燃煤锅炉排放小颗粒污染及声波团聚排放控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国长期依赖燃煤发电的能源结构造成了较严重的环境污染,燃煤电厂排放的烟尘是大气环境中可吸入颗粒物的重要来源之一。可吸入颗粒物尤其是细颗粒物PM_(2.5)是影响我国空气质量的重要污染物,它不仅影响全球气候环境、破坏生态系统和历史文物,而且流行病学研究也显示对人体健康危害巨大,已引起国际社会的广泛关注。
     本文依据监测固定源颗粒排放EPA Method 5推荐的实验方法,建立了燃煤锅炉烟气小颗粒等速采样系统和实验流程,采用冲击式尘粒分级仪,对循环流化床燃煤锅炉烟道除尘前后烟尘进行采样实验。测得烟尘气溶胶的浓度分布以及PM_(10)/PM_(2.5)在除尘前后烟尘所占的比例,并求得电除尘器对PM_(10)、PM_(2.5)、PM_(1.0)的分级除尘效率。
     通过实验研究,分析燃煤锅炉烟道中可吸入颗粒物的重金属含量分布、多环芳烃浓度以及颗粒物的显微结构和微观孔隙特性等特性。研究了挥发性元素Hg和重金属元素Pb和Cd等在PM_(10)/PM_(2.5)中的分布特点,表明近90%的Hg存在于烟气和飞灰颗粒中,Pb和Cd在烟尘颗粒中的浓度随粒径减小而增加,有在亚微米颗粒上富集的趋势。分析PM_(10)/PM_(2.5)中多环芳烃含量,得到电除尘器前后颗粒物中多环芳烃的分布,研究表明毒性当量较强的5、6环PAHs更多地吸附在粒径较小的颗粒上。BET氮吸附实验研究表明小颗粒直径减小时,比表面积增加,小于2.5μm粒子比表面积最大,小颗粒更易于在燃烧过程和尾部排放过程中吸附和富集多种有害物质,如重金属、多环芳烃等有机污染以及其它酸性气体等。
     声波团聚是对载尘气流进行中间预处理,使含有微米和亚微米级颗粒的气溶胶在较高强度声场碰撞、团聚而长大,以提高传统除尘装置除尘效率的一种方法。搭建了声波团聚飞灰颗粒实验装置,主要研究声压、声波频率、停留时间、含尘烟气浓度等试验参数对煤飞灰微粒声波团聚过程的影响。
     建立了以同向凝聚作用和流体力学作用为主要机理的声波团聚模型。求解颗粒随声波运动的夹带函数,得到夹带因子η与相位角Φ与粒径和声波频率的关系;并求得颗粒间在同向凝聚和流体力学作用力两种机理下团聚频率系数的表达式,分析声强、频率、粒径分布和温度等参变量对于团聚频率系数的影响。
     建立了烟尘颗粒声波团聚气溶胶动力学方程并进行数值求解,与实验数据进行对比吻合较好,分析了主要参数声压(SPL)、频率、烟尘浓度、团聚时间对声团聚过程的影响,得到较优化的实验参数选取范围。
The energy consumes structure depending on coal fired power plants for a long timemake serious pollution to the environment, in China. Coal combustion is one of theimportant sources of Inhalable Particulate (PM_(10)) emission to the atmosphere. PM_(10),especially PM_(2.5) has become the most important air pollutant in our country and hasattracted the world attention at present, since it not only effects the world climate change,destroys ecology system and history architectures, but also has great adverse effects onhuman health according to epidemiological studies.
     Flue gas sample experiments emitted from coal fired boiler were performed throughan isokinetically designed system according to source emission US EPA Method 5.Particulate samples were extracted from flue gas of CFB boilers using cascade impactors.Particle size distribution and the fraction of PM_(10)/PM_(2.5) in flue gas are calculated atupstream and downstream of the electrostatic precipitator and capture efficiencies ofPM_(10)/PM_(2.5)/PM_(1.0) for ESP were derived in the thesis.
     Heavy metals and PAHs distribution in PM_(10) from coal fired flue gas were measuredin experiments. Characteristics of surface properties of different size particles wereanalyzed with low-temperature nitrogen absorption BET experiments. Several toxic heavymetals including Hg Cd, Pb etal concentration in particulates was analyzed and the resultshows the concentrations of medium volatility Cd and Pb increase with decreasingparticle size and tends to enrich in submicron particles. Hg is a kind of volatile element,and 90% of Hg exists in flue gas and fly ash. PAHs concentration in PM_(10)/PM_(2.5) sampledat inlet and outlet of ESP were measured and results show that 5/6-ring PAHs are moreabsorbed in small particles. BET surface area of segregated particles can be derived fromhysteresis loops and PM_(2.5) has the greatest surface area compared to other particles. Thusmany pollutants such as toxic heavy metals, organic matter and acid gas are prone to beabsorbed or enriched in PM_(2.5) within combustion and post-combustion environment.
     Acoustic agglomeration is an aerosol preconditioning procedure to improve theperformance of conventional particle removal devices. Application of high intensityacoustic field to aerosol containing micron and submicron sized particles results in muchincreased rates of particle collisions, adhesions and thus agglomeration. Such increasedparticle sizes process improves the fractional efficiency of conventional particle removaldevices. Acoustic agglomeration experiments were done in traveling wave field withredispersed fly ash, and effect of parameters on agglomeration processes is investigatedsuch as SPL, frequency, retains time and dust loading concentration.
     Acoustic agglomeration simulation is established based on the orthokinetic andhydrodynamic interaction as main mechanisms. The entrainment factor and phase relationship of particle's motion compared to acoustic field is computed and they aredependent upon the particle size and frequency. A general expression for the acousticagglomeration frequency function (AAFF), which measures the agglomeration rate ofparticles in a sound field, has been derived through a statistical approach. The acousticintensity, acoustic frequency, particle size distribution and gas temperature effects on theagglomeration frequency function is analyzed through numerical simulation.
     Aerosol dynamics equation of flue gas acoustic agglomeration is derived and thenumerical scheme to solve the equations is discussed. The results of the numericalsimulation are compared with the experiments results and have a good agreement. Theeffects of importants parameters on acoustic agglomeration process such as soundpressure level, frequency, mass loading and agglomeration time are calculated anddiscussed and an optimal parameters range were recommended according to thesimulation.
引文
[1] 胡予红,孙欣,张文波.煤炭对环境的影响研究[J],中国能源,2004,26(1):32-35
    [2] 国家煤炭安全监察,中国煤炭工业年鉴[M],北京:煤炭工业出版社,2002
    [3] 《中国能源发展报告》编委会,2001中国能源发展报告[M],北京:中国计量出版社,2001
    [4] 刘耀东,中国电力工业结构产能产出集中度规模生产率分析[J],中国能源2004,26(9):13-19
    [5] 国家统计局,中国能源战略研究[M].北京:中国电力出版社,2001:
    [6] 何伯述,郑显玉等.我国燃煤电站的生态效率[J].环境科学学报,2001,21(4):435-438
    [7] Wayne S. Seames. An initial study of the fine fragmentation fly ash particle mode genereated during pulverized coal combustion [J]. Fuel Processing Technology, 2003, (81):109-125
    [8] 国家环境保护局,中华人民共和国国家标准GB 3095—1996,环境空气质量标准,[1996-01-18] http://www.xyg-hb.com/biaozhun/daqi01.htm
    [9] W. Gene Tucker. An overview of PM2.5 sources and control strategies Fuel processing technology [J]. 2000,65466:379-392
    [10] USEPA, Air Quality Criteria for Particulate Matter, EPA-600rP-95-001BF_NTIS PB96-168240., April 1996
    [11] Andrea D.A. Castanho, Paulo Artaxo. Wintertime and summertime Sao Paulo aerosol source apportionment study [J]. Atmospheric Environment, 2001, 35:4889-4902
    [12] Y.C. Chan, R.W. Simpson, G.H. Mctainsh et al. Source apportionment of PM2.5 and PM10 aerosols in Brisbane (Australia) by receptor modeling [J]. Atmospheric Environment, 1999, 33:3251-3268
    [13] He, K., Yang, F., Ma, Y., et al. The characteristics of PM2.5 in Beijing, Chinas[J]. Atmospheric Environment, 2001, 35: 4959-4970.
    [14] Frazier, M. P., Yue, Z.W., Tropp, R.J. et al. Molecular composition of organic fine particulate matter in Houston TX [J]. Atmospheric Environment, 2002, 36: 5751-5758.
    [15] Wittig A.E., Anderson N., Khlystov A.Y., et al. Pittsburgh air quality study overview [J]. Atmospheric Environment, 2004, 38: 3107-3125.
    [16] Robert Gehrig, Brigitte Buchmann. Characterising seasonal variations and spatial distribution of ambient PM10 and PM2.5 concentrations based on long-term Swiss monitoring data. Atmospheric Environment, 2003,37(19): 2571-2580
    [17] Davis, B.L., Guo, J. Airborne particulate study in five cities of China[J]. Atmospheric Environment, 2000, 34: 2703-2711.
    [18] Mei Zhenga, Lynn G. Salmon, James J. Schauer et al. Seasonal trends in PM2.5 source contributions in Beijing China [J]. Atmospheric Environment, 2005, 39: 3967-3976
    [19] Yu Song, Yuanhang Zhang, Shaodong Xie, et al. Source apportionment of PM2.5 in Beijing by positive matrix factorization [J]. Atmospheric Environment, 2006, 40: 1526-1537
    [20] Mo Dan, Guoshun Zhuang, Xinxin Li, et al. The characteristics of carbonaceous species and their sources in PM2.5 in Beijing[J]. Atmospheric Environment, 2004, 38: 3443-3452
    [21] 陶俊,重庆市大气悬浮颗粒物污染特征及来源分析[D].重庆:重庆大学硕士学位论,2003:35-37
    [22] Zhang, X.Y., Cao, J.J., Li, L.M., et al. Characterization of atmospheric aerosol over XiAn in the south margin of the Loess Plateau, China [J]. Atmospheric Environment 2002, 36: 4189- 4199
    [23] Ho, K. F., Lee, S.C., Jimmy, C.Y. et al. Carbonaceous characteristics of atmospheric particulate matter in Hong Kong. The Science of the Total Environment, 2002, 300(1-3): 59-67.
    [24] Jim J. Lin, Hua-Shan Tai. Concentrations and distributions of carbonaceous species in ambient particles in Kaohsiung City, Taiwan. Atmospheric Environment,2001,35(15):2627-2636
    [25] USEPA, National ambient air quality standards for particulate matter, Fed. Regist., July 18, 1997, 38702-38752.
    [26] Wilson, R., Spengler, J. Concentrations and Health effects. Harvard University Press[M], Cambridge MA USA: 205-216.
    [27] Dockery, D.W., Pope Ⅲ, C.A. Acute respiratory elects of particulate air pollution[J]. Annual Review of Public Health, 1994, 15: 107-132
    [28] Schwartz, J. Particulate air pollution and daily mortality in Birmingham[J]. Alabama. American Journal of Epidemiology, 1993, 137:1136-1147
    [29] Schwartz, J. Air pollution and hospital admissions for the elderly in Birmingham Alabama[J]. American Journal of Epidemiology, 1994,139:589-590
    [30] Schwartz, J., Dockery, D.W., Neas, L.M. Is daily mortality associated specifically with fine particles?[J]. Journal of Air Waste Management Association, 1996. 10:927-939
    [31] Burnett, R.T., Dales, R., Krewski, D.et al. Associations between ambient particulate sulfate and admissions to Ontario hospitals for cardiac and respiratory diseases[J]. American Journal of Epidemiology, 1995, 142: 15-22.
    [32] Dockery D.W., Schwartz J., Spengler J.D. Air pollution and daily mortality: associations with particulates and acid aerosols[J]. Environmental Research, 1992, 59:362-373
    [33] Pope C.A., Thun M.J., Namboodiri M.M. et al. Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults [J]. American Journal of Respiration Critical Care and Medicine, 1995, 151: 669-674
    [34] 吴国平,胡伟,腾恩江等.我国四城市空气中PM2.5和PM10的污染水平[J].中国环境科学,1999,19(2):133-137
    [35] 胡伟,魏复盛,腾恩江等.空气污染对儿童及其父母呼吸系统健康的影响,中国环境科学,2000,20(5):425-428
    [36] Watson, J.G. Chemical element balance receptor model methodology for assessing the sources of fine and tatal suspended particulate matter in Portland, Oregon [D]. Ph.D. Dissertation, Oregon Graduate Center, OR, Beaverton, OR. 1979
    [37] US EPA, A Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units—Final Report to Congress, EPA 453rR-98-004, February, 1998.38.
    [38] Meira Filho L.G., Callander, B.A., Harris, N. et al. IPCC. Climate change. In: Houghton, J.T. The Science of Climate Change[J]. Cambridge University Press, Cambridge, UK, 1996:584-587
    [39] Turbin B.J., Huntzicker J.J., Identification of secondary organic aerosol episodes and quantization of primary and secondary organic aerosol concentrations during SCAQS[J]. Atmospheric Environment, 1995, 23:3527-3544
    [40] Seinfeld, J.H. Atmospheric Chemistry and Physics of Air Pollution[M]. Wiley, New York, 1986, 738
    [41] Smith, I.M., Sloss, L.L., 1998. PM 10/PM 2.5 -emissions and effects [M]. IEA Coal Research, The Clean Coal Centre, London, UK: 75pp
    [42] Berdowski J.J.M., Mulder W., Veldt C., et al. Particulate matter emissions (PM 10 PM 2.5 PM0.1) in Europe in 1990 and 1993. TNO report[R]. TNO Institute of Environmental Sciences, Energy Research and Process Innovation, Apeldoorn, The Netherlands, 1996, 90pp
    [43] Statistics Finland. Energy statistics 1995. Helsinki, 1996, 126pp.
    [44] Moisio, M., Combustion aerosol size distribution measurements using Electrical Low Pressure Impactor. Licentiatum Thesis[R], Tampere University of Technology, Department of Electrical Engineering (Physics), Tampere, Finland, 1997:181.
    [45] Dalway J. Swaine,Why trace elements are important[J]. Fuel Processing Technology, 2000, 65-66:21-33
    [46] M. H. Keating et al., Mercury Study Report to Congress, Volume Ⅰ: Executive Summary, EPA-452rR-97-003, December 1997
    [47] R. Meij, Trace element behavior in coal-fired power plants [J]. Fuel Processing Technology, 1994, 39:199-217
    [48] R.D. Smith, The trace element chemistry of coal during combustion and the emissions from coal-fired power plants[J]. Prog. Energy Combust. Sci. 1980, 6: 53-119.
    [49] Constance L. Senior, Development of a mechanistic model for prediction of emission of trace elements from coal-fired power plants[J]. Fuel Processing Technology 2000, 63: 75-77
    [50] Constance L. Senior, Lawrence E. Bool Ⅲ, Srivats Srinivasachar et al. Pilot scale study of trace element vaporization and condensation during combustion of a pulverized sub-bituminous coal [J]. Fuel Processing Technology, 2000, 63:149-165
    [51] Wayne S. Seames and Jost O. L. Wendt. Partitioning of arsenic, selenium, and cadmium during the combustion of Pittsburgh and Illinois #6 coals in a self-sustained combustor[J]. Fuel Processing Technology, 2000, 63(2-3): 179-196
    [52] Howrt J. C., J. D. Robertson, G. A. Thomas, et al. Characterization of fly ash from Kentucky power plants [J]. Fuel, 1996, 75(4): 403-411
    [53] 赵承美,孙俊民,邓寅声等.燃煤飞灰中细颗粒物PM2.5的物理化学特性[J].环境科学研究,2004,7,(2):71-73
    [54] 刘桂建,杨萍月,余明高等.燃煤过程有害微量元素挥发与其赋存状态及燃烧温度的关系[J].燃料科学与技术,2003,9(1):6-10
    [55] 郭欣,郑楚光,贾小红.煤飞灰中砷的形态特性[J].燃烧科学与技术,2004,10(4):299-302
    [56] Milton L. Lee et al. Analytical chemistry of polycyclic aromatic compounds[M]. New York, London, Toronto: Academic Press, 1981:25-43
    [57] 李红,邵龙义等,气溶胶中有机物的研究进展和前景,中国环境监测,2001,17(3):62-67
    [58] 崔文烜,姚渭溪,徐晓白.燃煤污染源多环芳烃的排放规律及其分布特征.环境科学学报,1993,13(3):317-324
    [59] Roy L. Bennett et al. Polycyclic Aromatic Hydro car bons, 3rd International Symposium on PAH[C]. Michigan: Ann Arbor Sci Pub Inc, 1979:419-428
    [60] Advances in Control of PM_(2.5) and PM_(2.5) precursors Generated by the Combustion of Pulverized Coal; U.S. Environmental Protection Agency
    [61] 魏凤,张军营,王春梅,郑楚光.煤燃烧超细颗粒物团聚促进技术的研究进展.煤炭转化,2003,26(3):27-31
    [62] Di Stasio S.Obveration ofrestruturing of soot aggreagates in a diffusion flame by static litht scattering. Journal of Aerosol Science, 2001, 12(4): 509-524
    [63] Lind T, Kauppinen E I S, Srinivasachar K et al. Submicron Agglomerate Particles Formation in Laboratory and Full-scale Pulverized Coal Combustion[J]. J Aerosol Sci. 1996, 127(S): 361-362
    [64] Hinds W.C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles[M]. Wiley Inter-Science, 1982
    [65] 许世森.细微尘粒的预团聚对旋风分离器高温除尘性能影响的实验研究[J].动力工程,1999,19(4):309-313
    [66] Watanabe T. Submicron particle agglomeration by an electrostatic agglomerator [J]. J. Eletrostatics.,1995, 34:367-383
    [67] Loftier F., Gutsch A. Numericl simulation of the electrically induced aerosol agglomeration in the submicron range[C]. In: 6th International symposium on agglomeration. Nagoyn, Japan, 1993
    [68] 向晓东,陈旺生,幸福堂等.交变电场中电凝并收尘理论与实验研究[J].环境科学学报,2000,20(2):28-42
    [69] Ye Zhuang, Biawas P. Submicron meter particle formation and control in a bench-scale pulverized coal combustor[J]. American Chemical Society, 2001, 27(3): 510-516
    [70] Linak W P, rivastava R K, Wendt J O. Sorbent caputue of nikel, lead, and cadmium in a laboratory swirl flame incinerator[J]. Combustion and Flame, 1995, 100:241-250
    [71] Michael J. Pilat, David S. Ensor, John C. Bosch. Source test cascade impactor[J]. Atmospheric Environment, 1970, 4:671-679
    [72] 岑可法,倪明江,骆仲泱.循环流化床锅炉理论设计与运行[M].浙江:中国电力出版社,1998:236-247
    [73] 于正然,刘光铨,单嫣娜等.烟尘烟气测试实用技术[M].北京:中国环境科学出版社,1990:40-43
    [74] 国家环保局.GB 13223-2003,火电厂大气污染物排放标准[S].北京:国家环保总局,国家质量监督检验检疫总局,2003
    [75] Markowski G. R., Ensor D. S., Hooper R. G. et al. A submicron aerosol mode in flue gas from a pulverized coal utility.boiler[J]. Environment Science and Technology, 1980, 14: 1400-1402
    [76] Flagan R. C., Friedlander S. K. Recent Developments in Aerosol Science[M]. New York: John Wiley, 1978: 页码
    [77] Hering S. V., Flagan R. C., Friedlander S. K. Design and evalustion of new low pressure impactor-Ⅰ[J]. Environment Science and Technology, 1978, 13:667-671
    [78] M. Neville J. F., Mccarthy, A. F. Sarofim. Size fractionation of submicrometer coal combustion aerosol for chemical analysis[J]. Atmospheric Environment, 1983, 17(12): 2599-2604
    [79] Pratim Biawas, Richard C. Flagan. High-Velocity inertial impactors[J]. Environment Science and Technology, 1984, 18:611-616
    [80] Michael J. Pilat, Tracey W. Steig. Size districbution of particulate emissions from a pressurized fluidized bed coal combustion facility[J]. Atmospheric Environment, 1983, 17(12): 2429-2433
    [81] EPA METHOD 4 DETERMINATION OF MOISTURE CONTENT IN STACK GASES
    [82] EPA METHOD 5 Particulate Isokinetic Sampling, Testing and Recovery
    [83] 扬明珍,陈松林.工业锅炉除尘设备[M].北京:中国环境科学出版社,1986:152-154
    [84] 向晓东.现代除尘理论与技术[M].北京:冶金工业出版社,2002:30-35
    [85] 庄永茂,施惠邦.燃烧污染与控制[M].上海,同济大学出版社,1998:110-112
    [86] Helble J.J., Mojtahedi W., Lyyranen J., et al. Trace element partitioning during coal gasification[J]. Fuel, 1996, 75 (8): 931-939
    [87] Kauppinen E., Pakkanen T., Coal combustion aerosols: a field study [J]. Environmental Science and Technology, 1990, 24 (12): 1811-1818.
    [88] Minghou Xu, Rong Yan, Chuguang Zheng et al. Status of Trace Element Emission in a Coal Combustion Process: a Review[J]. Fuel Processing Technology, 2003, 85: 215-237
    [89] 煤炭常用标准汇编委员会.煤炭常用标准汇编[M].北京:煤炭工业出版社,2000:364-367
    [90] F C Lockwood, S Yousif. A Model for the Particulate Matter Enrichment with Toxic Metals in Solid Fuel Flames[J]. Fuel Processing Technology, 2000, 65-66:439-457
    [91] Ho T C et al. Trace Metal Capture by Various Sorbents during Fluidized-Bed Coal Combustion[C]. Proc. Int. Tech. Conf. Coal Util. Fuel Syst., 1997, 2:877-888
    [92] J.J. Helble. A model for the air emissions of trace metallic elements from coal combustors equipped with electrostatic precipitators[J]. Fuel Processing Technology 2000 (63): 125-147
    [93] Biswas P, Wu CY. Control of toxic metal emissions from combustion using sorbents: A review [J]. Journal of the air & waste management association, 1998, 48(2): 113-127
    [94] 任建莉.燃煤过程汞析出及模拟烟气中汞吸附脱除实验和机理研究[D].杭州:浙江大学博士学位论文,2003
    [95] Z. Sarbak, M. Kramer-Wachowiak. Pol. J. Environ. Stud., 1997, 6:53
    [96] J. Ayala, F. Blanco, P. Garcia, P. Rodriguez, J. Sancho, Fuel, 1998, 77:1147
    [97] Esko I Kaupplnen. Coal combustion aerosol: a field study[J]. Environmental Science and Technology, 1990, 24:1811-1818.repeat
    [98] Rong Yan, Daniel Gauthier. Volatility and chemistry of trace elements in a coal combustor[J]. Fuel, 2001, 80:2217-2226
    [99] Allan Kolker, F.E. Huggins, C.A. Palmer. Mode of occurrence of arsenic in four US coals[J]. Fuel Processing Technology, 2000(63): 167-178
    [100] J J Helble. A model for the air emissions of trace metallic elements from coal combustors equipped with electrostatic precipitators[J]. Fuel Processing Technology 2000, 63:125-147
    [101] Wayne S Seames, Jost O L Wendt. Partitioning of arsenic, selenium, and cadmium during the combustion of Pittsburgh and Illinois #6 coals in a self-sustained combustor[J]. Fuel Processing Technology, 2000, 63:179-196
    [102] Richard L. Davison. Trace elements in fly ash -Dependence of concentration on particle size[J]. Environmental Science and Technology, 1974, 6(13): 1107-1113
    [103] I. Langmuir, J. Amer. Chem. Soc., 1916, 38:2221 析出文献
    [104] S. Brunauer, P. H. Emmett and E. Teller, J. Amer. Chem. Soc.,1938, 60:309
    [105] 严继民,张启元,高敬琮.吸附与凝聚[M].北京:科学出版社:105-130
    [106] Z. Sarbak, A. Stan'czyk, M. Kramer-Wachowiak, Characterisation of surface properties of various fly ashes, Powder Technology 2004, (145): 82-87
    [107] IUPAC, Pure application chem. 57 1985,603, IUPAC Report.析出文献
    [108] W.S. Komarov, Adsorbienty i ich svoistva. Izd. Nauka i Technika, Minsk, Belarus, 1977
    [109] 孙俊民,韩德馨.煤粉颗粒中矿物分布特征及其对飞灰特性的影响[J].煤炭学报,2000,25(5):546-550
    [110] 孙俊民,韩德馨,姚强等.燃煤飞灰的显微颗粒类型与显微结构特征[J].电子显微学报,2001,20(2):140-147
    [111] 岑可法,姚强,骆仲泱,高翔.燃烧理论与污染控制.2004,北京:机械工业出版社,462-474
    [112] 刘惠永,张爱云,姚强等.燃煤过程中多环芳烃污染物生成排放的影响因子研究[J].工程热物理学报,2001,22(6):759-762
    [113] 张永兴.600MW机组锅炉分级燃烧试验研究[J].中国电力,1998,31(9):3-7
    [114] H.K.Chagger, J.M.Jones et al. Emission of volatile organic compounds from coal combustion, Fuel, (1999), p1527-p1538
    [115] U.S. EPA, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, 2nd edition, Cincinnati, (1999)
    [116] 王连生等.多环芳烃分析技术[M],南京:南京大学出版社,1988
    [117] Mednikov E P. Acoustic coagulation and precipitation of aerosols [M]. Translated from Russian, Consultants Bureau, 1965
    [118] 黄虹宾,田志鸿,时铭显.声波团聚微粒技术的进展与分析[J].石油大学学报,1995,19(6):126-131
    [119] Tiwary R., Reethof G., McDaniel, O.H. Acoustically generated turbulence and its effect on acoustical agglomeration[J]. Journal of the Acoustic Society of America, 1984, 76(3): 841-849
    [120] Tiwary R., and Reethof G. Hydrodynamic Interaction of Spherical Aerosol Particles in a High Intensity Acoustic Field[J]. Journal Sound and Vibration, 1986, 108(1): 33-49
    [121] Shaw D.T. and Rajendran, N. Nuclear Science and Engineering, 1979, 70:127
    [122] Shaw, D.T. and Tu, K.W., J. Aerosol Sci., 1979, 10:317
    [123] Scott, D.S., J. Sound and Vib., 43, p. 607 (1975)
    [124] Davidson, G.A. and Scott, D.S., J. Acoust, Soc. Am.,1973, 53, 1717
    [125] Davidson, G.A. and Scott, D.S., J. Aerosol, Soc. Am., 1974, 5:55
    [126] Kitdeso, J., Bhatia, V. K., Lind, L., et al. Journal of Aerosol Science, 1995, 23:603
    [127] Volk M Jr, Moroz W J. Sonic agglomeration of aerosol particles [J]. Water, Air and Soil Pollution, 1976, 5:319-336
    [128] Volk, M. Jr. Sonic agglomeration of submicron particles, Ph.D. Dissertation, The Pennsylvania State University, 1977
    [129] Volk, M. Jr., Aerosol agglomeration in an acoustic field. Master's Thesis, The Pennsylvania State University, 1974
    [130] Tiwary R, Reethof G. Numerical simulation of acoustic agglomeration and experiment verification [J]. Transaction of the ASME, 1987,109:185-191
    [131] George, W., Reethof, G., "On the fragility of Acoustically Agglomerated Submicron Fly Ash Particles. ASME Journal of Vibration, Acoustics, Stress and Reliability in Design, 108,322-328, July (1986)
    [132] Hoffmann T L, Koopmann et al. Experimental and numerical analysis of bimodal acoustic agglomeration [J]. Transaction of the ASME, 1993, 115:232-240
    [133] Eliasson, B., Egli, W., Ferguson, J. R., et al. Journal of Aerosol Science, 1987, 18(6):869
    [134] Kildeso, J., Bhatia, V. K., Lind, L., et al. Journal of Aerosol Science, 1995, 23:603
    [135] Gallego J. A., Riera, E., Rodriguez, G., et al. Application of acoustic agglomeration to reduce fine particle emissions from coal combustion plants[J]. Environmental Science and Technology, 1999, 33:3843-3849
    [136] J J Rodriguez-Maroto, F J Gomez-Moreno, M Martin-Espigares, et al. Acoustic agglomeration for electrostatic retention of fly ashes at pilot scale: Influence of intensity of sound field at different conditions[J]. Journal of Aerosol Science, 1996, 27, Suppl. 1: S621-622
    [137] Gallego, J. A., Riera, E., Rodriguez, G., et al. A Pilot scale acoustic system for fine particles removal from coal combustion fumes[C]. Berlin: World Congress on Ultrasonics, 1995
    [138] Riera, E., GALLEGO, J. A., Rodriguez, G., et al. Acoustic agglomeration of submicron particles in diesel exhausts: First results of the influence of humidity at two acoustic frequencies [J]. Journal of aerosol Science, 2000, 31:S827-828
    [139] E. Riera, L. Elvira, I. Gonzalez. Investigation of the influence of humidity on the ultrasonic agglomeration of submicron particles in diesel exhausts[J]. Ultrasonics, 2003, 41:277-281
    [140] Ph. Caperan, J. Somers, K. Richter et al. Acoustic agglomeration of a glycol fog aerosol: Influence of particle concentration and intensity of the sound field at two frequencies. Journal of Aerosol Science, 1995, 26(4): 595-612
    [141] Song, L. M. Modeling of acoustic agglomeration of fine aerosol particles[D]. Ph.D. Dissertation, The Pennsylvania State University, 1990
    [142] LIU Shu-yan, HUANG Hong-bin, YAN Wei-ge. Experimental research on enhanced cyclone separation of acoustic agglomerated particles[J]. 2000, 9(1):61-65
    [143] 袁竹林,李伟力,魏星等.细微颗粒在行波和驻波声场中运动特性数值实验[J].东南大学学报(自然科学版),2005,35(1):140-144
    [144] 郑世琴,黄虹宾,刘淑艳等.声波团聚煤飞灰微粒的新数学模型[J].北京理工大学学报,1999,19(6):686-690
    [145] 姚刚,沈湘林.基于分形的超细颗粒声波团聚数值模拟[J].东南大学学报(自然科学版),2005,35(1):145-148
    [146] N. A. Fuchs. Mechanics of Aerosols[M]. New York: Pergamon, 1964
    
    [147] Temkin, S., Leung, C.M. On the velocity of a rigid sphere in a sound wave[J], Journal of Sound and Vibration, 1976, 49(1): 75-92
    [148] D. T. Shaw, N. Rajendran. Application of acoustic agglomeration for emergency use in liquid-metal fast breeder reactor plants[J]. Nuclear Sci. and Eng., 1979,70
    [149] R. Tiwary. Acoustic agglomeration of micron and submicron fly-ash aerosols[D]. Ph.D. Dissertation, The Pennsylvania State University, 1985
    [150] T. L. Hoffmann. An extended kernel for acoustic agglomeration simulation based on the acoustic wake effect[J]. Journal of Aerosol Science, 1997, 28(6): 919-936
    [151] Magill, J. Fractal dimensions and aerosol particles dynamics[J]. Journal of Aerosol Science 1991, 22 (Suppl. 1): 165-168
    [152] Shaw, D.T., Tu, K.W. Acoustic particle agglomeration due to hydrodynamic interaction between monodisperse aerosols[J]. Journal of Aerosol Science, 1979,10: 317-328
    [153] Shirokova, N.L., Ultrasonic Technology: Physical Principles of Ultrasonic Technology[M]. Moscow, New York-London: Plenum Press, 1973: 475-539
    [154] Hoffmann, T. L. Visualization of particle interaction and agglomeration in an acoustic field[D]. Ph.D. dissertation, 1993, The Pennsylvania State University
    [155] Hoffmann, T. L., Koopmann, G. H. Visualization of acoustic particle interaction and agglomeration: theory evaluation[J]. Journal of Acoustic Society American, 1996, 99(1): 2130-2141
    
    [156] N. A. Fuchs. Mechanics of Aerosols, Pergamon, New York, 1964
    [157] Drake, R. L. A general mathematical survey for the coagulation equation. Int. Rev. Aerosol Phys Chem., Vol. 3
    [158] Hidy, G. M., Brock, J. R. Dynamics of Aerocolloidal System. In International Review in Aerosol Physics and Chemistry. Pergamon Press, New York
    [159] Chou, H. K., Lee, PL S. and Shaw, D. T. Aerosol agglomeration in high intensity acoustic fields[J]. Journal of Colloid Interface Science, 1981,83: 335-353
    [160] Barbe-Le Borgne, M. Boulaud, D., Malherbe, C, et al. The experiment agglomeration turbulence in a acoustic champ, Journal of Science, 1988, 19: 3-10
    [161] Shirokova N. L., Eknadiosyant O. K. Interaction of aerosol particles in an acoustic field[J]. Sov. Phys. Acoust. 1966, 11: 346-348
    [162] S. Haep, U. Drosten, E. Otto, et al. Modelling the influence of acoustic agglomeration on particle size distribution by modal dynamic equation [J]. J. Aerosol Sci. 1997, 28: S331-332
    [163] Markowski G. R., Ensor D. S., A procedure for computing particle size dependent efficiency for control devices from cascade impactor data[C]. Proceeding for 70th Annual Meeting of the Air Pollution Control Association, Toronto, 1977
    
    [164] 马大猷.现代声学理论基础[M].北京:科学出版社, 2004, 33-36
    [165] Reethof G, Acoustics, stress and reliability in design [J], Journal of vibration, 1988, 110: 552-558
    [166] 马大猷.沈豪.声学手册[M].北京:科学出版社(修订版),2004:11-15
    [167] 沈豪.强噪声学[M].北京,科学出版社,1996:23-28
    [168] 杜功焕,朱哲民,龚秀芬.声学基础(上册)[M].北京:科学出版社,1981:194-196.
    [169] 杜功焕,朱哲民,龚秀芬.声学基础(下册)[M].北京:科学出版社,1981:213-215.
    [170] 谭浩强,田淑清.FORTRAN语言—FORTRAN 77结构化程序设计[M].北京:清华大学出版社,1990:50-56
    [171] 朱明方,FORTRAN 77程序设计上机指导,北京:清华大学出版社,2000:98-101
    [172] 马瑞民,衣治安,FORTRAN 90程序设计[M],黑龙江:哈尔滨工程大学出版社,1998:95-98
    [173] Termin, S. Elements of Acoustics[M]. New York, Chichester, Brisbane, Toronto: John Wiley & Sons, 1981:421-455
    [174] Pruppacher, H.R., Klett, D.K. Microphysics of clouds and precipitation[M]. Reidel Publishing Co. 1978
    [175] Danilov, S.D., Mironov, M.A., Radiation pressure force acting on a small particle in a sound field[J]. Soviet Physics-Acoustics, 1984, 30(4): 280-283
    [176] Konig, W. Hydrodynamisch-akustische Untersuchungen: Ⅱ. Uber das Mitschwignen einer Kugel in einer schwingenden Flussigkeit[J]. Annaalen der Physicund der Chemie, 1891, 42(3): 352-370
    [177] Morinov, K.A., Bjerknes forces in a viscous medium and the acoustic coagulation of aerosols, Soviet Physics-Acoustic, 1976, 22(6): 533
    [178] 章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社,1998:87-97
    [179] K.W. Lee, H. Chen. Coagulation of polydisperse particles[J]. Aerosol Sci. Tech., 1984, 3: 327-334
    [180] S. Tatsuo and R. Ruch, Stabilization of Colloidal Dispersions by Polymer Adsorption[M], New York: Marcel Dekker, 1980
    [181] H. E. Hesketh, Fine Particles in Gaseous Media, Ann Arbor Science Publisher, Ann Arbor, 1977
    [182] 何争光.大气污染控制工程及应用实例[M].北京:化学工业出版社,2004:38-39
    [183] 谢洪勇.粉体力学与工程[M].北京:化学工业出版社,2003:6-15
    [184] Noel de Nevers[美]著,胡敏,谢绍东译.大气污染控制工程[M],北京,化学工业出版社,166-183
    [185] 刘景良.大气污染控制工程[M].北京:中国轻工业出版社,2002:112-117
    [186] G. Douglas Meegan, Chris Peterson, Timothy Hawkins et. al Application of acoustic flue gas conditioning to enhance mercury and particulate removal[J], Electric Utilities Environmental Conference, Tucson, AZ, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700