广东大宝山矿区水土流失特征及重金属耐性植物筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
广东省大宝山矿区存在水土流失剧烈、土壤重金属污染严重、植被和生态恢复困难等生态环境问题。通过实地调查、野外原位小区模拟径流冲刷试验、室内分析及大田试验,对大宝山矿区水土流失特征及植被恢复进行了系统研究。主要研究结果如下:
     1)以坡长、坡高、侵蚀沟密度为分析指标,经聚类分析、判别分析,构建了矿区土壤侵蚀强度分析模型。经分析,大宝山矿区现有水土流失面积324.48hm2,占矿区总面积的48.8%,土壤侵蚀严重,必须尽快进行整治。
     2)新弃土、老弃土、自然土的单位面积平均径流量分别为6.52、5.75、0.69L/min,平均含沙量分别为156.79、51.68、23.99g/L,平均产沙率分别为0.99、0.27、0.03kg/min。侵蚀泥沙中,Cd的平均流失率分别为32.55、12.18、0.09mg/(min.rrr),Pb分别为1648.98、432.10、8.07mg/(min.m2),Zn分别为1854.35s460.14s4.92mg/(min.m2),Cu分别为1742.63、429.47、8.69mg/(min.m2),大小顺序均为新弃土>老弃土>自然土。新弃土、老弃土第2min产沙率分别为2.94、1.11kg/min,分别是其平均产沙率的2.96和4.08倍,有明显的“初期冲刷”效应。新弃土、老弃土、自然土侵蚀泥沙中,石砾和砂粒含量之和分别为87.15%、84.45%、32.02%,新弃土、老弃土侵蚀泥沙中的颗粒以石砾和砂粒的含量为主,与自然土明显不同。
     3)在5°、15°、25°坡度下,侵蚀泥沙中重金属Cd的平均流失率分别为1.64、19.07、32.55mg/(min.nT),Pb为179.23、1788.71、1648.98mg/(min.m2),Zn为178.46、1748.40、1854.35mg/(min.m2),Cu为191.38、1809.89、1742.63mg/(min.m2)。Cd和Zn的平均流失率随坡度增加而增大,而Pb和Cu的平均流失率则表现为15°>25°>5°。
     4)在径流量为300、500、700L/h的冲刷强度下,单位面积平均径流量分别为4.33、6.52和8.82L/min,平均含沙量分别为151.18、156.79和240.79g/L,平均产沙率分别为0.78、0.99和1.95kg/mino冲刷土壤中,重金属Cd的平均流失率分别为24.08、32.55和48.36mg/(min.m2),Pb分别为1290.61、1648.98和3169.10mg/(min.m2),Zn分别为1397.22、1854.35、3437.87mg/(min.m2),Cu分别为1240.47、1742.63、2946.80mg/(min.m2),均表现出随着冲刷流量增加而增大的变化规律。
     5)在无覆盖和盖度分别为30%、60%、90%的条件下,鱼位面积平均径流量分别为6.52、6.23、5.94和5.80L/min,平均含沙量分别为156.79、43.40、33.17和26.83g/L,平均产沙率分别为0.99、0.25、0.19和0.14kg/min重金属Cd的平均流失率分别为32.55、9.14、8.11和4.03mg/(min.m").Pb分别为1648.98、402.43、294.28和210.64mg/(min.m2),Zn分别为1854.35、382.03、305.02和196.38mg/(min.m2),Cu分别为1742.63、333.24、264.61和191.28mg/(min.m2),呈现出随着覆盖度增加,平均流失率降低。
     6)对大宝山矿区上壤样品监测表明,Cd和Cu的单因子污染指数均大于1.超标率为100%,Pb、 Zn的超标率为77.8%。土壤样品的综合污染指数变幅在5.74~157.23之间.均高于国家规定的污染指数3.表明矿区上壤已受到严重的重金属污染,且以Cd、Cu的污染最为严重。
     7)调查的矿区13种优势植物中,铺地黍地上部的Pb含量达到1214.00mg/kg,泡桐叶中Cu含量达到1024.80mg/kg,超过了Pb和Cu超富集植物含量的临界值(1000mg/kg);其运转系数分别为1.77,13.74。可见,铺地黍是Pb的超富集植物,泡桐是Cu的超富集植物。综合植物重金属富集特征和大田试验结果,可以选择泡桐、马尾松、夹竹桃、象草、五节芒、狗牙根作为大宝山矿区植被恢复的先锋物种。
The universal environmental problems, such as soil erosion, heavy metal pollution, wick ecological environment and hard to ecological restore, were similar in Dabaoshan Mine, an open-pit mining polymetallic mine in Guangdong Province. Basing on the field investigation, in-situ district simulating runoff scouring experiment, laboratory analysis and outdoor planting experiments, the systematic study was conducted on the soil erosion characteristic and comprehensive measures for the prevention and control of Dabaoshan mine. The main conclusions were drawn as follows:
     1) Slope length, height and density of erosion gully could be used to represent the characteristics and differences of soil erosion for different slopes of the mining area, and a discriminant model of soil erosion intensity in mining area had been built by cluster analysis and discriminant analysis. After that, the existing soil loss area was324.48hm2in Dabaoshan mining area, accounting for48.8%of the total area. The soil erosion was severe and worthy of great attention.
     2) The average runoff of new spoil soils, old spoil soils and nature soils were6.52,5.75and0.69L/min respectively, and the average sediment content of each were156.79L.51.68L and23.99L;the sediment yield rate were0.99.0.27and0.03L/min. The average drain rate of soil Cd of new spoil soils, old spoil soil? and nature soils were32.55.12.18and0.09mg/(min·m2) respectively; the average drain rate of soil Pb were1648.98,432.10and8.07mg/(min·m2) respectively; the average drain rate of soil Zn were1854.35,460.14and4.92mg/(min·m2); the average drain rate of soil Cu were1742.63,429.47and8.69mg/(minm2) respectively. The sediment yield rate of new spoil soils and old spoil soils in the second minute were2.94and1.11kg/min. which were2.96and4.08times of its average sediment yield rate, showing the "early-yield-sediment" effect. The sum content of stone particles and sand particles of new spoil soils, old spoil soils and nature soils were87.15%,84.45%and32.02%respectively, significantly different from nature soils
     3) As the slope gradient were5°,15°and25°. its average runoff were respectively5.06.5.6and6.52L/min; the average sediment content were0.12.0.89and0.99kg/min:the average sediment yield rate were0.120.89and0.99kg/min. With the increase of gradient, the average runoff, sediment content and sediment yield rate increased. As the gradient was5°15°and25°. the average drop-out rate of heavy metals in the eroded sediment was as follows:the average drop-out rate of Cd was64,19.07and32.55mg/(min·m2); the average drop-out rate of Pb was1290.61,1788.71and1648.98mg/(min·m2); the average drop-out rate of Zn was178.46,1748.40and1854.35mg/(min·m2); the average drop-out rate of Cu was191.38,1809.89,1742.63mg/(min·m2).The average drop-out rate of Cd and Zn increased with the increase of slope; The average drop-out rate of Pb and Cu order as follow:15°>25°>5°.
     4) When the erosion intensity were300,500and700L/h, the average runoff were respectively4.33,6.52and8.82L/min; the sediment content were151.18,156.79and240.79g/L; the sediment yield rate were0.78,0.99and1.95kg/min; the average drain rate of heavy metals were showed as follows: Cd were24.08,32.55and48.36mg/(min·m2); Pb were1290.61,1648.98and3169.10mg/(min·m2); Zn were1397.22,1854.35and3437.87mg/(min·m2), Cu werel240.47,1742.63and2946.80mg/(min·m2) under the erosion strength of300,500and700L/h. All of indexes showed same change law, which increased with the rise of erosion intensity.
     5) When the coverage condition were0%,30%,60%and90%, the average runoff were respectively6.52,6.23,5.94and5.80n; the average sediment concentration were respectively156.79,43.40,33.17and26.83g/L; the average sediment rate were0.99,0.25,0.19and0.14kg/min; the average drain rate of heavy metals were Cd32.55,9.14,8.11and4.03mg/(min·m2); Pb1648.98.402.43.294.28and210.64mg/(min·m2); Zn1854.35,382.03.305.02and196.38mg/(min·m2); Cu1742.63.333.24.264.61and191.28mg/(min·m2). The average drain rate reduced with the increase of coverage. The single factor indexes of Cd and Cu, within the27soil samples of Dabaoshan mining area, were both more than1, exceeding the standard. The single factor index of21soil samples tested were more than1, and77.8%of all the samples exceeded the standard. The comprehensive pollution index of27soil samples were between5.74and157.23, greater than3, showing that the mining area had been severely polluted by heavy metals, especially Cd and Cu.
     6)1%limestone and3%manure were used as soil improvement to modify soils samples. and then the germinations ratio of wheat seeds, which were treated with improved soils, was95%and germination index was78%; the average survival (germination rate) and retention rate of experimental plants were94%and88%respectively, while the average height of plants were52.7cm, showing that the soils could meet the growing demands already.
     7) Between the13kinds of dominant species investigated in the mining area, the Pb content of aerial parts of Panicum repens L. reached1214.00mg/kg: the Cu content of Paulownia fortunei leaves reached1024.80mg/kg. both of which were more than1OOOmg/kg.the threshold of Pb and Cu hyper-accumulation planis: the biological transfer coefficients were1.77and13.74. greater than1.0, which were also satisfied with the standard of hyper-accumulation plants, indicating that Panicum repens L. might be a kind of Pb hyper-accumulation plants, and Paulownia fortunei might be a kind of Cu hyper-accumulation plants of absorbing heavy metals. According to the conclusions of the heavy metal enrichment characteristics of plants and outdoor planting test, Paulownia fortunei, Pinus massoniana, Nerium indicum Mill, Pennisetum purpureum, Miscanthus floridulus and Cynodondactylon(Linn.)Pers. Could be used as pioneer species of Dabaoshan mine vegetation restoration.
引文
[1]国土资源部.全国矿产资源规划(2008-2015年),2008
    [2]聂洪峰,杨金中,王晓红,等.矿产资源开发遥感监测技术问题与对策研究[J].国土资源遥感,2007,74(4):11-13
    [3]武强.我国矿山环境地质问题类型划分研究[J].水文地质工程地质,2003,(5):107-112
    [4]刘玉强,郭敏.我国矿山尾矿固体废料及地质环境现状分析[J].中国矿业,2004,13(3):1-5
    [5]司雪侠,戴斌.浅谈我国矿产资源开发的环境问题及对策探索[J].榆林学院学报,2010,20(5):64-66
    [6]耿殿明,姜福兴.我国煤炭矿区生态环境问题分析[J].中国煤炭,2002,(7):21-24
    [7]张志权,束文圣,廖文波,等.豆科植物与矿业废弃地植被恢复[J],生态学杂志,2002.21(2):47-52
    [8]夏汉平,蔡锡安.采矿地的生态恢复技术[J].应用生态学报,2002,13(11):1471-1472
    [9]谭永红,夏卫生.矿区生态恢复研究[J].湖南第一师范学报,2007,7(1):170-171
    [10]高国雄,高保山,周心澄.等.国外工矿区土地复垦动态研究[J].2001.8(1):98-103
    [11]代宏文.澳大利亚矿山复垦现状[C].矿山废地复垦与绿化,中国林业出版社.1995
    [12]周树理,刘仁英.国外复垦经验简介[C].矿山废地复垦与绿化,中国林业出版社,1995
    [13]李宗禹.前苏联林业土地复垦[C].矿山废地复垦与绿化.中国林业出版社,1995
    [14]Schuman GE etc.Revegetation bentonite mine-spoils with sawmill by-products and gypsum [C].Agriculture utilization of urban and industrial by-products proceeds.1995
    [15]Leiros M C etc.Soil recovery at Meirama opencast lignite mine in northwest Spain:a comparison of the effect ivencss of cattle slurry and inorganic fertilizer[J].Minesite Revegetation and soil pollution.1996,(91):109-124.
    [16]Blaga G etc.20 years of experiments on the reclamation by surface mining in Transylv ania[J].Buletinul-university-destiinte-cluj-Napoca-sreia-Agriculture-Si-Horticulture.1994,(48):107-114.
    [17]魏焕鹏,党志,易筱筠.等.大宗山矿区水体和沉积物中重金属的污染评价[J].环境工程学报,2011,5(9):1943-1949
    [18]周建民,党志.司徒粤,等.大宗山矿区周围土壤重金属污染分布特征研究[J].农业环境科学学报.2004.23(6):1172-1176
    [19]周建民,党志,蔡关芳等.大宝山矿区污染水体中重金属的形态分布及迁移转化[J].环境科学研究.2005,18(3):5-10
    [20]林初夏,龙新宪,单晓立.等.广东大宝山矿区生态环境退化现状及治理途径探讨[J].生态科学,2003,22(3):205-208
    [21]蔡美芳,党志,文震等.矿区周围土壤中重金属危害性评估研究[J].生态环境,2004,13(1):6-8
    [22]李永涛,张池,刘科学,等.粤北大宝山高含硫多金属矿污染的水稻土污染元素的多元分忻[J].华南农业大学学报.2005.26(2):22~25
    [23]吴永贵,林初夏,单晓立.等.大宝山矿水外排的环境影响:Ⅰ.下游水生生态系统[J].生态环境.2005.14(2):]65~168
    [24]邢宁,吴平霄.李媛媛,等.大宝山尾矿重金属形态及其潜在迁移能力分析[J].环境工程学报,2011,5(6):1370-1374
    [25]束文圣.张志权,蓝崇钰.中国矿业废弃地的复垦对策研究[J].生态科学,2000.19(2):2~25
    [26]书巧.周永章.矿业废弃地及其生态恢复与重建[J].矿产(?)与利用(?).(5):44-46
    [27]卫(?),李青(?).贾鲜艳,等.矿业废弃地的植被恢复与重建[J].水土保持学报,2003.17(4):172-175
    [28]吕春娟.白中科.赵景逵.矿区土壤侵蚀与水土保持研究进展[J].水土保持学报,2003.17(6):85-88
    [29]中国农业百科全树编辑部,国国农业百科全书.水利卷,北京:农业出版社,1987
    [30]刘利年.国内外工矿区造成的恶果和土地复垦经验[J].水土保持通报,1986,6(2):76-79
    [31]王青杵.煤炭开采区废弃物堆置体坡面侵蚀特征的研究[J].中国水土保持,1998,(8):26-29
    [32]王青杵,王贵平.黄土高原煤炭开采区水土流失特征的研究[J].水土保持研究,2001,8(4):84~87
    [33]倪含斌,,张丽萍,张登荣.模拟降雨试验研究神东矿区不同阶段堆积弃土的水土流失[J].环境科学学报,2006,26(12):2065-2071
    [34]王文龙,李占斌,李鹏,等.神府东胜煤田原生地面放水冲刷试验研究[J].农业工程学报,2005,(21):59-62
    [35]胡振华,王电龙,呼起跃.煤矸石松散堆置体坡面侵蚀规律研究[J].水土保持学报,2007,21(3):23-27
    [36]张金柱等.晋陕蒙接壤区煤田开发引起的水土流失研究[J].山西水土保持科技.1999,(1):11~14
    [37]高学田等.神府-东胜矿区-、二期工程中新的人为加速侵蚀[J].水土保持研究,1994,1(4):23~35
    [38]张丽萍,唐克丽,陈文亮,等.人为泥石流起动及产沙放水冲刷实验[J].自然灾害学报,2000,9(4):94-99
    [39]高学田、唐克丽.神府-东胜矿区风蚀水蚀交互作用研究[J].土壤侵蚀与水土保持学报,1997,3(4):1-7
    [40]吴成基.神府-东胜矿区土壤侵蚀规律及分区治理[J].陕西师范大学学报,1996,24(2):91-95
    [41]张汉雄等.神府一东胜煤田开发对乌兰木伦河河道淤积与输沙的影响.水土保持研究,1994(4):60-71,126
    [42]张金柱等.晋陕蒙接壤区煤田开发引起的水土流失研究.山西水土保持科技,1999(1):11~14
    [43]孙忠堂.晋陕蒙接壤区煤田开发中的环境建设问题.水土保持通报.1997(7):62-65
    [44]张胜利.开矿对小流域水沙影响的研究.水土保持学报,1992,2
    [45]靳长兴.神府东胜煤田开发对河流泥沙的影响研究.西安理工大学学报,1996,12(3):207-211
    [46]石辉,田锋,黄林,等.红壤区稀土矿开发导致河流泥沙淤积量的估算.水土保持通报,2005,25(6):53-54
    [47]白中科,段永红,杨红云,等,采煤沉陷对土壤侵蚀与土地利用的影响预测.农业工程学报.2006,22(6):67-70.
    [48]张平仓等.神府-东胜矿区采煤塌陷及其对环境影响初探.水土保持研究,1994,1(4):35-44
    [49]雷霆等.神府-东胜煤田地表塌陷预测及防治.桂林工学院学报,1997,7(2):132-136
    [50]胡振琪.我国煤矿区的侵蚀问题与防治对策.中国水土保持.1996,(1):11-13.
    [51]张宇,高永,汪季,等.伊敏露天煤矿排土场坡面水蚀特征研究.内蒙古农业大学学报,2011,32(2):93-97
    [52]陈海迟,丁占强,杨翠林.降雨特性与排土场边坡水力侵蚀的关系.内蒙古农业大学学报,2011,32(2):103-108
    [53]耿宝军.露天煤矿排土场土壤抗冲性影响因素分析.辽宁工程技术大学学报,2010,(29):155-157
    [54]李智佩.徐友宁,郭莉,等.陕北现代化煤炭开采区土地沙漠化影响及原因.地球科学与环境学报.2010,32(4):398-403
    [55]秦鹏,沈智慧,白喜庆,等.神北矿区煤炭开发对土地沙漠化的影响评价.中国煤田地质.2007,19(2):54-56
    [56]夏斐.榆神府矿区土地沙漠化发展趋势分析研究.陕西煤炭技术,2010,(1):13-15
    [57]李文银、王治国等.《工矿区水土保持》,北京:中国出版社1996
    [58]中国土地学会土地复垦分会秘书处等,土地复垦论文选编
    [59]阎敬,杨福海,李富平.冶金矿山土地复垦综述.河北理工学院学报.1999,(21):41-47
    [60]黄河水利委员会等,黄河水土保持志.郑州:河南人民出版社,1993
    [61]倪含斌.煤炭资源开发过程中矿区水土流失动态模拟研究.浙江大学,2009
    [62]吕春娟,口中科.露天(?)土场的岩土侵蚀特征及水保效应分析.水土保持研究.2010,17(6):14-19
    [63]工治国等.黄上高原矿区水土保持及其方案编制.中国水土保持,1995(3):27-30
    [64]卞正富等.矿区水土流失及其控制研究.土壤侵蚀与水土保持学报,1998(4):32-36
    [65]吴文长等.采石场水土流失防治探讨.水土保持研究,1997,4(1):22-25,29
    [66]林明添等.大田县矿区水土保持战略构思.福建省水土保持,1992(2):24-26,28
    [67]范细财.将乐县矿区水土流失及其防治措施.福建水土保持保持,1992(2):43-45
    [68]温用平.稀土矿区水土保持综合治理模式初探.中国水土保持,1996(3):27-30
    [69]郭在扬.龙岩地区矿区水土流失危害及防治对策.福建水土保持,1996(1):52-54
    [70]张金桃.韶关冶炼厂矿业废弃地植被恢复措施的研究.韶关学院学报,2004,25(9):75-78
    [71]张志权,束文圣,廖文波,等.豆科植物与矿业废弃地植被恢复.生态学杂志,2002,21(2):47-52
    [72]夏汉平,蔡锡安.采矿地的生态恢复技术.应用生态学报,2002,13(11):1471~1472.
    [73]赵记军,徐培智,解开治.土壤改良剂研究现状及其在南方早坡地的应用前景[J].广东农业科学,2007,(10):39-40.
    [74]席嘉宾,徐吴娟,杨中艺.矿业废弃地复垦的现状与治理对策.草原与草坪,2001,(2):11-12
    [75]李永庚,蒋高明.矿山废弃地生态重建研究进展.生态学报,2004.24(1):95-100
    [76]Bradshaw A D.The reconstruction of ecosystem.Jourmal of Applied Ecology.1983.20:1-17
    [77]Dobson A P,Bradshaw A D and Baker A J M.Hopes for future.restoration ecology and construction biology.Science, 1997,277:515-522
    [78]Cairns,L,J.(ed).The Recovery Process in Damaged Ecosystems.Ann Arbor Science Publishers Inc.1980.
    [79]Cairns.L.J(ed).Rehabilitating Damaged Ecosystems (Second Edition)[M].Lewis Pubishers.1995
    [80]Cairns,L.J.K.Ldicksos and E.E Herricks(eds)..Rehabilitation Damaged Ecosystems.CRC,Press,Boca Raton.1988
    [81]康乐.生态系统的恢复与重建.北京.科学出版社1990:43-127
    [82]Jordan A D Gilpin M E and J D.Restoration Ecology:A synthetic Approach to Ecological Research.Cambridge University Press.1987
    [83]Bradshaw A.D.Wasteland management and restoration in Western Europe.Journal of Ecology.1989.26:775-786
    [84]全志刚等.赴德国矿区复垦考察报告[R].国外林业技术考察报告选编,1996,41-45
    [85]卢琦.关于参加“恢复退化森林生态系统专家会议“的报告.国外林业技术考察报告选编.1996.104-107
    [86]刘国华,舒洪岚.矿区废弃地生态恢复研究进展.江西林业科技,2003.2:21-25
    [87]薛生国.湘潭锰矿矿业废弃地生态恢复技术实验研究.长沙:中南林学院生态教研室.2001
    [88]jinag G M.Putwain P D, Bradshaw A D.Response of Agrostis stoloniferia to limestone and nutritional factors in the reclamation of colliery spoils.Chinese Journal of Botany.1994.6(2):155-162.
    [89]Smith R A H.Bradshaw A D.The use of metal tolerant plant populations for the reclamation of metalliferous wastes.Journal of Applied Ecology.1979.16:595-612
    [90]Costigan P A.Bradshaw A D.Gemmell R.An reclamation of acidic colliery spoil waste[J].Acid production potential.Journa' of Applied Ecology.1981.18:865-878
    [91]胡克伟,关连珠.改良剂原位修复重金属污染土壤研究进展[J].中国土壤与肥料,2007,(4):1-5
    [92]Ye ZH.Wong JWC.Wong MH.et al.Lime and Pig Manure as Ameliorants for Revegetating Lead/zinc Mine Tailings:a Greenhouse Study [J].Bioresource Technolocy.1999.60:35-43
    [93]Ye ZH.Wong JWC.Wong MH.Vegetation Response to Lime and Manure compost Amendmers.Maon.Aere Lead.(?)me Mim. Tailings:aGreenhouse Study[J].Restoration Ecology.2000.8(3):289-295
    [94]Ye ZH,Wong JWC,Wong MH,et al. Revegetation of Pb/Zn Mine Tailings.Guangdong Province[J]. China Restoration Ecology,2000,8(1):87-92.
    [95]赵默涵.矿山废弃地土壤基质改良研究[J].中国农业通报,2008,2
    [96]Marrs R H,Bradshaw A D.Nitrogen accumulation,cycling and the reclamation of China clay wastes.Journal of Environmental Management,1982,15:139-157
    [97]Wang J H,Ma M.Biological mechanisms of phytoremediafion.Chinese Bulletin of Botany,200017(6):504-510
    [98]Crocker R,Major J.Soil development in relation to vegetation and surface age of Glacier Bay,Alaska Journal Ecology,1955,43:427-428
    [99]Hall 1 GThe ecology of disused pit heaps in England.Journal of Ecology,1957,45:689-720
    [100]Jansen I J.Reconstructing soil after surface mining of prime agricultural land.Mining Engineering.1981,6:312-314
    [101]Jiang G M.Theory and practice in renegotiations of mining wasteland.In:The researches on degraded ecosystem in China.Beijing:Chinese Science & Technology Press,1996.193-204
    [102]Virendra S. Utilization of medicinal plants for wasteland.Journal of Economic and Taxonomic.Botany,2000,24(1):99-103
    [103]朱震达,刘恕.中国的沙漠化及其治理.北京:科学出版社,1989.
    [104]束文圣.扬开颜,扬兵.等.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究.应用与环境生物学报.2001,7(1):7~13
    [105]扬修,高林.德兴铜矿矿山废弃地植被恢复与研究.生态学报,2001,21(11):1932-1941
    [106]章家恩等.恢复生态学研究的一些基本问题探讨、应用生态学报,1999,10(1):109-113
    [107]束文圣,张志权,蓝崇钰.中国矿业废弃地的复垦与研究.生态科学,2002,19(2):24-29
    [108]Yong K.Destruction of ecological habitats by mining activities. Agricultural Ecology.1988.16:37-40
    [109]王仰麟,韩荡.矿区废弃地复垦的景观生态规划与设计.生态学报.1998.19(5):455-463
    [110]何书金,苏光全.矿区废弃地上地复垦潜力评价方法与应用实例.地理研究.2000,19(2):165-172
    [111]孙泰森,白中科.大型露天煤矿废弃地生态重建的理论与方法.水土保持学报,2001,15(5):56-60
    [112]胡宏伟,姜必亮,蓝崇钰,等.广东乐昌铅锌尾矿废弃地酸化控制研究.中山大学学报(自然科学版).1999.3:68-71
    [113]陈龙乾,郭达志,张明,等.矿区地表采掘废弃地充填复垦材料及技术研究.中国矿业大学学报,2002,31(1):59-64
    [114]白中科,吴梅秀.矿区废弃地复垦中的土壤学与植物营养学问题.煤矿环境保护.1996.10(5):39-42
    [115]阳承胜,蓝崇任,束文圣.矿业废弃地生态恢复的土壤生物肥力.生态科学,2000,19(3):73~78
    [116]陈芳清,卢斌,王祥荣.村坪磷矿废弃地植物群落的形成与演替.生态学报,2001,21(8):1347-1354
    [117]口中科,李晋川,王文英.中国山西平朔安太堡大型煤矿退化土地生态重建研究.中国土地科学,2000,14(1):1-4
    [118]刘世忠,夏汉平,孔国辉.等.茂名北排油页岩废渣场的土壤与植被特性研究.生态科学,2002.21(1):25-29
    [119]宋玉芳.周启星,宋玉芳主编.污染土壤的修复原理与方法.北京:科学出版社.2004.134-206
    [120]骆永明.金属污染土壤的植物修复.土壤,1999,5:261-266
    [121]Mcgrath,S.P.phytoextraction for soil remediation.In plants that Hyperaccumulate Heavy Metals.Ed.By Brooks R.R.CAB International, Mahingford. UK.1998.267-287
    [122]Baker AJM.Metal toleranee.New Phytol-1987-106(supnl):93-11
    [123]黄铭(?).环境污染与生态恢复.北京:科学出版社.2003:131~184
    [124]Van Assche F. Clijsters H.Effects of metal on enzyme activity in plants.Piam. Cell and Envionment.1990.13:195-206
    [125]Lasat MM, Baker AJM, et al.Physiological characterization of root Zn2+ absorption to shoots in Zn hyPeraccumulator and non-accumulator species of ThlasPi.Plant Physoilogy,1996,112:1715-1722
    [126]Vazquez MD, poschenrieder C, Barcelo J, et al.Compartment of zinc in roots and leaves of the hyperaccumulat or Thlaspi caerulescens J & C PresL Bot Acta,1994,107:243-250
    [127]Baker AJM,McGrath S P,et al.The possibility of in-situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants.Resourees,Conservation and Recycling,1994,11:41-49
    [128]Grotz, N., Fox T., Connolly, E., et al.ldentification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficieney.Proc.Natl.Acad.Sci.USA,1998,95:7220-7224
    [129]Meagher, RB.Phytoremediation of topic elemental and organic pollutants.Current Opinion in plant Biology.2000,3,153-162
    [130]Salt DE,Blaylock M, Kumar NPBA, et al.Phytoremediation:A novel strategy for the removal of toxic metals from the environment using plants Biotechnology,1995,13:468-474
    [131]张国平,刘丛强,杨元根.等.贵州省几个典型金属矿区周围河水的重金属分布特征.地球与环境,2004 30(1):82-85
    [132]Zayed AM, Gowthaman S, Terry N.Phytoaccumulation of trace elements by wetlands Plants I:Duckweed.Journal of Environmental Quality.1998.27(31:715-721
    [133]Zhu YL. Zayed AM. Qian JH, et al.Phytoremediation of trace elements by wetland Plants Ⅱ: Water hyacinth.Journal of Environmental Quality.1999.28(1):334-339
    [134]黄穗虹,田甜,邹晓锦,等.大宝山矿周边污染土壤重金属生物有效性评估[J].中山大学学报(自然利学版).2007.48(4):125-136
    [135]周建民,党志.司徒粤.大宝山矿区周围土壤重金属污染分布特征研究[J].农业环境科学学报.2004,23(6):1172-1176
    [136]周建民,党志,蔡美芳.大宝山矿区污染水体中重金属的形态分布及迁移转化[J].环境科学研究.2005.18(3):5-10
    [137]秦建桥,夏北成.周绪,等.奥北大宝山矿区尾矿场周围土壤重金属含量对土壤活性影响[J].生态环境.2008,17(4):1503-1508
    [138]杨小强,张轶男,张澄博.等.矿山重金属污染土壤的磁化率特征及其意义-以广东大宝山多金属矿床为例[J].中山大学学报(口然科学版),2006,45(4):98-102
    [139]陈清敏,张晓军,胡明安.大宝山铜矿区水体重金属污染评价.环境科学与技术.2006.29(6):64-71
    [140]杨振.胡明安,黄松.大宝山矿区河流表层沉积物重金属污染及潜在生态风险评价[J].桂林工学院学报.2007,27(1):44-48
    [141]杨振,胡明安.大宝山采矿活动对环境的重金属污染调查[J].环境监测管理与技术,2006.18(6):21-24
    [142]蔡美芳,党志,文震,等.矿区周围土壤中重金属危害性评估研究[J].生态环境,2004.13(1):6-8
    [143]赵宇鴳.奥北大宝山含硫化物矿山开发的镉环境地球化学及生态效应—兼论镉在农生系统的环境地球化学表现[D]中山大学硕士学位论文,2006
    [144]邢宁.吴平霄.李媛媛.等.大宝山尾矿重金属形态及其潜在迁移能力分析[J]环境工程学报.2011.5(6):1370-1374
    [145]杨振,胡明安,黄松.大宝山矿区河流表层沉积物重金属污染及潜在风险评价[J].桂林工业学院学报,2007.27(1):44-48
    [146]郭观林,周启星.李秀颖.重金属污染土壤原位化学固定修复研究进展[J].应用生态学报.2005.1(10):1990-1990
    [147]王新.(?).外源锅铅铜锌(?)土壤中形态分布特征及改(?)剂的影响(?)农业环境学报.2005.(?)54(?)-54(?)
    [148]林初夏,龙新宪,单晓立.等.广东大宝山矿区生态环境退化现状及治理途径探讨[J].生态科学.2003.22(3):205-208
    [149]陈炳辉,韦慧晓,周永章.粤北大宝山多金属矿山的生态环境污染原因及治理途径[J].中国矿业,2006,15(6):40-42.
    [150]吴迪,李存雄,邓琴,等.贵州省典型铅锌矿区土壤重金属污染状况评价[J].贵州农业科学,2010,38(1):92-94
    [151]杨畅,马宏伟,田立新,等.葫芦岛市典型区土壤重金属污染特征及评价[J].中国环境管理干部学院学报,2010,20(2):71-73
    [152]崔邢涛,栾文楼,石少坚,等.石家庄污灌土壤重金属污染现状评价[J].地球与环境,2010,38(1):36-42
    [153]柴世伟,温琰茂,张亚雷,等.地积累指数法在土壤重金属污染评价中的应用[J].同济大学学报,2006,34(12):1657-1661
    [154]李敏,骆永明,宋静,等.污泥-铜尾矿体系下pH、盐分和重金属对大麦根伸长的生态毒性效应.土壤,2006,38(5):578-583
    [155]宋玉芳,周启星,许华夏,等.重金属对土壤中小麦种子发芽与根伸长抑制的生态毒性.应用生态学报,2002,13(4):459-462
    [156]鲁如坤主编.土壤农业化学分析方法.中国农业科技出版社,2000
    [157]刘恩峰,沈吉,朱育新.重金属元素BCR提取法及在太湖沉积物研究中的应用.环境科学研究,2005.18(2):57-60
    [158]徐圣友,叶琳琳,朱燕,等.巢湖沉积物中重金属的BCR形态分析.环境科学与技术,2008,31(9):20-23
    [159]SL 190—96.土壤侵蚀分类分级标准
    [160]蔡锦辉,吴明光,汪雄武,等.广东大宝山多金属矿山环境污染问题及启示[J].华南地质与矿产,2005(4).
    [161]陈三雄,谢莉,张金池,等.黄浦江源主要植被类型土壤水土保持功能研究[J].中国水土保持,2007,(3):33-35
    [162]刘道平,陈三雄,张金池,等.浙江安吉主要植被类型土壤渗透性[J].应用生态学报,2007,18(3):493-498.
    [163]黄丽,张光远,丁树文,等.侵蚀紫色土土壤颗粒流失的研究[J].土壤侵蚀与水土保持学报,1999,5(1):35-40.
    [164]黄满湘,章中,张国梁,等.北京地区农田氮素养分随地表径流流失机理[J].地理学报,2003,58(1):147-154.
    [165]张颖,郑西来,张晓晖,等.黄土高原幼树对坡面流水力学特性及泥沙颗粒组成的影响[J].水土保持学报,2011.31(4):7-11.
    []66]赵辉,郭索彦,解明曙,等.湖南武水流域泥沙颗粒特性及分形规建研究[J].水土保持学报,2010,24(3):45-49.
    [167]黄丽,丁树文.三峡库区紫色土养分流失的试验研究[J].土壤侵蚀与水土保持学报,1998,4(1):35-40.
    [168]梁涛,王浩,张秀梅,等.不同上地类型下重金属随暴雨径流迁移过程及速率对比[J].应用生态学报,2003,14(10):1756-1760.
    [169]李贺,石峻青,沈刚,等.高速公路雨水径流重金属出流特性[J].东南大学学报,2009,39(2):345-349.
    [170]田鹏,杨志峰,李迎霞.公路地农灰尘及径流中颗粒物附着重金属对比研究[J].环境污染与防治,2009,31(6):14-18.
    [171]甘华阳,卓慕宁,李定强,等.公路路面径流重金属污染特征[J].城市环境与城市生态.2007,20(3):34-3-
    [172]孙建,铁柏清,钱湛,等.湖南郴州铅锌矿区周边优势植物物种重金属累积特性研究[J].矿业安全与环保,2006,33(1):29-42
    [173]雷梅,岳庆玲,陈同斌,等.湖南柿竹园矿区土壤重金属含量及植物吸收特征[J].生态学报.2005.25(5):1146-1151
    [174]张学洪,刘杰,黄海涛,等.广西荔浦锰矿废弃地植被及优势植物重金属生物蓄积特征[J].地球与环境,2006,34(1):13-18.
    [175]毕德,关龙华,骆永明.等.浙江典型铅锌矿废弃地优势植物调查及其重金属含重研究[J].土壤.2006,38(5):591-597.
    [176]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1196-1203.
    [177]刘足根,彭坤国,方红亚,等.江西大余县荡坪钨矿尾矿区自然植物组成及其重金富集特征[J].长江流域资源与环境,2010,19(2):220-224.
    [178]范稚莲,莫良玉,陈同斌,等.广西典型矿区中植物对Cu、Mu和Zn的富集特征与潜在的Mn超富集植物[J].地理研究,2007,26(1):125-131.
    [179]束文圣,杨开颜,张志权,等.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究[J].应用与环境生物学报,2001,7(1):7-12.
    [180]刘益贵,彭克俭,沈振国.湖南湘西铅锌矿区植物对重金属的积累[J].生态环境,2008,17(3):1042-1048.
    [181]王英辉,陈学军,赵艳林,等.铅锌矿区土壤重金属污染与优势植物累积特征[J].中国矿业大学学报,2007,36(4):487-492
    [182]佘玮,揭雨成,邢虎成,等.湖南冷水锑矿区苎麻对重金属的吸收和富集特性[J].农业环境科学学报.2010,29(1):91-96.
    [183]栾以玲,姜志林,吴永刚.栖霞山矿区植物对重金属元素富集能力的探讨[J].南京林业大学学报,2008,32(6):69-72.
    [184]王学礼,常青山,侯晓龙,等.三明铅锌矿区植物对重金属的富集特征[J].生态环境学报,2010,19(1):108-112.
    [185]Campbell S, Arakaki AS. Li QX. Phytoremediation of heptachlor and heptachlor epoxide in soil by Cucurbitaceae[J]. International Journ al of Phytorem ediation,2009,11(1):28-38
    [186]Gupta AK.. Sinha S. Phytoextraction capacity of the plants growing on tannery sludge dumping sites[J]. Bioresource Tech nology.2007.98(9):1788-1794
    [187]Lee SE. Li QX. Yu J. Diverse protein regul ations on PH A formation in Ralstonia eutropha on short chain organic acids[J]. Int ernational Journal of Biological Sciences,2009,5(3):215-225
    [188]Seo J S. Keum YS, Li QX. Bacterial degradation of aromat ic compounds[J]. International Journal of Environmental Research and Public Health.2009,6(1):278-309

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700