城市污水脱氮除磷过程模拟及工艺优化运行研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市生活污水处理系统作为一种涉及活的主体功能菌的环境生态系统从本质上而言属于一种复杂系统。各种微生物作为系统主体具有一定的智能性与自适应性,它们可以按照各种规则作出决策,又随时准备根据接收到的新信息修改自身的行为规则。仿真技术是解决上述污水处理复杂系统各种问题的重要工具,利用系统仿真技术,可探求活性污泥工艺设计方案的选择、优化设计参数、实现过程优化控制以及进行事故分析。活性污泥系统仿真的实现是建立在系统仿真模型基础之上的,而系统仿真模型则又是建立在各种生化反应机理研究基础上的。因此,本文研究内容围绕城市生活污水脱氮除磷基质转化过程和活性污泥数学模型展开,并在此基础上对应用活性污泥数学模型实现工艺过程优化控制进行了初步探索。
     以南方城市典型生活污水为处理对象,结合传统活性污泥工艺(以下简称CAS)、A/O脱氮工艺(以下简称AON)、A/O除磷工艺(以下简称AOP)和A/A/O工艺(以下简称AAO)四种实验室小试装置连续流监测数据和间歇批式试验,考察了各种运行参数及进水条件对工艺处理效果的影响;研究了活性污泥法处理生活污水基本工艺中COD、N、P的转化情况;分析和比较了不同工艺污泥中普通异养菌、聚磷菌和自养菌三种重要功能微生物数量及其特征参数。
     实验研究的重点集中于对生物强化除磷过程(包括反硝化除磷)规律的探讨。设计批式试验比较了合成与实际污水中聚磷菌代谢的显著差异,根据试验结果,实际污水中聚磷菌代谢生成的聚β羟基链烷酸盐(PHAs)中除聚β羟基丁酸盐(PHB)和聚β羟基戊酸盐(PHV)以外的其他成分大大增加。反硝化除磷过程具有节省碳源和能量的优点,有必要对缺氧条件下聚磷菌的表现和代谢规律进行研究。本文设计序批试验考察了缺氧条件下普通异养菌与聚磷菌对碳源的竞争规律。根据研究结果,上述两种功能微生物在缺氧条件下对有限碳源存在竞争且各自按照其固有的动力学模式利用碳源。试验中观察到乙酸对缺氧反硝化的抑制作用,即当环境中存在数量较多的乙酸时,反硝化聚磷菌无法进行反硝化除磷代谢,这与目前对反硝化除磷过程的理解不同。
     结合实验与机理研究,以ASM2D数学模型对连续流及批式实验结果进行模
Wastewater treatment system belongs to complex system. Functional microorganisms lived in these complex systems behave intellectively and adaptively. They make responses according to certain rules and change these rules along with new information received form fluky environment. Emulate technology is a useful tool to solve engineering problems existed in complex sytem like wastewater treatment plant (WTP). Take advantage of emulate technology, technical decision, parameter optimization, optimal control and accident analysis can be done effectively and scientifically. As everybody known, activated sludge system modelling is necessary for emulate analysis and reasonable mechanism of nitrogen and phorsphours removal is the key for better model. In this paper, study on mechanism of nitrogen and phorsphours removal was investigated first. Revised model was proposed according to result of experimental research. At last, model application on optimal operation & control of activated sludge process was discussed.
    Tipical living sewage of southern china city is selected as study object. Real sewage fed, bench-scale, continuous-flow, study and batch tests are carried out with four familiar wastewater treatment processes, conventional activated sludge (CAS), anoxic-aerobic (AON), anaerobic-aerobic (AOP) and anaerobic-anoxic-aerobic (AAO) units, to investigate mechanism of nitrogen and phorsphours removal under conditions similar to WTP. Effect of parameters such as hydraulic retention time, sludge retention time and component of influent on nitrogen and phorsphorus removal is investigated. Transformation of carbon, nitrogen and phorsphorus in different unit is discussed. Amount of functional microorganisms and its characteristic parameter are summarized.
    Emphasis is placed on mechanism of enhanced biological phorsphorus removal in this paper. Difference of removal process between synthesized and real sewage is studied. Less poly- β -hydroxy-butyrate and poly- β -hydroxy-valerate are found in component of poly-hydroxy-alkanoates generated by phorsphorus accumulative
引文
[1] 季民,霍金胜,胡振苓等.活性污泥法数学模型的研究与应用.中国给水排水,2001,Vol.17(8):18-22
    [2] 杨青,刘遂庆,甘树应.AsM N0.3在城市污水处理厂改造的应用.上海环境科学,2002,Vol.18(12):68-70
    [3] 杨青,刘遂庆,甘树应.城市污水处理厂的动态模拟研究.上海环境科学,2002,Vol.21(5):278-281
    [4] 张代钧,卢培利,严晨敏等.活性污泥2号模型用于城市污水处理厂脱氮除磷改造的研究.环境科学学报,2003,Vol.23(3):332-337
    [5] 张代钧,卢培利,陈丹琴,刘颖.传统活性污泥法COD去除及脱氮改造的模拟.环境科学学报.2002,Vol.22(4):448~453
    [6] 施汉昌,刁惠芳,刘恒等,污水处理厂运行模拟、预测软件的应用[J],中国结水排水,2001,Vol.17(10):61-63
    [7] 王磊.城市污水厂模拟基础研究:[硕士学位论文].上海:同济大学环境科学与工程学院,2001
    [8] 陈晓龙.活性污泥2号模型的应用与校正:[硕士学位论文].上海:同济大学环境科学与工程学院,2003
    [9] 王闯.活性污泥数学模型研究:[博士学位论文].上海:同济大学环境科学与工程学院,2003
    [10] 刘芳.城市污水厂活性污泥数学模型的参数测定及模拟研究:[博士学位论文].上海:同济大学环境科学与工程学院,2004
    [11] 蒋卫刚.活性污泥法的计算机模拟:[硕士学位论文].上海:同济大学环境科学与工程学院,2004
    [12] 赵金保.活性污泥模型中二沉池模型的应用与校正:[硕士学位论文].上海:同济大学环境科学与工程学院,2004
    [13] Carrett M T. Instrumentation, control and automation progress in the United States in the last 24 years. Water Science and Technology, 1998,37(12): 21-25
    [14] Huntingdo R. Twenty years developments of ICA in a water utility. Water Science and Technology, 1998,37(12): 27-34
    [15] Olsson G, Aspegren H, Nielsen M K. Operation and control of wastcwater treatment-a Scandinavian perspective over 20 years. Water Science and Technology, 1998,37(12): 1-13
    [16] Ohto T. Control, computers and communications: Fusion in instrumentation, control and automation of water and wastewater system in Japan. Water Science and Technolog, 1998, 37(12): 15-19
    [17] Kabouris J C. Modeling, instrumentation, automation, and optimization of wastewater treatment facilities. Water Environment Research, 1999,71(5): 729-736
    [18] Chunsheng Fu and M. Poch. Fuzzy model and decision of COD control for an activated sludge process. Fuzzy sets and Systems. 1998,93:281-292
    [19] Ladiges Costa and Kayser Rolf. On-line and off-line expert systems for the operation of wastewater treatment plants. Wat. Sci. Tech. 1993, 28(11-12): 315-323
    [20] Geselbracht J J, Brill ED Jr., Pfeffer J T. Rule-based model of design judgment about sludge bulking. J Environ Eng. 1988, 114:54-73
    [21] Capadaglio A G, Jones H V, Novotny V, Feng X. Sludge bulking Analysis and forecasting: Application of system of system identification and artificial neural computing technologies. Wat. Res. 1991,25(10): 1217-1224
    [22] Belanche L, Valdes J J, Comas J et al. Prediction of the bulking phenomenon in wastewater treatment plants. Artificial intelligence in Engineering. 2000,14:307-317
    [23] Tsai Y P, Ouyang C F, Wu M Y and Chiang W L. Fuzzy control of a dynamic activated sludge process for the forecast and control of effluent suspended solid concentration. Wat. Sci. Tech. 1993,28(11-12): 355-367
    [24] Muller A, Marili-libelli S, Aivasidis A, Lloyd T, Kroner S and Wandrey C. Fuzzy control of disturbances in a wastewater treatment process. Wat. Res.1997, 31(12): 3157-3167
    [25] Tyagi R D and Du Y G. Kinetic Model for the effects of heavy metals on activated sludge process using neural networks. Environ. Tech. 1992,13: 883-890
    [26] Ohtsuki T, Kawazoe T and Masui T. Intelligent control system based on blackboard concept for wastewater treatment processes. Wat.Sci. Tech. 1998, 37(12): 77-85
    [27] 彭永臻,高景峰,王淑莹,曾薇.SBR法脱氮过程中D0、ORP和pH的变化规律.第七届海峡两岸环境保护学术研讨会论文集.21世纪可持续发展之环境保护(上卷).武汉大学.2001,4,320-326
    [28] 高景峰,彭永臻,王淑莹,曾薇,隋铭皓.以Do、ORP、pH控制SBR法的脱氮过程.中国给水排水.2001:17(4),6-11
    [29] 陈韬.A/O工艺实时控制与短程脱氮的基础研究:[博士学位论文].哈尔滨:哈尔滨工业大学市政与环境工程学院,2003
    [30] 崔利凤,张宏伟,彭登富.活性污泥法优化控制.北京工商大学学报.2001,19(4),4-8
    [31] Ctte M., Grandjean B P A, Lessard P, Thibault P. Dynamic modeling of the activated sludge process: Improving prediction using neural Network.Water Resource.1995, 29(4), 995-1004
    [32] Nakamura K and Dazai M. Growth characteristics of batch-cultured activated sludge and its phosphate elimination capacity. Ferment. Technol., 1986, 64: 433-439
    [33] 国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002
    [34] 陈若暾,陈青萍,李振滨,韦茹.环境监测试验[M].上海:同济大学出版社,1999
    [35] Jenkins D, Richard M G and Daigger G T. Manual on the causes and control of activated sludge bulking and. foaming (2nd ed.). Lewis Publishers, Boca Raton, Florida, 1993
    [36] Wrage N, Velthof G L, van Beusichem M L, Oenema O. Role ofnitrifier denitrification in the production of nitrous oxide. Soil Biology & Biochemistry 2001, 33: 1723-1732
    [37] Robertson L A, Kuenen J G. Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria. Antonie van Leeuwenhoek, 1990, 57: 139-152
    [38] Castignetti D. Bioenergetic examination of the heterotrophic nitrifier-denitrifier Thiosphaera pantotropha. Antonie van Leeuwenhoek,1990, 58: 283-289
    [39] Gijs Kuenen J, Robertson Lesley A. Combined nitrification -denitrification process. FEMS Microbiology Reviews,1994, 15: 109-117
    [40] Gupta A B. Simultaneous removal of organic and nitrogen from domestic wastewater in an aerobic mixed culture biofilm containing Thiosphaera pantotropha. Ph. D. thesis. CESE. Indian Institute of Technology, Bombay, India, 1997
    [41] Hao X, and Martinez J. Removing nitrate and ammonium from drainage water by simulation of natural biological processes. Water Research. 1998, 32(3): 936-943
    [42] Helrner C, and Kunst S. Simultaneous nitrification/denitrification in an aerobic biofihn system. Water Science and Technology. 1998, 37(4/5): 183-187
    [43] Kuai L, Verstraete M. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system. Appl. Environ. Microbiol. 1998, 64: 4500-4506
    [44] Fdz-Polanco F, Mendez E and Villaverde S. Study of nitrifying biofihns in submerged biofilters by experimental design methods. Water Science and Technology. 1995, 32(8): 227-233
    [45] Van Mach E P, Land P, Keller J. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. War. Sci. Tech. 1996, 20 (2): 277-284
    [46] Hyung S Y. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in a intermittently-aerated reactor. War. Res. 1999, 33 (1): 145-154
    [47] Robertson L A, van Niel E W J. Simultaneous nitrification and denitrification in aerobic chemostatcultures of Thiosphaera pantotropha, applied environmental microbiology. 1988, 54(1): 2812-2818
    [48] Fuerhacker M, Bauer H, Ellinger R, Sree U, Sehrnid H, Zibusehka F and Puxbaum H. Approach for a noval control strategy for simultaneous nitrifieation/denitrifieation in activated sludge reactor. War. Res. 2000, 34 (9): 2499-2506
    [49] George Nakhla, Shaukat Farooq. Simultaneous nitrification- denitrification in slow sand filters. Journal of Hazardous Materials 2003, B96, 291-303
    [50] 陈方荣.同步硝化反硝化研究进展.铁道劳动安全卫生与环保.2002,29(5):219-220
    [51] Colivigarelli C and Bertanza G. Simultaneous nitrification- denitrification processes in activated sludge. plants: performance and applicability. Water Science and Technology. 1999, 40(,1-5): 187-194
    [52] Gupta A B and Gupta S K. Simultaneous carbon and nitrogen removal in a mixed culture aerobic RBC biofilm. Water Research. 1999, 33(2): 555-561
    [53] Verstraete W. Nitrification-denitrification processes and techologies in new contexts. Environmental Pollution. 1998,102(S1): 717-726
    [54] Mulder J W. and R. V. Kermpen R V. N-removal by SHARON. Water Quality International (WQI). 1997, (3/4): 30-31
    [55] Broda E. Two kinds oflithotrophs missing in nature. Z. Allg. Microb. 1977, 17: 491-493
    [56] Mulder A, Van de Graaf A A, Robertson L A and Kuenen J GAnaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 1995, 16: 177-184
    [57] Van de Graaf A A, De Bruijn P, Robertson L A, Jetten M S M and Kuenen J G. Autotrophic growth of anaerobic ammonium oxidising micro-organisms in a fluidized bed reactor. Microbiology. 1996, 142: 2187-2196
    [58] 张亚雷 李咏梅译.活性污泥数学模型.同济大学出版社.2002
    [59] Smolders G J F, van Loosdrecht M C M and Heijnen J J. Model of the anaerobic metabolism of the biological phosphorus removal process; stoichiometry and pH influence. Biotech. Bioeng. 1994, 43, 461-470
    [60] Conley D J. Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologia2000, 410: 87-96
    [61] Fuhs C W, and Chen M. Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. Microbiol Ecology. 1975, 2(2): 119-138
    [62] Brodisch K' E U, Joyner S J. The role of micro-organisms other than acinetobacter in biological phosphate removal in activated sludge process. Water Science and Technology. 1983, 15(3/4): 117-125
    [63] Comeau Y, Hall K J, Hancock R E W, Oldham W K. Biochemical model for enhanced biological phosphorus removal. Water Research. 1986, 20, 1511-1521
    [64] Wentzel M C, Lotter L H, Loewenthal R E, Marias G V R. Metabolic behavior of Acinetobacte spp. in enhanced biological phosphorus removal-A biochemical model. Water SA.1986, 12, No.4, 209-223
    [65] Mino T, Arun V, Tsuzuki Y and Matsuo T. Effect of phosohoras accumulation on acetate metabolism in the biological phosphorus removal process . Biological Phosphate removal from WasteWaters (Advances in Water Pollution Control 4) Ed. R. Ramadori, Pergamon Press, Oxford, 1987, 27-38
    [66] Satoh H, Mino T, Matsuo T. Uptake of organic substrates and accumulation of polyhydroxyalkanoates linked with glycolysis of intracellular carbohydrates under anaerobic conditions in the biological excess phosphate removal processes. Water Science and Technology. 1992,26, No.6, 933-942
    [67] Smaurer M, Cujer W, Hany R, Bachman S. Intracellular carbon flow in phosphorus accumulating organism from activated sludge systems. Water Research.1997,31,907-917
    [68] Smolder G J F, Klop J M, van Loosdrecht M C M, Heijnen J J. A metabolic model of the biological phosphorus removal process: Ⅰ. Effect of the sludge retention time. Biotechnology and Bioengineering.1995, 48, 222-233
    [69] Hesselmann R P x, yon Rummel R, Resnick S M, Hany R, Zehnder A J B. Anerobic metabolism of bacteria performing enhanced biological phosphate removal. Water Research. 2000, 31,3487-3494
    [70] Pereira H, Lemos P C, Reis M A M, Crespo J P S G, Carrondo M J T, Santos H. Mode for carbon metabolism in biological excess phosphorus removal processes based on in vivo 13C-NMR labeling experiments. Water Research. 1996,30,2128-2138
    [71] Randall A A, Liu Y H. Polyhydroxyalkanoates from potentially a key aspect of aerobic phosphorus uptake in enhanced biological phosphorus removal. Water Research.2002,36,3473-3478
    [72] Cech J S, Hartman P. Glucose induced breakdown of enhanced biological phosphate removal.Environ.Technol. 1990, 11,651-656
    [73] Jeon C O, Park J M. Enhanced biological phosphorus removal in a sequencing batch reactor fed with glucose as a sole carbon source. Water Research.2000,34,2160-2170
    [74] Satoh H, Mino T, Matsuo T. Anaerobic uptake of glutamate and aspartate by enhanced biological phosphorus removal activated sludge. Water Sci.Technol. 1998,37,579-582
    [75] Chuang S H and Ouyang C F. The biomass fractions of heterotrophs and phosphate-accumulating organisms in a nitrogen and phosphous removal system. Water Research. 2000, 34(8): 2283-2290
    [76] Kuba T, van Loosdrecht M C M, Heijnen J J. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two sludge system. Wat. Res., 1996, 30(7): 1702-1710
    [77] Kuba T, Smolders G. van Loosdrecht M C M, etal. Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor. War Sci Tech,1993,27 (5-6): 241-252
    [78] Cech J S, Hartman P. Competition between polyphosphate and polysaccharide accumulation bacteria in enhanced biological phosphate removal system. Water Research. 1993,27,1219-1225
    [79] Satoh H, Mino T, Matsuo T. Deterioration of enhanced biological phosphorus removal by the domination of microorganisms without polyphosphate accumulation. Water Science and Technology. 1994, 26, No.5,933-942
    [80] Liu W T, Mino T, Nakarnura K, Matsuo T. Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in anaerobic-aerobic activated sludge with a minimized polyphosphate cotent. Journal of Fermentation and Bioengineering. 1994, 77, 535-540
    [81] Filipe C D M, Daigger G T, Grady C P L. pH as a key factor in the competition between glycogen-accumulating and phosphate-accumulating organism.Water Environ.Res.2001, 73, 223-232
    [82] Whang L M, Park J K. Competition between polyphosphate-and glycogen-accumulating organisms in biological phosphorus removal systems-effect of temperature. Water Sci.Technol. 2002, 46, 191-194
    [83] Smolders G J F, van der Meij J, van Loosdrecht M C M and Heijnen J J. A structured metabolic model for anaerobic and aerobic stoichiometry and kinetics of the biological phosphorus removal process. Biotech. Bioeng, 1995, 47, 277-287
    [84] Murnleitner E, Kuba T, Van Loosdrecht M C M. An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal. Biotech Bioeng, 1997, 54(5): 34-450
    [85] van Veldhuizen H M, van Loosdrecht M C M, Heijnen J J. Modeling biological phosphorus and nitrogen removal in a full scale activated sludge process. Wat. Res, 1999, Vol 33, No.16: 3459-3468
    [86] Kuba T, Van Loosdrecht M C M, Brandse FA, et al. Occurrence of denitrifying phosphorus-removing bacteria in modified UCT-type wastewater treatment plants. Water Research. 1997, 31(4): 777-786
    [87] Meinhold J, Arnold E and Isaacs S. Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge. War Res., 1998, 41(10): 5665
    [88] Hu J Y, Ong SL, Ng W J, Lu F, Fan X L A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors. War Res, 2003, 37: 3463-3471
    [89] 王爱杰,吴丽红,任南琪等.亚硝酸盐为电子受体反硝化除磷工艺的可行性.中国环境科学,2005.25(5):515-518
    [90] 罗固源,罗宁,吉方英.新型双泥生物反硝化除磷脱氮工艺[J].中国给水排水,2002, 18(9):4-7
    [91] 杨永哲,林燕,袁林江,等.反硝化聚磷的诱导效果试验[J].中国给水排水,2003,19(3):8-10
    [92] Jens Peter, Keren-Jespersen, Mogens Henze, et al. Biological phosphorus release and uptake under alternation anaerobic and anoxic conditions in a fixed-film reactor[J]. Wat Res, 1993, 27(4); 617-624
    [93] Kuba T, Mumleitner E, Van Loosdrecht M C M. A metabolic model for biological phosphorus removal by denitrifying organisms. Biotech Bioeng, 1996, 52(6): 685-695
    [94] Rieger L, Koch G, et al. The EAWAG Bio-P module for activated sludge model No.3. Wat Res, 2001, 35(16): 3887-3903
    [95] 杨青,甘树应,陈秀华等.活性污泥法模型的发展.上海环境科学,2001,Vol.20, No.4.P199-200
    [96] Wu ZY, Simpson A R. Competent Genetic-Evolutionary Optimization of Water Distribution Systems. Journal of Computing in Civil Engineering. 2001: 89-101
    [97] 王文远.用基因算法求管网经济管径.给水捧水.1997(12):22-25
    [98] 王文远,Davison Mwale.提高基因算法求管网经济管径计算效率的尝试.给水排水,Vol 26,2000,(2):32-34
    [99] Kargupta H. The gene expression messy genetic algorithm. In proceeding of the IEEE International Conference on Evolutionary Computation. IEEE Press, 1996:814-819
    [100] Kargupta H. Performance of the gene expression messy genetic algorithm on real test functions. In proceeding of the IEEE International Conference on Evolutionary Computation. IEEE Press,1996: 631-636
    [101] Kargupta H and Goldberg D E. Search, blackbox optimization, and sample complexity. In R.Belew and M. Vose, editors, Fundatioans of Genetic Algorithms. San Mateo, CA, Morgan Kaufman,1996:291-324
    [102] Kargupta H. Computational processes of evolution: The Search perspective. Presented in SIAM Annual Meeting,1996
    [103] 王小平,曹立明.遗传算法理论、应用与软件实现.西安交通大学出版社,2000.1-50
    [104] Goldberg D E, Korb B, Deb K. Messy Genetic Algorithm: Motivation, Analysis, and First Results. Complex Syst. 1989(3): 493-530
    [105] 约翰.L.卡斯蒂.虚实世界.上海科技教育出版社.1998
    [106] 俞金寿 蒋爱平 刘爱伦.过程控制系统和应用.机械工业出版社.2003
    [107] 姜泓.自动控制原理.机械工业出版社.1994
    [108] 孙志毅 李虹 陈志梅 赵志诚.控制工程基础.机械工业出版社.2004
    [109] 陈忠华.可编程序控制器与工业自动化系统.机械工业出版社.2006
    [110] 刘建勇,周雪飞等.智能控制在污水处理中的应用现状及展望,中国给水排水,2002,Vol.18,No.11.P22-25
    [111] 高大文,彭永臻等.污水处理智能控制的研究、应用与发展,中国给水排水,2002,Vol.18,No.6.P35-39
    [112] Spanjers H, Vanrolleghem P A, Olsson G, Dold P L. Respirometry in Control of Activated Sludge Process: Principles. IWA Scientific and Technical Report No. 7. London: IWA, 1998
    [113] Copp J B, Spanjers H, Vanrolleghem P A. Respirometry in Control of Activated Sludge Process: Benehmarking Control Strategies. IWA Scientific and Technical Report No.11. London: IWA, 2002
    [114] Vanhooren H and Nguyen K. Development of a simulation protocol for evaluation of respirometry based control strategies, Technical Report, University of Gent, Gent, Belgium, 1996
    [115] Henze M. Activated Sludge Model No.1 [J]. IAWPRC Scientific and Technical, Reports, London, UK, 1987
    [116] Takacs I, Parry G G; Nolasco D. A dynamic model of the clarification-thickening process. Wat. Res., 25, 1991, 1263-1271
    [117] 粟塔山.最优化计算原理与算法程序设计.国防科技大学出版社,2001
    [118] R.Fletcher.实用最优化方法天津科技翻译出版社,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700