏过程中硝酸盐与维C含量的影响[J].农业环境科学学报,2004,23(4):630~-632.
    [57]卢华琼,苏智先,严贤春,等.不同贮藏条件和洗涤方式对蔬菜中亚硝酸盐含量的影响[J].西北农林科技大学学报(自然科学版),2007,35(3):172-176.
    [58]金同铭,何洪巨.贮藏大白菜硝酸盐亚硝酸盐的积累动向[J].北京农业科学,1993,11(2):20~22.
    [59]王双明.储存条件对蔬菜及其食品中硝酸盐、亚硝酸盐含量的影响[J].中国食物与营养,2004,(9):35-37.
    [60]黄立华,刘颖,周米平.大白菜冬贮和腌渍过程中维生素C与硝酸盐含量的变化[J].中国土壤与肥料,2007,(2):80-81.
    [61]吴远远,孟哲,刘红云,等.蔬菜漂烫过程对营养性成分保持的影响[J].理化检验-化学分册,2008,44(4):366-368.
    [62]邱贺媛,曾宪锋.漂烫处理对两种蔬菜中硝酸盐亚硝酸盐及VC含量的影响[J].农产品加工·学刊,2005,(2):65~66.
    [63]王友保,段红,黄伟,等.芜湖市蔬菜硝酸盐污染状况及安全处理效果[J].农村生态环境,2004,20(3):46~48.
    [64]Prasad S, Chetty A A. Nitrate-N determination in leafy Vegetables:Study of the effects of cooking and freezing[J]. Food Chemistry,2008,106:772~780.
    [65]Farneselli M, Simonne E, Studstill D, et al. Washing and/or cutting petioles reduces nitrate nitrogen and potassium sap concentrations in vegetables[J]. Journal of Plant Nutrition,2006, 29:1975~1982.
    [66]李炳焕,武巧争,习松品.二氧化氯溶液浸泡蔬菜降低亚硝酸盐含量的探讨[J].华北煤炭医学院学报,2005,7(6):717~718.
    [67]吴宜进,邓先瑞.武汉城市气候研究现状及展望[J].华中师范大学学报(自然科学版),1998,(3):372-376.
    [68]刘子国.武汉城郊土壤磷素释放的影响因素与环境风险分析[硕士学位论文].武汉:武汉理工大学,2009:13~14.
    [69]史红文,丁昭全.武汉城区园林植物的土壤需求与应用[J].湖北林业科技,2009,(6):54~57.
    [70]聂艳,于婧,胡静.基于系统协调度的武汉城市土地集约利用评价[J].资源科学,2009,(11):1934~1936.
    [71]余程鹏.武汉市土地利用变化及其对水环境的影响[硕士学位论文].武汉:华中师范大学,2008:10-25.
    [72]刘建红,李仁东,王宏志,等.基于遥感和GIS武汉城市圈土地资源利用研究[J].世界地理研究,2009,(1):83-90.
    [73]张振贤,于贤昌.蔬菜施肥原理与技术[M].北京:中国农业出版社,1999:10-65.
    [74]虢佳花.武汉市蔬菜供应链主体纵向协作影响因素分析[硕士学位论文].武汉:华中农业大学,2008:15-21.
    [75]罗雪华,蔡秀娟.紫外分光光度法测定蔬菜硝酸盐含量[J].华南热带农业大学学报,2004,10(1):13-16.
    [76]冷家峰,刘仙娜,王泽俊.紫外分光光度法测定蔬菜鲜样中硝酸盐氮[J].理化检验-化学分册,2004,40(5):288-289.
    [77]Santamaria P. Nitrate in vegetables:toxicity, content, intake and EC regulation[J]. Journal of the Science of Food and Agriculture,2006,86:10~17.
    [78]杨国义,罗薇,张天彬,等.广东省典型地区蔬菜硝酸盐与亚硝酸盐污染状况评价[J].生态环境,2007,16(2):476-479.
    [79]唐建初,刘钦云,吕辉红,等.湖南省蔬菜硝酸盐污染现状调查及食用安全评价[J].湖南农业大学学报(自然科学版),2005,31(6):672~676.
    [80]李琳,袁梦仙,朱美英.南昌市郊蔬菜硝酸盐污染状况及防治对策[J].江西农业大学学报,2005,27(1):146~149.
    [81]黄国勤,王兴祥,钱海燕,等.施用化肥对农业生态环境的负面影响及对策[J].生态环境,2004,13(4):656-660.
    [82]Gastal F, Lemaire G. N uptake and distribution in crops:an agronomical and ecophysiological perspective[J]. Journal of Experimental Botany,2002,53:789~799.
    [83]陈振德.不同收获时期对蔬菜硝酸盐含量的影响[J].中国蔬菜,1989,(3):8-10.
    [84]杜红斌,王秀峰,崔秀敏.植物NO3-积累的生理机制研究[J].中国蔬菜,2001,16(2):49-51.
    [85]罗健,程东山,林东教,等.不同收获时期和控氮条件对水培小白菜硝酸盐含量的影响[J].生态环境,2005,14(4):562~566.
    [86]黄建国,袁玲.重庆市蔬菜硝酸盐、亚硝酸盐含量及其与环境的关系[J].生态学报,1996,16(4):383~388.
    [87]王晓丽,李隆,江荣风,等.玉米/空心菜间作降低土壤及蔬菜中硝酸盐含量的研究[J].环境科学学报,2003,23(4):463-467.
    [88]燕平梅,薛文通,张慧,等.不同贮藏蔬菜中亚硝酸盐变化的研究[J].食品科学,2006,27(6):242~246.
    [89]陈巍,罗金葵,尹晓明,等.硝酸盐在两个小白菜品种体内的分布及调配[J].中国农业科学,2005,38(11):2277-2282.
    [90]申秀英,许晓路.金华市郊蔬菜硝酸盐污染现状及分析[J].农业环境与发展,2000,(2):32~35.
    [91]袁亚莉,邓健,许金生,等.溴酸钾-亚甲蓝催化光度法测定硝酸盐和亚硝酸盐[J].光谱学与光谱分析,2002,22(5):806-808.
    [92]张庆乐,王浩,吴守林.不同处理方式对蔬菜中硝态氮含量影响的研究进展[J].环境与健康杂志,2007,24(8):654~655.
    [93]刘爱文,陈忻,刘小玲.漂烫及冷藏处理后蔬菜亚硝酸盐的含量变化[J].应用科技,2002,29(12):42-43.
    [94]袁丽红,朱建雯,侯亮,等.不同处理方法对小白菜硝酸盐含量的影响[J].新疆农业大学学报,2009,32(4):22~26.
    [95]唐晓伟,金同铭.漂烫处理对菠菜中硝酸盐及亚硝酸盐含量的影响[J].食品科学,1999,(3):51~52.
    [96]黄启为,李天贵,周兆德.食前处理对降低蔬菜体内硝酸盐效果的研究[J].湖南农学院学报,1991,(17):409~412.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700