用户名: 密码: 验证码:
国际贸易网络测度与演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二战以后,全球经济呈现出一体化发展的趋势.世界各国通过密切的经济交往和经济协调,在经济上相互联系与依存、相互渗透与扩张,相互竞争与制约,形成了世界经济从资源配置、生产到消费和流通的多层次、多形式的交织和融合。在这种大背景下,任何一个国家都越来越难以脱离世界和他国经济的影响而封闭、孤立地运行,全球经济逐渐形成一个不可分割的有机整体。全球贸易关系形成一个相互作用,相互影响的网络,网络中一个国家的经济增长或波动,贸易政策的改变直接或间接对网络中的其它国家产生影响.由于各国经济间存在的关联关系,这种影响通常并不局限于局部地区,而是沿着国际贸易网络进行广泛的传播,如上世纪90年代的亚洲金融危机,对世界上许多国家的经济都造成了冲击。显然,全球经济持续、健康的发展依赖于国家间经济政策的有效协调和遵循国际贸易系统自身的发展规律。目前我国已经成为世界上的贸易大国,对外贸易依存度达到60%以上,极易受到贸易波动的影响.要想制定有效的经济政策和应对危机的措施,必须对国际贸易网络的结构特征及演化规律进行深入研究.
     本文是国家自然科学基金项目《权重国际贸易网络的经验和建模研究》的实证研究部分。作为一项基础性研究,从复杂性理论出发,提出了研究国际贸易系统的新视角:将国际贸易系统视为由100多个经济相互关联的国家组成的复杂经济系统,国际贸易是不同的国家主体在微观层次上进行的交互作用。通过对全球贸易关系和贸易流量结构的测度,研究了二战后51年间国际贸易活动的结构特征和国际贸易格局的演化规律,对经济全球化背景下国家间经济活动联系的演化进程进行一种客观描述。
     本文从空间和时间两个维度测度了国际贸易网络的结构特征和演化规律,空间维度的研究包括本文的第三、四、五章;时间维度的研究包括本文的第六、七章。
     一、空间维度
     空间维度是指截取各年度的国际贸易网络快照,通过顶点和流量的数据从横截面的角度进行研究,重点分析网络快照的空间结构特征。空间维度的网络结构研究可分为依次递进的三个层次:
     1.第三章,国际贸易网络拓扑结构的研究。首先不考虑网络中贸易流量的规模,将国际贸易网络抽象为用0或1来表示边的存在与否的拓扑网络,研究了国际贸易网络度分布,群聚性,度相关性和互惠性等拓扑结构特征。研究发现由于存在空间位置差异带来的运输成本,国际贸易网络并不是典型的无标度网络,拓扑结构的异质性在演化过程中不断下降。随着越来越多的国家参与到国际贸易体系中,各国在全球贸易格局中的分工合作日益有序,贸易全球化和区域经济一体化并存的趋势不断加强。
     2.第四章,国际贸易网络权重结构的研究。当考虑网络中的贸易流量规模,将贸易流量作为国际贸易网络中边的权重,从顶点强度分布,权重差异度,集聚性,顶点度相关性等角度对权重国际贸易网络的结构特征进行研究.发现国际贸易网络权重结构的异质性和度相关性与拓扑结构具有相反的特征,这说明在经济全球化趋势下,虽然多边贸易得到了很大发展,但贸易量和贸易流量的分布更集中于经济大国之间,世界贸易的格局趋向于更不均衡的状态.
     3.第五章,国际贸易网络骨架结构的研究。采用网络分解的方法,应用图论中生成树的概念抽取网络中重要的边构建了两种国际贸易骨架网络:基于边的介数中心性最大的生成树和基于边的流量最大的生成树。介数中心性在现有文献研究中一直作为网络中真实流量的近似替代,本文通过测度这两种骨架网络的结构特征和演化规律,发现对于流量差异很大的异质性网络,最大流量生成树与原始国际贸易网络的结构特征具有更高的一致性。对于国际贸易网络,最大流量生成树出度的变化反映了各国贸易地位的历史变迁。
     二、时间维度
     时间维度是指从时间轴的角度,研究国际贸易网络在51年间的演化过程和演化规律。时间维度的研究是从二个角度出发:
     1.第六章,基于信息论的国际贸易网络演化研究。应用信息熵,冗余度,条件熵,平均互信息,聚合度等信息量探讨了国际贸易网络的演化规律,刻画了国际贸易网络无序性,稳定性和流量专一性的演化特征。研究发现由于网络中节点的择优选择和日益完善的国际贸易协调机制,国际贸易网络的有序性不断增强。国际贸易网络演化的稳定性介于生态网络和随机网络之间,这表明国际贸易网络的演化比生态网络更为激烈,但也没有陷入到随机网络的混乱状态当中.平均互信息量的提高表明随着贸易渠道的多元化,国际贸易网络中流量的柔性大大增加。
     2.第七章,国际贸易网络流量增长动力学研究。贸易流量作为国家间相互作用的表现形式,与各国的主体经济特征,如总贸易额等具有重要的联系。本文以权重国际贸易网络为研究框架,从时间角度研究了贸易量和贸易流的增长波动问题。本文的实证研究结果发现国家贸易量和贸易流量的增长速率都服从修正的拉普拉斯分布,而且二者增长速率的方差-规模关系幂律指数相同,这表明国际贸易网络中相互作用和主体特征的增长波动具有密切的联系。
     本文的创新之处在于:
     1.构建了国际贸易权重网络,揭示了贸易系统中贸易流量与拓扑结构的关系特征。由于缺乏真实数据和定义权重的统一方法,现有文献中复杂网络实证研究的对象一般是网络的拓扑结构。但由于国际贸易网络中贸易流量的规模差异很大,简单的拓扑分析无法准确刻画国际贸易网络的结构特征。本文用贸易额对网络的边赋予权重,以权重国际贸易网络为框架进行研究。通过与拓扑分析结果的比较,发现权重网络分析更准确的刻画了国际贸易流量网络结构的基本属性。这对于其他基于流量驱动的经济网络(如汇率网络)的结构研究具有重要的参考意义。
     2.构建了国际贸易骨架网络,揭示了贸易系统中中枢网络与原始网络的关系特征。复杂网络的结构一般都非常庞大,微观结构和动态特性都十分复杂。为了更直观的了解复杂网络的主要结构特征,现有文献对基于网络拓扑结构的最大介数中心性生成树进行了深入的研究,介数中心性一直作为网络中真实流量的近似替代。本文构建了基于权重国际贸易网络框架的最大流量生成树,研究发现其结构特征与国际贸易网络具有更高的一致性。这表明对于权重差异较大的复杂网络,最大流量生成树比基于介数中心性的生成树更能反映网络的结构特征。最大流量生成树边的数量只占原始网络很小的一部分,因此可以大大简化网络结构研究的复杂性。
     3.应用信息论的概念,提出了国际贸易网络结构演化规律的定量测度方法。本文将基于信息论的测度方法引入到复杂网络的研究中,从信息论的角度考察了国际贸易网络流量应该满足的空间约束,并将生态系统中稳定性的判据推广应用到国际贸易复杂系统。这为刻画复杂经济网络的时间演化过程提供了一种新的定量化研究手段。
     4.将国际贸易系统视为复杂经济系统,发现了国际贸易网络中贸易量与贸易流量增长速率分布的相关关系。
     Stanley教授研究组对复杂经济系统增长动力学的研究发现,复杂系统中主体特征(如公司规模,国家GDP)的增长速率服从修正的拉普拉斯分布,增长速率的方差与规模具有幂律关系。Stanley认为以上规律是由复杂系统主体间的相互作用引起的。本文以权重网络为研究框架,用贸易流量刻画国家间的相互作用,在国际贸易系统中验证了Stanley提出的复杂系统中主体特征和相互作用的增长速率波动具有统一规律特征的结论。这些实证结果为国际贸易系统建模的假设条件提出了严格的限制,可以作为建立更为准确的国际贸易模型的研究基础。
After World War Two, with the acceleration of world economy globalization, more and more countries developed closer mutual trade relationships, countries cooperated and competed at the same time. In this context, any country cannot isolate from the influence of other countries, global economy becomes a wholly organic structure. All the trade relationships among countries form a world trade network, countries are the nodes and trade relationships are the edges. As a node of the network, the change of any country’s economy will influence other countries through the trade relationships. This kind of influence usually is not restricted in the local region, but propagate broadly through the world trade network, such as the Asia Financial Crisis in 1990s.Obviously, the healthy development of world trade economy depend on the coordination of countries trade policy and following the self-regulation of world trade system. China has become an important trade country in the world, to plan the correct trade policy and protect our local economy, we must research on the feature and law of world trade network.
     The dissertation introduces a new perspective on research of world trade system based on some latest research results. World trade system is composed of more than 100 countries with mutual economic linkage, trade is the mutual function of different agents on the micro levels. The dissertation researches on the evolution law of world trade structure from the weighted network perspective, discloses the subjective regulations of mutual economic function between countries.
     The dissertation measures the structural features and evolution law from space dimension and time dimension. Research on space dimension includes the third, fouth and fifth chapter, time dimension includes the sixth and seventh chapter.
     Space dimension
     Space dimension means the interception of world trade network snapshot in one year, analyzing the space structure of snapshot based on the data of trade volume. Following three layers:
     1. Study on the world trade network topological structure.
     Neglecting the influence of trade flow volume on network structure, constructing the topological adjacent matrix with the 0 or 1 as the existence of trade relationship or not. Research on the characteristics of world trade networks’degree distribution, clustering, degree correlations and reciprocity. The results show that world trade networks are not scale-free, and have the tendency to become more randomly. With more countries participated in the world trade system, their statuses are more orderly, and the coexistence of economic globalization and local integration is strengthened.
     2 Study on the world trade network weighted structure.
     Constituting the weighted world trade network by assigning the magnitudes of trade flows to the edges of the network, and study the structural characteristics of weighted network from four perspectives: the relations of node strength and degree, edge weight disparity, clustering and node degree correlations. Comparative analysis with topological structure discloses some new findings, such as the node degree is negatively correlative in topological structure and positively correlative in weighted structure. The results show that the analysis of weighted network could depict more information for economic flow network.
     3 Study on the world trade network skeleton structure.
     Apply the concept of spanning tree to decompose the world trade network into the two skeleton structures: maximum BC spanning and maximum flow spanning tree. For the network with great difference in weights, maximum flow spanning tree’s structure is more fitted with the original network. The change of out degree of maximum flow spanning tree reflects the historical transfer of countries trade status.
     Time dimension
     Researches on time dimension focus on the characteristics of evolution law of world trade network in the past 51 years. From two perspectives:
     1. Study on world trade network evolution based on information law. The dissertation borrows the ideas of ecological network to quantitatively depict the evolution characteristics of world trade network: information entropy, redundancy, conditional entropy, mutual information. Empirical results of study on the buffering capability show that it increased after World War Two. In addition, the evolution stability of world trade network is studied by applying the conditional entropy of information theory, results show it is in the middle of ecological network and random network. This means that the evolution of world trade network is more drastic than ecological network, but it is not in the chaos of random network. The results of mutual information means the flexibility of trade flows increased rapidly.
     2 Study on World trade network flow growth dynamics.
     In the context of weighted world trade network, the dissertation researches the growth fluctuation of trade volume and trade flow in the time dimension. Finding that both follows the revised laplace distribution, and the power index of relation of variance–size fits with each other. The results prove the proposition of Stanley(1996).The conclusions propose the restricted practical conditions for the building models of world trade system.
     The innovations include:
     1. Constructing the weighted world trade network, depicting the relations of trade flow and topological structure of world trade system.
     World trade network is a typical complex economic network, the magnitudes of trade flows in the network are greatly diverse, so that the simple analysis of topological structure cannot depicts correctly the structural characteristics of world trade network. Constitutes the weighted world trade network by assigning the magnitudes of trade flows to the edges of the network, and studies the structural characteristics of weighted network from four perspectives: the relations of node strength and degree, edge weight disparity, clustering and node degree correlations. Comparative analysis with topological structure discloses some new findings, such as the node degree is negatively correlative in topological structure and positively correlative in weighted structure. The results show that the analysis of weighted network could depict more information for economic flow network.
     2 Constructing the world trade network skeleton, depicting the relations of center network and original network.
     The structure of complex network is usually very tremendous and complicated, to depict the main characteristics of main structure, constructing the maximum flow spanning tree of the world trade network to simplify the research. The results means the maximum flow spanning tree reflect the basis characteristics of original network. Because the spanning-tree only occupy the minority of original network, greatly reduce the work of research .This provides a new research method for the flow network research.
     3 Borrowing the information concept, proposing the quantitative measurement of evolution law of world trade network.
     The concepts of information law are comprehensively applied in the research of ecological network. Because of the similarity of world trade network and ecological network, the dissertation borrows the information measurement to quantitatively depict the evolution of world trade network. Consider the space restrictions of world trade flow, and apply the criterion of stability to the world trade network. This propose a quantitative measurement of the evolution of economical flow network.
     4 Depicting the fitting relation of growth rate of trade volume and trade flow in world trade network.
     Professor Stanley research group find the growth rate of index of agents(firm size,country GDP)follows the power law relations for the complicated economic system.This dissertation proves this regulation in the world trade system ,and further more, disclose the index relations of agent characteristics and mutual function(country GDP and flow volume).This result is the basis of modeling the complicated economic system
引文
[1] 冯芸,吴冲锋.全球大系统关联结构和金融危机的传播[J].预测,2002,2:24-28.
    [2] Durlauf S N.Complexity and empirical economics[J].The Economic Journal, 2005, 115:225-243.
    [3] Gleditsch K S. Expanded trade and GDP data[J]. Journal of Conflict Resolution, 2002, 46(5):712-724.
    [4] Garlaschelli D, Loffredo M I. Structure and evolution of the world trade network[J]. Physica A, 2005, 355:138–144.
    [5] Loffredo M I , Garlaschelli D .Fitness dependent topological properties of the world trade web[J].Physical Review Letters,2004,188701.
    [6] Stanley H E, Plerou V.Scaling and universality in Economics: empirical results and theoretical interpretation[J].Quantitative Finance ,2001,563-567
    [7] Krugman P R.Rethinking international trade[M].The MIT Press,USA,1990.
    [8] Posner M V. International trade and technical change[M].Oxford Economic Papers,1961,323 .
    [9] Krugman, P R. Scale Economics, Product Differentiation, and the New Pattern of Trade[J].American EconomicReview,1980, 70: 950-959.
    [10] Dixit A K, Stigliz J E.Monopolistic competition and optimum product diversity[J].American Economic Review, 1977, 67: 297-308.
    [11] Krugman P R. A Model of innovation technology transfer and the world distribution of income[J].Journal of Political Economy .1979,87:253 - 266.
    [12] 迈克尔·波特. 国家竞争优势.北京:华夏出版社, 2002.
    [13] Kohler A, Wilhelm J. Aspects of International Fragmentation. Economics. Working Papers,Department of Economics, Johannes Kepler University Linz, Austria, 2002.
    [14] Ishii J, Yi K M. The Growth of World Trade[M]. Federal Reserve Bank of New York Research Paper,1997:9718.
    [15] 卢锋. 产品内分工— 一个分析框架. CCER Working Paper, 2004,No. C2004005.
    [16] Chen Y M , Ishikawa J, Zhihao Y. Trade liberalization and strategic outsourcing[J]. Journal of International Economics, 2004,63: 419-436.
    [17] Spencer J, Barbara J. International outsourcing and incomplete contracts. NBER Working Paper,2005,11418.
    [18] Pol A. Firms, contracts, and trade structure[J]. Quarterly Journal of Economics, 2003,118:1375-1418.
    [19] Grossman G M. , Helpman E. Outsourcing in a global economy[J]. Review of Economic Studies, 2005, 72 :135-160.
    [20] Grossman G M, Helpman E. Managerial incentives and international production[J]. Journal of International Economics ,2004, 63: 237-262.
    [21] Dalia M,Verdier T. Globalization and the empowerment of talent[M]. Centre for Economic Policy Research Discussion Paper,2003, 4129.
    [22] Tinbergen J.Shaping the world Economy: suggestion for an international Economic policy[M].New York:the twentieth century.1962.
    [23] Poynohen P. A tentative model for the volume of trade between countries[J]. Weltwirt schafliches Archive,1963,90:93-99.
    [24] Linnemann H.An Econometric study of international trade flow[M].Amsterdam:North-Holland publishing Company,1996.
    [25] Casetti F.Generating models by the expansion method[J].Applications to Geographical Research,Gegraphical Analysis,1972,3:81-91.
    [26] Anderson J E A.Theoretical foundation for the gravity equation[J].American Economic Review,1979,69:106-116.
    [27] Berstrand J H.The gravity equation in international trade:some Microeconomic foundations and empirical evidence[J].Review of Economics and Statistics,1985,67:474-481.
    [28] Anderson J E,Wincoop E.Gravity with Gravitas:A Soulution to the Border Puzzle[J].American Economic Review,2003,93:170-192.
    [29] 史朝兴,顾海英,秦向东.引力模型在国际贸易中应用的理论基础研究综述[J].南开经济研究,2005,2:39-44.
    [30] 盛斌,廖明中. 中国的贸易流量与出口潜力: 引力模型的研究[J].世界经济, 2004,2:37-40
    [31] 林玲,王炎. 贸易引力模型对中国双边贸易的实证检验和政策含义[J].世界经济研究, 2004,7:53-56.
    [32] 姜书竹,张旭昆.东盟贸易效应的引力模型.数量经济技术经济研究,2003,10:47-52.
    [33] Eaton J,Kortum S.Technology,geography,and trade.working paper, Economic Department of Bostaon University,2000.
    [34] Rauch J E.Trade and search:social capital,Sogo Shosha and spillovers,NBER working paper,1996, 5618.
    [35] Greaney T M,Mattsson L G,Easton G.International competitiveness and trade promotion policy from a network perspective,Working paper,University of Western Sydney,2003.
    [36] 陈学光,徐金发. 网络组织及其惯例的形成[J].中国工业经济,2006(4):52-58
    [37] Koka BR,Prescott JE,Madhavan R.Contagion influence on trade and investment policy:a network perspective[J].Journal of International business studies,1999,30:127-147.
    [38] Wilkinson I F,Mattsson L G,Easton G.International competitiveness and trade promotion policy from a network perspective.working paper, University of Western Sydney,2006.
    [39] Sacks M A,Ventresca M J,Uzzi B.Global institutions and networks,Contingent change in the structure of world trade advantage 1965-1980[J].The American Behavioral Scientist, 2001, 44 : 1579-1601.
    [40] Arthur W.Competing technologies, increasing returns and lock-in by historical events[J]Economic Journal, 1989,99:116-131.
    [41] Lux T,Marchesi M. Scaling and criticality in a stochastic multi-agent model of a financial market[J]. Nature,1999,397-498.
    [42] Mandelbrot B B.The variation of certain speculative prices[J].Journal of business,1963,36.
    [43] Mantegna R N,Stanley H E. Scaling behaviour in the dynamics of an Economic Index[J].Nature,1995,376:46-49.
    [44] Stanley M H R, Amaral L A N, Buldyrev S V, etal.Scaling behavior in the growth of companies[J].Nature,1996,379: 804-806.
    [45] Canning D, Amaral L A N, Lee Y, etal.A Power Law for scaling the volatility of GDP growth rates with country size[J]. Economics Lett,1998,60:335-341.
    [46] Plerou V, Gopikrishnan P, Rosenow B,etal. Universal and non-universal properties of cross-correlations in financial time series[J].Physical Review Letters,1999,83:1471-1474.
    [47] Stanley H E, Plerou V. Scaling and universality in Economics: empirical results and theoretical Interpretation[J].Quantitative Finance ,2001,7:563-567.
    [48] Gabaix X,Gopikrishnan P, Plerou V, Stanley H E.A theory of Power-Law distributions in financial market fluctuations[J].Nature ,2003,423:267-270.
    [49] Plerou V, Gopikrishnan P, Gabaix X, etal.On the origin of Power-Law fluctuations in stock prices[J].Quantitative Finance , 2004,11:11-15.
    [50] 黄登仕.经济系统的密度周期性和复杂性[M].北京,北京大学出版社,2003.
    [51] Montoya J M,Sole BV. Small world patterns in food webs[M]. Santa Fe Institute ,2000 ,00-10-059
    [52] Jeong H ,Mason S P,Barabasi A L,etal. Lethality and centrality in protein networks[J]. Nature ,2001 ,411 : 41 - 42.
    [53] Jeong H,Tombor B,Albert R.The Large Scale organization of metabolic networks[J]. Nature ,2000 ,407 : 651 - 654.
    [54] Faloutsos M,Faloutsos P,Faloutsos C.On Power Law Relationships of the Internet Topology[J].Comput Commun Rev,1999,29,4:251-262.
    [55] 蔡宁,吴结兵,殷鸣. 产业集群复杂网络的结构与功能分析[J]. 经济地理, 2006,26:31-35
    [56] Erdos P, Renyi A. On the evolution of random graphs[M]. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 1960, 5: 17-61.
    [57] Newman M E J. The structure and function of complex network[J]. SLAM Review, 2003 ,45,2:167-256.
    [58] Barabasi A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286: 509-512.
    [59] Satorras P R, Vazquez A. Dynamical and correlation properties of the Internet [J]. Phys Rev Lett, 2001,87.258701.
    [60] Newman M E J. Assortative mixing in networks[J]. Physical Review Letters,2002, 89,208701
    [61] Ravasz E,Albert R,Barabasi A L. Hierarchical organization in complex networks[J]. Physical Review E,2003, 67, 026112.
    [62] Song C M.Self-similarity of complex networks[J].Nature,2005,433:392-395
    [63] Goh K I, Salvi G, Kahng B, Kim D. Skeleton and fractal scaling in complex networks[J]. Physical Review Letters, 2006, 96, 018701.
    [64] Barrat A, Barthelemy M, Vespignani A. Weighted evolving networks: coupling topology and weight dynamics[J]. Physica l Review Letters, 2004, 92,111-114.
    [65] Watts D J, Strogatz S H. Collective dynamics of `small-world' networks[J]. Nature, 1998, 393:440-442.
    [66] Newman M E J, Watts D J. Renormalization group analysis of the small-world network model[J].Physics Letters A, 1999, 263:341-346.
    [67] Kasturirangan R. Multiple Scales in Small-World Graphs. cond-mat/9904055.
    [68] Dorogovtsev S N, Mendes J F F, Samukhin A N. Structure of growing networks with preferential linking[J]. Physical Review Letters, 2000, 85,21: 4633-4636.
    [69] Kleinberg J.Navigation in a small world[J]. Nature, 2000, 406:845-845.
    [70] 杨波,陈忠,段文奇.基于个体选择的小世界网络结构演化[J].系统工程,2004,22,12:1-5.
    [71] Ozik J, Hunt B-R, Ott E.Growing networks with geographical attachment preference: Emergence of small worlds[J].Physical Review E, 2004,69:026108.
    [72] Barabasi A L, Albert R, Jeong H. Mean-field theory for scale-free random networks[J]. Physics A,1999,272:173-187.
    [73] Dorogovtsev S N, Mendes J F F. Exactly solvable small-world network[J]. Europhys Letters,2000,50:1-7.
    [74] Amaral L A N, Scala A, Barthelemy M, et al. Classes of small-world networks[J]. Proc Natl Acad Sci.USA, 2000, 97: 11149-11152.
    [75] Bianconi G, Barabasi A L. Competition and multiscaling in evolving networks[J]. Europhys Lett, 2001,54:436-442.
    [76] Krapivsky P L, Redner S, Leyvraz F. Connectivity of growing random networks[J]. Physical Review Letters, 2000, 85:4629-4632.
    [77] Kleinberg J M,Kumar R,Raghavan P et al. The Web as a graph: Measurements, models and methods[J]. Proceedings of the International Conference on Combinatorics and Computing. Lecture Notes in Computer Science, 1999, 1627:1-17.
    [78] Kumar R, Raghavan P, Rajalopagan S et al. Stochastic models for the Web graph. Proceedings of the 42st Annual IEEE Symposium on Foundations of Computer Science, Institute of Electronic and Electronics Engineers, New York, 2000:57-65.
    [79] Chung F, Lu L Y, Dewey T G et al. Duplication models for biological networks[J]. J of Comput Biology, 2003, 5:677-688. [80 ] Krapivsky P L, Redner S. Organization of growing random networks[J]. Physical Review E, 2001, 63:066123.
    [81] Vazquez A. Disordered networks generated by recursive searches[J].Europhys Lett. 2001, 54:430-435.
    [82] Yook S H, Jeong H, Barabasi A-L. Weighted evolving networks[J]. Physical Review Letters, 2001,86:5835-5838.
    [83] Serrano M A,Boguna M. Topology of the World Trade Web[J]. Physical Review E,2003,68:015101.
    [84] Li X, Jin Y Y, Chen G R. Complexity and Synchronization of the World Trade Web[J].Physica A,2003,328:287-296.
    [85] Garlaschelli D, Loffredo M I. Structure and Evolution of the World Trade Network[J]. PhysicaA, 2005, 355:138–144.
    [86] Mcfadzean D,Tesfatsion L.A C++ Platform for the evolution of Trade Networks[J].Computational Economics,1999,14:109-134.
    [87] McFadzean D, Stewart D, Tesfatsion L. A Computational Laboratory for Evolutionary Trade Network[J]. Ieee Transactions on Evolutionary Computation, 2001.
    [88] Wilhite A.Bilateral trade and “small-world” networks[J]. Computational Economics,2001, 18:49-64.
    [89] 王林,戴冠中,胡海波. 无标度网络的一个新的拓扑参数[J]. 系统工程理论与实践,2006,6
    [90] 谭跃进 , 吴俊 . 网络结构熵及其在非标度网络中的应用 [J]. 系统工程理论与实践,2004 ,24(6):1 - 3.
    [91] Ravasz E, Somera A L, Mongru DA, et al. Hierarchical organization of modularity in metabolic networks[J].Science,2002, 297:1551-1555.
    [92] Vazquez A, Pastor-Satorras, R., Vespignani A. Large-scale topological and dynamical properties of the Internet[J]. Phys Rev E ,2002,65, 066130.
    [93] Newman M E J. Assortative mixing in networks[J]. Physical Review Letters,2002, 89.208701
    [94] Garlaschelli D, Loffredo M I. Patterns of link reciprocity in directed networks[J]. Physical Review Letters, 2004, 93, 268701.
    [95] Barrat A, Barthe′lemy M, Satorras P R., et al. The architecture of complex weighted networks[J]. Pnas, 2004,11:3747–3752.
    [96] Abramson, G,Kuperman M.Social games in a social network[J].Phys Rev E,2001,63, 030901
    [97] Barrat, A,Weigt M. On the properties of small-world networks[J]. Eur Phys J,2000,13: 547–560.
    [98] Banavar J R, Maritan A, Rinaldo A. Size and form in efficient transportation networks[J]. Nature, 1999, 399:130-132.
    [99] Almaas E, Kovacs B, Vicsek T, et al. Global organization of metabolic fluxes in the bacterium Escherichia coli[J]. Nature, 2004, 427:839-843.
    [100] Enquist B J ,Niklas K J. Invariant scaling relations across tree-dominated communities[J]. Nature, 2001, 410.
    [101] Goh K I, Kahng B, Kim D. Universal behavior of load distribution in scale-free networks. Physical Review Letters, 2001, 87.
    [102] Goh K I, Oh E, Jeong H, Kahng B, Kim D.Classification of scale-free networks[J].PNAS,2002,10:12583-12588.
    [103] Kim D H, Noh J D, Jeong H. Scale-free trees: the skeletons of complex networks[J]. Physical Review E, 2004, 70, 046126.
    [104] Garlaschelli D, Caldarelli G, Pietronero L. Universal scaling relations in food webs[J]. Nature, 2003, 423:165-168.
    [105] Macdonald P J, Almaas E, Barabasi A L.Minimum spanning trees of Weighted scale-free Networks[J].Europhysics Letters,2005,72:308-314.
    [106] Zhenhua W,Braunstein L A,Havlin S,Stanley H E. Transport inweighted networks: partition into superhighways and roads[J]. Physical Review Letters,2006,96,148702
    [107] Freeman L. A set of measures of centrality based on betweenness[J]. Sociometry,1977, 50:35-51.
    [108] Shannon C E, A mathematical theory of communication[J].Bell Syst Tech. J,1948:379–423
    [109] Shannon C E, The Mathematical Theory of Communication[M].University of Illinois Press, 1949,USA.
    [110] Gladyshev G P. Thermodynamic theory of biological evolution and aging.Experimental Conformation for Theory[J]. Entropy 1999, 1:55-68.
    [111] Ludovisi A, Pandolfi P, Taticchi M I. The strategy of ecosystem development: specific dissipation as an indicator of ecosystem maturity[J]. Journal of Theoretical Biology, 2005, 235:33–43.
    [112] 张连明,陈志刚,邓晓衡. 一种基于信息熵的Internet宏观行为模型研究[J]. 计算机工程与应用,2004,19:61-65.
    [113] 谷国锋,张秀英. 区域经济系统耗散结构的形成与演化机制研究[J]. 东北师大学报自然科学版, 2005,37:41-45
    [114] Woodward G, Ebenman B, Emmerson M,et al.Body size in ecological networks[J]. Trends in ecology and evolution,2005,7:402-409.
    [115] Rutledge R W, Basorre B L, Mulholland R J. Ecological stability: an information theory viewpoint[J].J Theor Biol,1976,57:355-371.
    [116] Ulanowicz R E. An hypothesis on the development of natural communities[J]. J Theor Biol,1980,85: 223–245.
    [117] Ulanowicz, R E.Complexity in ecological systems series[M]. Columbia University Press,1997,New York
    [118] Aoki I. Comparative study of flow-indices in lake-ecosystems and the implication for muturation process[J].Ecological Modelling,1997,95:165-169
    [119] Ricard J. What do we mean by biological complexity[J].C. R. Biologies. 2003,326:133–140
    [120] Zorach A C , Ulanowicz R E. Quantifying the complexity of flow networks: how many roles are there[J]. Complexity, 2003,8:68-76
    [121] Sole R V, Valverde S. Information theory of complex networks: On evolution and architectural constraints[J]. Notes Phys, 2004,650:189–207
    [122] Moore J F.The death of competition[M].Harper Collins Publishers.1996
    [123] 黄鲁成.区域技术创新生态系统的稳定机制[J].研究与发展管理,2003,8:48-52.
    [124] Luke G,Latham II , Erik P S. Quantifying constraint to assess development in ecological networks[J]. Ecological Modelling, 2002,154:25–44.
    [125] Mageau M T , Costanza R, Ulanowicz R E. Quantifying the trends expected in developing ecosystems[J]. Ecological Modelling, 1998, 112:1–22.
    [126] 张斌.多边贸易体制的变迁[J].世界经济研究,2003,7:50-55
    [127] Albert R, Jeong H, Barabasi AL.Error and attack tolerance of complex networks[J].Nature ,2000,406: 378–381.
    [128] 高亮,李梦辉,吴金闪.食物链网络在顶点攻击与边攻击下的鲁棒性[J].系统工程理论与实践,2005,7:1-8.
    [129] 吴俊, 谭跃进. 复杂网络抗毁性测度研究[J]. 系统工程学报, 2005,2,31-35
    [130] Ulanowicz R E. Information theory in ecology[J]. Computers and Chemistry, 2001, 25:393–399.
    [131] 覃正,姚公安.基于信息熵的供应链稳定性研究[J].控制与决策,2006,6:693-696
    [132] Conrad M. Adaptability :the significance of variability from molecule to ecosystem[M].NewYork:Plenum,1983.383-386.
    [133] May R M. Will a large complex system be stable[J]. Nature 1972, 238, 413–414.
    [134] Ulanowicz R E. The balance between adaptability and adaptation[J]. Bio Systems, 2002, 64:13–22.
    [135] Mantegna R N ,Stanley H.E.Turbulence and financial markets[J].Nature,1996,383, 587-588
    [136] Gibrat R. Les inegalites Economiques[M].1933,Sirey Paris.
    [137] Canning D,Amaral L A N,Lee Y.Scaling the volatility of GDP growth rates[J]. Economics letters,1998,60:335-341.
    [138] Plerou V, Gopikrishnan P, Rosenow B, Amaral L A N ,et al. Universal and on-universal properties of cross-correlations in financial time series[J]. Physical Review Letters,1999,83:1471-1474.
    [139] Havemann F, Heinz M, Wagner-D?bler R. Firm-like behaviour of journals? scaling properties of their output and impact growth dynamics[J]. Journal of the American Society for Information Science and Technology , 2005,56,1:3-12.
    [140] Amaral L A N, Buldyrev S V, Havlin S.Power Law scaling for a system of interacting units with complex internal structure[J].Physical Review Letters,1998,80:1385-1388
    [141] Dongfeng F, Fabio P, Buldyrev S V.The growth of business firms: theoretical framework and empirical evidence[J]. Pnas, 2005, 02:18801–18806.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700