用户名: 密码: 验证码:
内蒙古羊草草原碳通量观测及其驱动机制分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植被与大气间CO_2通量的长期观测能够使人们加深对陆地生态系统在全球碳循环中科学地位的理解。在生态系统水平上,涡度相关技术是评价植被/大气间净生态系统CO_2交换量的主要手段。本研究以内蒙古羊草草原通量站为试验平台,以涡度相关技术为主要技术手段,以内蒙古草原生态系统定位研究站羊草草原围封样地2003~2005年开路涡度相关系统观测的CO_2通量数据为基础,深入探讨了内蒙古羊草草原生态系统CO_2通量不同时间尺度上的变化特征及其驱动机制。
     在建立生态系统尺度CO_2通量观测基本方法论的前提下,集中探讨了不同时间尺度内蒙古羊草草原生态系统净生态系统碳交换、呼吸作用以及碳吸收的季节变异特征及其控制机制,初步建立了内蒙古羊草草原净生态系统CO2交换量估算的基本方法,可为生态系统过程模拟与模型预测提供科学依据和技术支撑。主要结果包括以下几个方面:
     1.功率谱和协谱分析表明,开路涡度相关系统对高频湍流信号的响应能力可以满足内蒙古草原生态系统实际观测要求。与闭路涡度相关系统和常规气象系统对比分析表明,开路涡度相关系统在CO_2通量长期观测中仪器性能稳定,可以满足CO_2通量长期观测的客观需要。坐标旋转校正是复杂地形条件下CO_2通量测定理想的倾斜校正途径。能量平衡闭合的测试仅可以作为数据质量评价的参考标准之一,而不能作为CO_2通量数据质量评价的绝对标准并用于数据校正。
     2.按照CO_2通量吸收的高峰特征划分,正常降水年,内蒙古羊草草原CO_2通量同时具有一个吸收高峰和两个吸收高峰的特征。而极端干旱年蒙古羊草草原的CO2通量具有两个吸收高峰的特征。在严重干旱胁迫条件下,2005年内蒙古羊草草原生态系统净生态系统交换出现显著下降的趋势。净生态系统交换下降主要是降雨量减少的影响。
     3.通过分析不同时间尺度上CO_2通量和环境因子的关系,发现小时尺度上,内蒙古羊草草原生态系统的净生态系统交换主要由光合有效辐射控制,而饱和水汽压差和土壤含水量是影响生态系统光合作用的另外两个关键因素。在更大的时间尺度上降雨量和物候相的变化是调节生态系统碳通量大小的
Long-term measurements of the exchange of CO_2 between terrestrial ecosystems and atmosphere have the potential to markedly improve understanding the role terrestrial ecosystems play in the global carbon cycle. Eddy covariance is a micrometeorological technique that allows a non-invasive measurement of the exchange of CO2 between the atmosphere and vegetation. This study was on the basis of Inner Mongolia Flux Station, and used eddy covariance technique to measure the exchange of CO_2 flux in a fenced field during 2003~2005’s growing seasons. We anatomized the characteristics of CO_2 flux and the driving mechanism at different temporal scale.
     In order to compare the results of flux data of different flux measurements, the quality of the flux data must be assessed and controlled. We analyzed the turbulence flux measurements using the open-path eddy covariance technique and the extent of energy closure of the data. We have taken advantage of an unusual drought during the summer of 2005 and the variation in precipitation pattern during three growing seasons to investigate the effects of soil water content and precipitation on the net ecosystem exchange and respiration (as measured by eddy covariance and chamber method ) in Lymus chinensis grassland. At the same time, quantitative estimation of the carbon sequestration potential of this typical grassland ecosystem level has been approached by the means of the eddy covariance technique on a three-year basis. The main results are as follows:
引文
1. Adams J M, Faure H, Faure D L, McGlade, J M, Woodward F I. Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature, 1990, 348: 711~714
    2. Aubinet M, Grelle A, Ibrom A, et al. Estimates of the annual net carbon and water exchange of European forests: the EUROFLUX methodology. Adv. Ecol. Res., 2000, 30: 113~174
    3. Baldocchi D D, Hicks B B, Meyers T P. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology, 1988, 69: 1331~1340
    4. Baldocchi D, Valentini R, Running S, et al. Strategies for measuring and modeling carbon dioxide and water vapour fluxes over terrestrial ecosystems. Global Change Biology, 1996, 2: 159~168
    5. Baldocchi D D. Flux footprint within and over forest canopies. Boundary-Layer Meteorology, 1997, 85: 273~292
    6. Baldocchi D D. Measuring and modeling carbon dioxide and water vapour exchange over a temperature broad-leaved forest during the 1995 summer drought. Plant, Cell and Environment, 1997, 20: 1108~1122
    7. Baldocchi D D, Meyers T P. On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and gaseous deposition fluxes over vegetation. Agricultural and Forest Meteorology, 1998, 90: 1~26
    8. Baldocchi D, Finnigan J, Wilson K, et al. On measuring net ecosystem carbon exchange over tall vegetation on complex terrain. Boundary-Layer Meteorology, 2000, 96: 257~291
    9. Baldocchi D D, Falge E, Gu L H, et al. Fluxnet: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society, 2001, 82: 24152~2434
    10. Baldocchi D D. Assessing ecosystem carbon balance: problems and prospects of the eddy covariance technique. Global Change Biology, 2003, 9: 478~492
    11. Baldocchi D D, XU L K, Nancy K. How plant functional-type, weather, seasonal drought,and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland. Agricultural and Forest Meteorology, 2004, 123: 13~39
    12. Berbigier P, Bonnefond J M, Mellmann P. CO2 and water vapour fluxes for 2 years above Euroflux forest site. Agricultural and Forest Meteorology, 2001, 108: 183~197
    13. Berthelot M, Friedlingstein P, Ciais P. How uncertainties in future climate change predictions translate into future terrestrial carbon fluxes. Global and Planetary Change, 2005, 11: 959~970
    14. Black T A, Hartog G, Neumann H H, et al. Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest. Global Change Biology, 1996, 2: 219~229
    15. Blanken P D, Black T A, Yang P C, Neumann H H, Nesic Z, Staebler R, Hartog G, Novak M D, Lee X. Energy balance and canopy conductance of a boreal aspen forest: partitioning overstory and understory components. Journal of Geophysical Research, 1997, 102 (D24): 28,915~28,927
    16. Callendar G S. The artificial production of carbon dioxide and influence on temperature. Q. J. R. Meteorol. Soc., 1938, 64: 223~240
    17. Chen J L, Reynolds J F, Harley P F and Tenhunen J D. Coordination theory of leaf nitrogen distribution in a canopy. Oecologia, 1993, 93: 63~69
    18. Chen Z Z, Wang S P, Wang Y F. Update progress on grassland ecosystem research in Inner Mongolia steppe. Chinese Bulletin of Botany, 2003, 20: 423~429
    19. Ciais P, Tans P P, Trolier M, White J W C et al. A large northern-hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science, 1995, 269: 1098~1102
    20. Cole V. Agricultural options for mitigation of greenhouse gas emissions. In: Watson R T, Zinyowerea M C, Moss R H (Eds.), Climate Change 1995. Impacts, Adaptations and Mitigation of Climate Change: Scientific–Technical Analyses. Cambridge University Press, Cambridge, MA, 1996, pp. 747~771
    21. Christopher W H, John M B, Philip A F. Increased rainfall variability and reduced rainfall amount decrease soil CO2 flux in a grassland ecosystem. Global Change Biology, 2005, 11: 322~334
    22. Daniel R L, Jack A M, Gerald E S, Jean D R, Richard H H. Carbon exchange and species composition of grazed pastures and enclosures in the shortgrass steppe of Colorado. Agriculture, Ecosystems and Environment, 2002, 93: 421~435
    23. Denmead O T. Measuring fluxes of CH4 and N2O between agricultural systems and the atmosphere. In: CH4 and N2O: Global Emissions and Controls from Rice Fields and Other Agricultural and Industrial Sources. NIAES, 1994, 209~234
    24. Denmead O T, Raupach M R. Methods for measuring atmospheric gas transport in agricultural and forest systems. In: Harper et al. Agricultrual Ecosystem Effects on Trace Gases and Global Climate Change. Madison, 1193, WI: ASA Special Publication (Vol. 55), 19~43
    25. Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems. Science, 1994, 263: 185~190
    26. Du Z C, Yang Z G, Cui X Y. A compariation study on Leaf Area Index of five plant communities in typical steppe. Grassland of China, 2001, 23: 13~18
    27. Dugas W A, Heuer M L, Msyeux H S. Carbon dioxide fluxes over bermudagrass, native prairie, and sorghum. Agricultural and Forest Meteorology, 1999, 93: 121~139
    28. Emanuel W R, Killough G, Olsn J S. Modelling the circulation of carbon in the world’s terrestrial ecosystems. In: Carbon Cycle Modelling, SCOPE 16. Chichester: 1981, 335~353
    29. Ewel K C. Soil CO2 evolution in Florida slash pine plantations. Ⅰ.Changes through time. Can J For Res., 1987, 10: 297~305
    30. Falge E, Baldocchi D D, Richard O. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 2001a, 107: 43~69
    31. Falge E, Baldocchi D, Olson R, et al. Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology. 2001b, 107: 71~77
    32. Falge E, Baldocchi D, Tenhunen J, et al. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 2002a, 113: 53~74
    33. Falge E, Tenhunen J, Baldocchi D, et al. Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 2002b, 113: 75~95
    34. Fan S M, Wofsy S C, Bakwin P S, et al. Atmosphere–biosphere exchange of CO2 and O3 in the central Amazon forest. Journal of Geophysical Research, 1990, 95: 16851~16864
    35. Fan S, Gloor M, Mahlman J, et al. A large terrestrial carbon sink in North America implied by atmospheric and oceanic CO2 data and models. Science, 1998, 282: 442~46
    36. Fang C, Moncrieff J B. The dependence of soil CO2 efflux on temperature. Soil Biology & Biochemistry. 2001, 33: 155~165
    37. Field C. Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program. Oecologia, 1983, 56: 341~347
    38. Flanagan L B, Johnson B G. Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland. Agricultural and Forest Meteorology, 2005, 130: 237-253
    39. Foken T, Wichura B. Tools for quality assessment of surface-based flux measurements. Agricultural and Forest Meteorology, 1996, 78: 83~105
    40. Frank A B, Dugas W A. Carbon dioxide fluxes over a northern, semiarid, mixed grass prairie. Agricultural and Forest Meteorology, 2001, 108: 317~326
    41. Glenn E, Squires V, Olsen M, Frye R. Potential for carbon sequestration in drylands. Water Air Soil Pollution, 1996, 70: 341~355
    42. Global Carbon Project. Science Framework and Implementation. Earth System Science Partnership (IGBP, IHDP, WCRP, DIVERSITAS) Report No. 1; Global Carbon Project Report No. 1, Canberra, 2003, 69pp
    43. Goulden M L, Munger J M, Fan S M et al. Measurement of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Global Change Biology, 1996a. 2: 169~182
    44. Goulden M L, Wofsy S C, Harden J W, et al. Sensitivity of boreal forest carbon balance to soil thaw. Science, 1998, 279: 214~217
    45. Grace J, Lloyd J, McIntyre J et al. Fluxes of carbon dioxide and water vapor over an undisturbed tropical forest in southwest Amazonia. Global Change Biology, 1995, 1: 1~12
    46. Guan D X, Wu J B, Yu G R. Meteorological control on CO2 flux above broad-leaved Korean pine mixed forest in Changbai Mountains. Science in China Series D-Earth Sciences. 2005, 48: 116~122
    47. Gu S, Tang Y H, Du M Y. Short-term variation of CO2 flux in relation to environmental controls in an alpine meadow on the Qinghai-Tibetan Plateau. Journal of Geophysical Research-Atmospheres, 2003, 108: 265~276
    48. Gu L H, Falge E M, Baldocchi D D. Objective threshold determination for nighttime eddy flux filtering. Agricultural and Forest Meteorology. 2005, 128: 179~197
    49. Ham J M, Knapp A K. Fluxes of CO2, water vapor, and energy from a prairie ecosystem during the seasonal transition from carbon sink to carbon source. Agricultural and Forest Meteorology, 1998, 89: 1~14
    50. Haynes B E, Gower S T. Belowground carbon allocation in underutilization and fertilized red pine plantations in northern Wisconsin. Tree Physiol., 1995, 15: 317~325
    51. Hans P, Schmid C, Susan B, Grimmond F C, Brian O, Su H B. Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States. Agricultural and Forest Meteorology, 2000, 103: 357~374
    52. Hanson P J, Wullschleger S D, Bohlmann S A et al. Seasonal and topographic patterns of forest floor CO2 efflux from an upland oak forest. Tree Physiology, 1993, 13: 1~15
    53. Harper C W, Blair J M, Fay P A. Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem. Global and Planetary Change, 2005, 11: 322~334
    54. Hastings S J, Oechel W C, Muhlia M A. Diurnal, seasonal and annual variation in the net ecosystem CO2 exchange of a desert shrub community (Sarcocaulescent) in Baja California, Mexico. Global Change Biology, 2005, 11: 27~939
    55. Helliker B R, Berry J A, Betts A K. Estimates of net CO2 flux by application of equilibrium boundary layer concepts to CO2 and water vapor measurements from a tall tower. Journal of Geophysical Research-Atmospheres, 2004, 109: 123~132
    56. Hibbard K A, Steffen W, Benedict S, et al. The carbon challenge: an IGBP-IHDP-WCRP joint project. International Geosphere Biosphere Programme, Stockholm, 2001, 23pp
    57. Holland E A, Braswell B H, Lamasque T F, et al. Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. Journal of Geophysical Research, 1997, 102(D13): 15849~15866
    58. Hunt J E, Kelliher F M, Mcseveny T M, et al. Evaporation and carbon dioxide exchange between the atmosphere and a tussock grassland during a summer drought. Agricultural and Forest Meteorology, 2002, 111: 65~82
    59. IPCC. Land Use, Land-Use Change, and Forestry. Climate Change 2001: Synthesis Report. Cambridge University Press 2001. (2001b) Climate Change 2001: Impacts, Adaptation, and Vulnerability. Cambridge University Press
    60. Jensen L S. Soil surface CO2 flux as an index of soil respiration in situ: acomparison of two chamber methods. Soil Bio Biochem, 1996, 28: 1297~1306
    61. Jiang S. An introduction to the Inner Mongolia Grassland Ecosystem Research Station, Academia Sinica in Inner Mongolia Grassland Ecosystem Research Station (Ed.). Research on Grassland Ecosystem, 1985, 1: 1~11
    62. Jones S K, Rees R M, Skiba U M. Greenhouse gas emissions from a managed grassland. Global and Planetary Change, 2005, 47: 201~211
    63. Kato T, Tang Y H, Gu S, et al. Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai-Tibetan Plateau, China. Agricultura1 and Forest Meteorology, 2004, 124: 121~134
    64. Kell J, Allen G, Eva F, et al. Energy balance closure at FLUXNET sites. Agricultura1 and Forest Meteorology, 2002, 113: 223~243
    65. Kim J, Shashi B. Carbon dioxide exchange in a temperate grassland ecosystem. Boundary-Layer Meteorology, 1990, 52: 135~149
    66. Kominami Y, Miyama T, Tamai K. Characteristics of CO2 flux over a forest on complex topography. Tellus Series B-Chemical and Physical Meteorology, 2003, 55: 313~321
    67. Knapp A K, Smith M D. Variation among biomes in temporal dynamics of aboveground primary production. Science, 2001, 291: 481~484
    68. Law B E, Thornton P E, Irvine J. Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Global Change Biology, 2001, 7: 755~777
    69. Law B E, Falge E, Gu L, et al. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 2002, 113: 97~120
    70. Law B E, Kelliher F M, Baldocchi D D, et al. Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Glob. Change Biol., 2001, 6: 613~630
    71. Law B E, Waring R H, Aber J D, et al. Measurements of gross and net ecosystem productivity and water vapour exchange of a Pinus ponderosa ecosystem, and evaluation of two generalized models. Global Change Biology, 2000, 6: 155~168
    72. Lawrence B F, Linda A W, Peter J C. Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Global Change Biology, 2002, 8: 599~615
    73. Lawrence B F, Bruce G J. Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland. Agricultural andForest Meteorology, 2005, 130: 237~253
    74. Lieth H. Computer mapping of forest data. In: Proceedings of the 51st Ann. Mtg, Apppalachian Sect. of the Soc. of Amer. Foresters, 1972a, pp. 53~79
    75. Lieth H. Modeling the primary productivity of the world. Tropical Ecol. 1972b, 13: 125~130
    76. Lindroth A, Grelle A, Moren A S. Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Glob. Change Biol. 1998, 4: 443~450
    77. Li S G, Asanuma J, Eugster W. Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia. Global Biology Change, 2005, 11: 1941~1955
    78. Liski J, Ilvesniemi H, Makela A, Westman C J. CO2 emissions from soil in response to climatic warming are overestimated—the decomposition of old soil organic matter is tolerant of temperature. Ambio. 1999, 28: 171~174
    79. Liu Y F, Song X, Yu G R. Seasonal variation of CO2 flux and its environmental factors in evergreen coniferous plantation. 2005, Science in China Series D-Earth Sciences, 2005, 48: 123~132
    80. Lloyd J, Taylor J A. On the temperature dependence of soil respiration. Funct. Ecol. 1999, 48: 315~323
    81. Lee M S, Nakane K, Nakatsubo T. Effects of rainfall events on soil CO2 flux in a cool temperate deciduous broad-leaved forest. Ecological Research, 2002, 3: 401~409
    82. Lee X, Fuentes D. Long-term observation of the atmospheric exchange of CO2 with a temperate deciduous forest in southern Ontario, Canada. Journal of Geophysical Research, 1999, 104: 15975~15984
    83. Lee X, Hu X Z. Forest-air fluxes of carbon, water and energy over non-flat terrain. Boundary-Layer Meteorology, 2002, 103: 277~301
    84. Li S G, Lai C T, Tomoko Y Y. Carbon dioxide and water vapor exchange over a Miscantbus-type grassland: Effects of development of the canopy. Ecological Research, 2003, 18: 661~675.
    85. Li Z Q, Ren J Z. The Models of Suitability Degree of Grassland Organism and their Application. Chinese Journal of Ecology, 1997, 16: 71~ 75
    86. Lou Y S, Li Z P, Zhang T L. Soil CO2 flux in relation to dissolved organic carbon, soil temperature and moisture in a subtropical arable soil of China. Journal of Environmental Sciences-China, 2003, 5: 715~720
    87. Ma X Z, Wang Y F, Wang S P, Li C S. Impacts of grazing on soil carbon factions in the grassland of Xilin River Basin, Inner Mongolia. Acta Phytoecologica Sinica, 2005, 29: 569~576
    88. Mahrt L. Flux sampling errors for aircraft and towers. Journal of Atmospheric and Oceanic Technology, 1998, 15: 416~429
    89. Massman W J. A Simple Method for Estimating Frequency Response Correction for Eddy Covariance Systems. Agricultural Forest and Meteorology, 2000, 104: 185~198
    90. Massman W J. Reply to Comment by Rannik on “A Simple Method for Estimating Frequency Response Correction for Eddy Covariance Systems”. Agricultural Forest and Meteorology, 2001, 107: 247~251
    91. Massman W J, Lee X. Eddy Covariance Flux Corrections and Uncertainties in Long Term Studies of Carbon and Energy Exchanges. Agricultural and Forest Meteorology, 2002, 113: 121~144
    92. McNaughton K G and Jarvis P G. Predicting Effects of Vegetation Changes on Transpiration and Evaporation, in T. T. Kozlowski (ed.), Water Deficits and Plant Growth. 1983, 7:1~47
    93. Mencuccini M, Grace J. Hydraulic conductance, light interception and needle nutrient concentration in Scots pine stands and their relations with net primary productivity. Tree Physiol., 1996, 16: 459~468
    94. Meyers T P. A comparison of summertime water and CO2 fluxes over rangeland for well watered and drought conditions. Agricultural and Forest Meteorology, 2001, 106: 205~214
    95. Mielnicka P, Dugasa W A, Mitchellb K, et al. Long-term measurements of CO2 flux and evapotranspiration in a Chihuahuan desert grassland. Journal of Arid Environments. 2005, 60: 423~436
    96. Miranda A C, Miranda H S, Lloyd J, Grace J, Francey R J, McIntyre J A, Meir P, Riggan P, Lockwood R, Brass J. Fluxes of carbon, water and energy over Brazilian cerrado: an analysis using eddy covariance and stable isotopes. Plant Cell Environment, 1997, 20: 315~328
    97. Misson L, Tang J, Xu M, McKay M, Goldstein A H. Influences of recovery from clear-cut, climate variability, and thinning on the carbon balance of a young ponderosa pine plantation. Agricultural and Forest Meteorology, 2005, 130: 207~222
    98. Moncrieff J B, Malhi Y, Leuning R. The propagation of errors in long-term measurement of land-atmosphere fluxes of carbon and water. Global Change Biology, 1996, 2: 231~240.
    99. Monson R K, Turnipseed A A, Sparks J P, Harley P C, Denton-Scott L A, Sparks K, Huxman T. Carbon sequestration in a high-elevation coniferous forest. Glob. Change Biol. 2002, 8: 459~478
    100.Nay S M, Mattson K G, Bormann B T. Biases of chamber methods for measuring soil CO2 flux efflux demonstrated with a laboratory apparatus. Ecology, 1994, 75: 2460~2463
    101.Nieveen J P, Campbell D I, Schipper L A, et al. Carbon exchange of grazed pasture on a drained peat soil. Global Change Biology, 2005, 11: 607~618
    102.Nobel P. Physicochemical and Environmental Plant Physiology. Academic Press, San Diego, 1991, pp. 439~442
    103.Novick K A, Stoy P C, Katul G G. Carbon dioxide and water vapor exchange in a warm temperate grassland. Oecologia, 2004, 138: 259~274
    104.Noy-Meir I. Desert ecosystems: Environment and producers. Annual Review of Ecology and Systematics 1973, 4: 23~51
    105.Ojima D S, Dirks B O, Glenn E P, Owensby C E, Scurlock J O. Assessment of C budget for grasslands and drylands of the world. Water, Air, and Soil Pollution, 1993, 70: 95~109
    106.O’Neill R V, DeAngelis D L. Comparative productivity and biomass relations of forest ecosystems. In: Reichle, D.E. (Ed.), Dynamic Properties of Forest Ecosystems. Cambridge University Press, Cambridge, 1981, pp. 411~449
    107.Oechel W C, Lawrence WT. Tiaga. In: Chabot, B.F., Mooney, H.A. (Eds.), Physiological Ecology of North American Plant Communities. Chapman & Hall, New York, 1985, pp. 66~94
    108.Oechel W C, Vourlitis G L, Hastings S J, Zulueta R C, Hinzman L, Kane D. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature, 2000, 406: 978~981
    109.Oke T R. Boundary Layer Climates, seconded. Routledge, London, 1978, pp. 26~27
    110.Paw U K T, Baldocchi D D, Meyers T P, et al. Correction of eddy-covariance measurements incorporation both advective effects and density fluxes. Boundar-Layer Meteorology, 2000, 97: 487~511
    111.Pilegaard K, Hummelsho j P, Jensen N O. Two years of continuous CO2 eddy-flux measurements over a Danish beech forest. Agricultural and Forest Meteorology, 2001, 107: 29~41
    112.Pitman A J, Henderson-Sellers A. Recent progress and results from the project for the intercomparison of landsurface parameterization schemes. J. Hydrol. 1998, 213: 128~135
    113.Prentice I C, Farquhar G D, Fasham M J R et al. Chapter 3: The Carbon Cycle and Atmosphere CO2. In: The Intergovernmental Panel on Climate Change (IPCC). Third Assessment Report. Houghton J T, Yihui D (Eds.), Cambridge University Press, Cambridge. 2001, 183~237
    114.Price D T, Black T A. Effects of Summertime Changes in Weather and Root-Zone Soil-Water Storage on Canopy CO2 Flux and Evapotranspiration of 2 Juvenile Douglas-Fir Stands. Agricultural and Forest Meteorology, 1991, 53: 303~323
    115.Post W M, Peng T-H, Emanuel W R. The global carbon cycle. American Scientist, 1990, 78: 310~326
    116.Pumpanen J, Kolari P. Comparison of different chamber techniques for measuring soil CO2 efflux. Agricultural and Forest Meteorology, 2004, 123: 159~176
    117.Pyles R D, Weare B C, Paw UKT, Gustafson W. Coupling between the University of California, Davis, Advanced Canopy–Atmosphere–Soil Algorithm (ACASA) and MM5: Preliminary Results for July 1998 for Western North America. Journal of Applied Meteorology, 2003, 42: 557~569
    118.Rambal S, Joffre R, Ourcival J M. The growth respiration component in eddy CO2 flux from a Quercus ilex mediterranean forest. Global Change Biology, 2004, 10: 1460~1469
    119.Reynolds O. On the dynamical theory of incompressible viscous fluids and the determination of criterion. Philosophical Transactions of Royal Society of London, 1895, A174: 935~982
    120.Rogiers N, Eugster W, Furger M. Effect of land management on ecosystem carbon fluxes at a subalpine grassland site in the Swiss Alps. Theor. Appl. Climatol. 2004, 22: 235~246
    121.Running S W, Coughlan J C. A general model of forest ecosystem processes for regional applications. I. hydrologic balance, canopy gas exchange and primary production processes. Ecol. Model. 1999, 42: 125~154
    122.Ryan M G. A simple method for estimating gross carbon budgets for vegetation in forest ecosystems. Tree Physiol. 1991, 9: 255~266
    123.Saigusa N, Oikawa T, Liu S. Seasonal variations in the exchange of CO2 and H2O between a grassland and the atmosphere: an experimental study. Agricultural and Forest Meteorology, 1998, 89: 131~139
    124.Sala O E, Lauenroth W K, Parton W J, Trlica M J. Water status of soil and vegetation in a shortgrass steppe. Oecologia, 1982, 48: 327~331
    125.Salimon C I, Davidson E A, Victoria R L. CO2 flux from soil in pastures and forests in southwestern Amazonia, Global Change Biology, 2004, 10: 833~843
    126.Santos A J. Quesada C A. Silva G T. High rates of net ecosystem carbon assimilation by Brachiara pasture in the Brazilian Cerrado. Global and Planetary Change, 2004, 10: 877~885
    127.Scanlon T M, Albertson J D. Canopy scale measurements of CO2 and water vapor exchange along a precipitation gradient in southern Africa. Global Change Biology, 2004, 10: 329~341
    128.Schimel D S. Terrestrial ecosystems and the carbon cycle. Global Change Biol. 1995, 1: 77~91
    129.Schimel D, House J I, Hibbard K A, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 2001, 414: 169~172
    130.Schimel D, Apps M, Canadell J, Ciais, P, Denning, S. The terrestrial carbon cycle: a synthesis and review. Nature, 2002, 510: 126~130
    131.Schimel D, Melillo J, Tian H, McGuire A D. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science,2000,287: 2004~2006
    132.Schmid H P. Footprint modeling for vegetation atmosphere exchange studies: a review and perspective. Agricultural and Forest Meteorology, 2002, 113: 159~183
    133.Schuepp P H, Leclerc M Y, Desjarain R L. Footprint predictions of scalar fluxes from analytical solutions of the diffusion equation. Boundary-Layer Meteorology, 1990, 50: 355~373
    134.Schulze E D, Lloyd J, Kelliher F M et al. Productivity of forest in the Eurosiberian boreal region and their potential to act as a carbon sink-a synthesis. Global Change Biology, 1999, 5: 703~722
    135.Schulze E, Wirth C, Heimann M. Managing Forests After Kyoto. Science, 2000, 289: 2058~2059
    136.Segal M, Davis J. The impact of deep cumulus reflection on the ground-level global irradiance. J. Appl. Meteorol. 1992, 31: 217~222
    137.Sellers P J, Hall F G, Kelly R D, Black A, Baldocchi, D. BOREAS in 1997: experiment overview, scientific results, and future directions. J. Geophys. Res. 1997a, 102: 28731~28769
    138.Sellers P J, Dickinson R E, Randall D A. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 1997a, 275: 502~509
    139.Seastedt T R. Canopy interception of nitrogen in bulk precipitation by annually burned and unburned tallgrass prairie. Oecologia, 1985, 66, 88~92
    140.Sims P L, Bradford J A. Carbon dioxide fluxes in a southern plains prairie. Agricultural and Forest Meteorology, 2001, 109: 117~134
    141.Sims D A, Rahman A F, Cordova V D. Midday values of gross CO2 flux and light use efficiency during satellite overpasses can be used to directly estimate eight-day mean flux. Agricultural and Forest Meteorology, 2005, 131: 1~12
    142.Steven E, Hollinger C J, Bernacchi T P. Carbon budget of mature no-till ecosystem in North Central Region of the United States. Agricultural and Forest Meteorology, 2005, 130: 59~69
    143.Suyker A E, Verma S B. Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie. Global Change Biology, 2001, 7: 279~289
    144.Suyker A E, Verma S B, Burba G G. Interannual variability in net CO2 exchange of a native tallgrass prairie. Global Change Biology, 2003, 9: 255~265
    145.Suyker A E, Verma S B, Burba G G. Growing season carbon dioxide exchange in irrigated and rainfed maize. Agricultural and Forest Meteorology, 2004, 124: 1~13
    146.Tans P P, Fung I Y, Takahashi. Observational constraint on the global atmospheric budget. Science, 1990, 247: 1431~1438
    147.Thornton P E, Running S W. An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric. For. Meteorol. 1999, 93: 211~228
    148.Thornton P E, Law B E, Ellsworth D S, Goldstein A. Modeling the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agric. For. Meteorol. 2002, 113: 185~222
    149.Twine T E, Kustas W P, Norman J M et al. Correcting eddy-covariance flux underestimates over a grass land. Agricultural and Forest Meteorology, 2000, 103: 279~300
    150.Valentini R, Gamon J A, Field C B. Ecosystem gas exchange in a California grassland: seasonal patterns and implications for scaling. Ecology, 1995, 76: 1940~1952
    151.Valentini R, Matteucci G, Dolman A J. Respiration as the main determinant of carbon balance in European forests. Nature, 2000, 404: 861~865
    152.Verburg P S, Obrist D, Schorran D E. Net ecosystem carbon exchange in two experimental grassland ecosystems. Global and Planetary Change, 2004, 10: 498~508
    153.Verma S B, Baldocchi D D, Anderson D E et al. Eddy fluxes of CO2, water vapour, and sensible heat over a deciduous forest. Boundary-Layer Meteorology, 1986, 36: 71~91
    154.Verma S B, Kim J, Clement R J. Momentum, water vapor, and carbon dioxide exchange at a centrally located prairie site during FIFE. Journal of Geophysical Research, 1992, 97 (D17): 18 629~18639
    155.Vickers D, Mahrt L, 1997. Quality control and flux sampling problems for tower and aircraft data. Journal of Atmospheric and Oceanic Technology, 14: 512~526
    156.Watson R T, Verardo D J. Land-use change and forestry . Cambridge University Press, Cambridge. 2000, 25~51
    157.Wang J, Cai Y. Studies of genesis, types and characteristics of the soils of the Xilin river basin. In: Inner Mongolia Grassland Ecosystem Research Station (Ed.). Research on Grassland Ecosystem, 1988, 3: 23~83
    158.Webb E K, Pearman G I, Leuning R. Correction of flux measurements for density effects due to heat and water vapor transfer. Quart J R Met Soc, 1980, 106: 85~100
    159.Welker J M, Brown K B, Fahnestock J T. CO2 flux in Arctic and alpine dry tundra: Comparative field responses under ambient and experimentally warmed conditions, Arctic Antarctic and Alpine Research, 1999, 31: 272~277
    160.Wever L A, Flanagan L B, Carlson P J. Seasonal and interannual variation in evapotranspiration, energy balance, and surface conductance in northern temperate grassland. Agricultural and Forest Meteorology, 2002, 112: 31~49
    161.Weltzin J F, Michael E l, Susanne S, et al. Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience, 2003, 53: 941~952
    162.Williams M, Rastetter E B, Fernandes D N. Predicting gross primary productivity in terrestrial ecosystems. Ecol. Appl. 1997, 7: 882~894
    163.Williams M, Law B E, Anthoni P M, Unsworth M H. Use of a simulation model and ecosystem flux data to examine carbon–water interactions in ponderosa pine. Tree Physiol. 2001, 21, 287–298
    164.Wilczak J M, Oncley S P, Stage S A. Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology, 2001, 99: 127~150
    165.Wilson K, Goldstein A, Falge E et al. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 2002, 113: 223~243
    166.Wofsy S C, Goulden M L, Munger J W et al. Net exchange of CO2 in a mid-latitude forest. Science, 1993, 260: 1314~1317
    167.Wohlfahrt G, Bahn M, Haslwanter A. Estimation of daytime ecosystem respiration to determine gross primary production of a mountain meadow. Agricultural and Forest Meteorology, 2005, 130: 13~25
    168.Wohlfahrt G, Anfang C, Bahn M. Quantifying nighttime ecosystem respiration of a meadow using eddy covariance, chambers and modeling. Agricultural and Forest Meteorology, 2005, 141~162
    169.Xiao X M, Jiang S, Wang Y F, Ojima D S, Bonham C D. Temporal variation in aboveground biomass of Leymus Chinense steppe from species to community levels in Xilin River Basin, Inner Mongolia. China. Vegetatio, 1996, 123: 1~12
    170.Xie Z B, Cadisch G, Edwards G. Carbon dynamics in a temperate grassland soil after 9 years exposure to elevated CO2 (Swiss FACE). Soil Biol. Biochem. 2005, 37: 1387~1395
    171.XU L K, Dennis D, Baldocchi D D. Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agricultural and Forest Meteorology, 2004, 1232: 79~96
    172.Yi C X, Li R Z, Bakwin P S. A nonparametric method for separating photosynthesis and respiration components in CO2 flux measurements. Geophysical Research Letters, 2004, 31: 125~135
    173.Yukihiro Y, Shigeru M, Hiroshi K. Carbon dynamics and budget in a Miscanthus sinensis grassland in Japan. Ecological Research, 2004, 19: 511~520
    174.Zamolodchikov D G, Karelin D V, Ivaschenko A I, et al. CO2 flux measurements in Russian Far East tundra using eddy covariance and closed Tellus, 2003, 55B: 879~892
    175.陈全胜, 李凌浩, 韩兴国 ,阎志丹, 董云社. 土壤呼吸对全球温暖化的响应. 植物生态学报,2003,10(4):506-510
    176.陈四清,崔晓勇,周光胜. 内蒙古锡林河流域大针茅草原土壤呼吸和凋落物分解的CO2排放速率研究. 植物学报,1999,41(6):645~650
    177.陈佐忠, 黄德华. 内蒙古锡林河流域羊草草原与大针茅草原地下部分生产力和周转值的测定. 草原生态系统, 第2集. 北京: 科学出版社. 1988. 132~138
    178.陈佐忠, 汪诗平等. 中国典型草原生态系统. 北京: 科学出版社, 2000. 51~52
    179.崔骁勇, 陈佐忠, 陈四清. 草地土壤呼吸研究进展. 生态学报, 2001, 21: 315~325
    180.崔骁勇,陈四清,陈佐钟. 大针茅典型草原土壤CO2排放规律的研究. 应用生态学报,2000,11(3):390~394
    181.樊江文,员旭疆. 50 年来我国草地开垦状况及其生态影响. 中国草地,2002,24(5):69~72
    182.蒋高明. 陆地生态系统净第一性生产力对全球变化的响应. 植物与资源环境,1995,4(4):53~59
    183.方精云. 中国森林生产力及其对全球气候变化的响应.植物生态学报,2000,24(5):513~517
    184.纪宝明, 王艳芬, 李香真,等. 内蒙古锡林河流域主要类型草原土壤中CH4和CO2浓度的变化. 植物生态学报, 2001, 25: 371~374
    185.李凌浩,陈佐钟. 草地生态系统碳循环及其对全球变化的相应Ⅰ. 碳循环的分室模型、碳输入与储量. 植物学通报,1998b,15(2):14~22.
    186.李凌浩, 王其兵, 白永飞,等. 锡林河流域羊草草原群落土呼吸及其影响因子的研究. 植物生态学报, 2000, 24(6): 680~686
    187.李凌浩,韩兴国,王其兵等. 锡林河流域羊草草原群落土壤呼吸及其影响因子的研究. 植物生态学报,2002,26(1):29~32
    188.李毓堂. 草地资源开发与21世纪中国可持续发展战略. 中国土地科学,2001,15(1):
    14~15
    189.孙儒泳, 李博, 诸葛阳,等主编. 普通生态学. 北京高等教育出版社, 1993: 215~221
    190.王艳芬,陈佐忠,Larry, T T. 人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响. 植物生态学报, 1998, 6: 545~551
    191.王明星. 中国稻田甲烷排放. 北京:科学出版社,2001. 165~172
    192.徐世晓,赵新全,李英年,等. 青藏高原高寒灌丛生长季和非生长季 CO2 通量分析. 中国科学, D 辑, 2004, 34(增刊Ⅱ): 118~124
    193.陈泮勤. 第一章: 绪论. 见地球系统碳循环(陈泮勤编). 科学出版社, 2004, 3~42
    194.于贵瑞, 温学发, 王秋凤, 牛栋, 李海涛. 第二章: 全球气候变化与陆地生态系统碳循环. 见全球变化与陆地生态系统碳循环和碳蓄积(于贵瑞编). 气象出版社, 2003, 43~96
    195.戚秋慧,盛修武,李济尚. 内蒙古乌兰察布盟四子王旗羊草草原群落光合速率的比较研究. 草原生态系统, 第2集. 北京: 科学出版社. 1988. 75~81
    196.戚秋慧,盛修武,姜恕. 内蒙古羊草草原群落光合与环境条件之间的关系模型. 生态学报,1990,17(2):170~175
    197.王娓, 郭继勋. 东北松嫩平原羊草群落的土壤呼吸与枯枝落叶分解释放CO2贡献量. 生态学报,2002,22(5):655~660
    198.徐 柱. 面向21世纪的中国草地资源. 中国草地,1998,5,1~8
    199.张金霞,曹广民,周党卫. 退化草地暗沃寒冻雏形土CO2释放的日变化河季节变化动态. 土壤学报,2001b,38(1):31~40
    200.朱冶林,孙晓敏,袁国富,等. 非平坦下垫面涡度相关通量的校正方法及其在 ChinaFlux中的应用. 中国科学 D 辑,2004,34(增刊Ⅱ):37~45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700