南水北调中线水源区典型流域土壤侵蚀与水环境特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水环境污染是当今全球化的重大环境问题。我国水资源短缺且时空分布不均,水土流失面源污染引发的地表水体污染严重制约了人类生存与社会经济的快速可持续发展。针对我国规模宏大的跨流域水资源配置战略工程——南水北调中线工程水源区面临的潜在水土流失面源污染问题,以及丹江口水库水质安全、水环境健康与水资源长效利用的环境保护需求,基于水源区地形、土壤、气候、土地利用组成及土地利用格局等自然景观因子,借助遥感和地理信息系统等信息技术手段,综合采用野外实地调查、模糊决策理论方法、SWAT模型模拟预测、景观格局特征分析、偏最小二乘回归PLSR等多种方法手段,借鉴生态环境综合集成研究的思路,将南水北调中线工程水源区划分为多层次系统,从多方位、多角度逐级开展水源区不同流域土壤侵蚀影响因素的重要性差异、土壤侵蚀风险的时空分布与变化特征、土壤侵蚀产沙时空特征与演变趋势、流域水化学特性时空差异、不同景观特征与流域侵蚀产沙及水化学特性耦合关系的集成研究,为水源区生态环境建设、流域水环境质量保障、区域环境保护和经济社会可持续发展提供科技支撑。本文取得的主要结论和成果如下:
     (1)以南水北调中线水源区的核心生态安全保障区和水质保护最敏感区域丹江口库区为研究对象,在提取侵蚀响应单元基础上提出了适于大尺度区域土壤侵蚀风险快速评估的方法,构建的侵蚀风险评估最优化模糊决策树分类结果表明,库区土壤侵蚀风险等级被划分为5个类别:极低侵蚀风险、低侵蚀风险、中侵蚀风险、高侵蚀风险和极高侵蚀风险。月均降雨量为侵蚀最显著影响因素,当其处于相对较低等级时,土壤侵蚀其他因素影响明显偏小,侵蚀风险等级也相对较低;反之则地形坡度、土壤可蚀性和植被覆盖度的多因素综合影响作用更突出,且侵蚀风险也相对较高。
     (2)基于模糊决策树判别结果,综合分析库区侵蚀风险时空分布表明,库区高等级和极高等级侵蚀风险主要集中在6月到8月,其中以7月和8月分布最广,超过研究区总面积80%;其次为6月,分布达研究区总面积65%。11月到次年3月主要为低等级侵蚀风险,面积占研究区总面积超过90%。而中等级侵蚀风险主要分布在4月、5月、9月和10月,面积超过研究区总面积79%。此外,大量农田、稀疏草地和未利用地分布的陡坡区域在雨季显示出相对偏高的侵蚀风险,验证表明本研究提出的评估方法精度达到76%,在该区域适用且有效,值得推广应用到其他相似的大尺度区域。
     (3)以长江流域汉江水系最大支流、水源区水土流失多发地区堵河上游流域为研究对象,利用校准和验证后的SWAT模型进行1978、1987、1999和2007年的侵蚀产沙模拟,结果表明,4年中土壤侵蚀强度最大的子流域集中在流域北部;流域年均土壤侵蚀率分别为9.47、10.40、14.14、7.64t/ha;1978年和1987年子流域土壤侵蚀最大负荷位于8号子流域,1999年和2007年转移到34号子流域;流域年均产沙量分别为3.72、5.36、7.30、3.69t/ha,1978年流域最大产沙量为8号子流域,而1987年、1999年和2007年流域最大产沙量则分别为6、39和21号子流域。研究区侵蚀产沙变化与区域土地利用变化趋势一致。
     (4)研究选取的15个具有代表性的景观指数分析流域侵蚀产沙景观格局特征表明,107个子流域的景观格局特征相差较大,特别是平均斑块面积、斑块密度、Shannon多样性指数、边界密度、平均最近邻距离和最大斑块指数具有较明显的变异。利用偏最小二乘回归方法对研究区子流域尺度上的土壤侵蚀、产沙和泥沙输移比与土地景观格局耦合关系研究表明,三者与流域土地景观格局关系密切,其中Shannon多样性指数、聚集度指数、最大斑块指数、蔓延度和斑块连通度指数是控制流域土壤侵蚀和产沙的主要景观指数;当土地景观格局分散性较强且斑块数目较多时,土壤侵蚀和泥沙输出显著增加。
     (5)以丹江口水库水环境水质监测的9个典型入库支流流域为研究对象分析水化学特性时空差异发现,2005年溶解氧含量最高为白河、陶岔和旬阳,高锰酸盐指数和总磷含量神定河和张湾较高,氨氮含量神定河远高于其他支流,重金属砷含量差异不明显,石油类含量神定河最高。对比发现2006年至2009年水化学特性与2005年基本保持一致趋势,高锰酸盐指数、氨氮含量神定河远高于其他流域,总磷含量总体较低且神定河最高。研究区入库支流中神定河水质状况相对较差。
     (6)入库支流景观特征分析表明,城镇、林地、草地和农地面积比、地形坡度、流域面积和土壤有机质与其他变量相比变异更明显,景观指数中变异最明显的是最大斑块指数、蔓延度、景观形状指数、Shannon多样性指数和Simpson多样性指数。溶解氧主控因素为4个形态变量;对高锰酸盐指数贡献较大的为高程积分、城镇面积比、土壤有机质和总氮、斑块连通度指数;对氨氮和总磷贡献较大的为高程积分、流域面积、城镇面积比、土壤有机质和总氮、斑块连通度指数;重金属砷主控因素为流域面积、土壤有机质、最大斑块指数、景观形状指数;高程积分、城镇面积比、土壤有机质和总氮、斑块连通度指数、流域面积对石油类贡献性较高。总的来看,流域面积、高程积分、城镇面积比、土壤有机质和总氮、以及斑块连通度指数对入库支流水化学普遍具有较大影响。
Water pollution poses a serious problem not only in China but around the world. Water resource is characterized by extreme shortage and uneven distribution in China. Diffuse pollution from soil erosion leads to surface water pollution, which restricts sustainable development of social-economy. For dealing with soil erosion and diffuse pollution emerged in water source areas of the Middle Route Project under the South-to-North Water Transfer Scheme, the study presented in this paper was undertaken based on landscape features including topography, soil, climate, pattern and composition of land use. According to the ideas of integrated eco-environment study, information technologies such as remote sensing and geographic information system were combined with reconnaissance field surveys, fuzzy decision theory, SWAT model prediction, landscape feature analysis and PLSR (partial least square regression) approach for studying soil erosion, sediment yield and water chemistry from multi-level perspectives across water source areas. The specific contents of this integrated study include importance of the dominating factors affecting soil erosion, spatio-temporal patterns and dynamic changes of soil erosion risk, spatio-temporal characteristics of soil erosion, sediment yield and water chemistry and their responses to landscape features in watersheds. This study can provide useful information for ecological construction, environmental protection, water quality assurance, and sustainable social-economic development in water source areas. The main results and conclusions of the present study are as follows:
     (1) The Danjiangkou Reservoir Area is the core region of ecological security and water quality assurance in water source areas, which was therefore chosen as one of the case study areas. Based on subdivided Erosion Response Units (ERUs), a fuzzy decision tree approach for rapid evaluation and mapping of monthly soil erosion risk across broad areas has been developed in this study. An optimal fuzzy decision tree was determined to classify monthly soil erosion risk into five levels, including very low, low, medium, high and very high. The most important factor impacting on soil erosion is mean monthly precipitation. Soil erosion risk is at a level of low or medium when the level of mean monthly precipitation is relatively low, no matter what degree the slope, soil erodibility and vegetation coverage are. However, when mean monthly precipitation is relatively high, soil erosion risk is influenced by more complex integrated effects from the slope, soil erodibility and vegetation coverage.
     (2) According to produced monthly soil erosion risk maps with five levels derived from the results of the fuzzy decision tree, high and very high soil erosion risk in the DRA is mainly concentrated in June to August, of which July and August show the highest erosion risk covering the largest area (greater than80%), followed by June which has a proportion of65%. November to the following March is dominated by low erosion risk which accounts for more than90%of the area while the medium risk level is dominant (greater than79%) in April, May, September and October. Besides, large tracts of farmland, sparse grasslands and wastelands distributed on steep slopes, which show a relatively high soil erosion risk in most rainy months. With a validated accuracy of76%, the efficiency of the presented method suggests it is worth attempting in other analogous broad area regions.
     (3) The Upper Du River watershed is the largest tributary of the Yangtze River and an erosion-prone area in water source areas, which was also chosen as one of the case study areas. The annual soil erosion and sediment yield distributions for the years1978,1987,1999and2007were simulated with the calibrated and validated SWAT model, which shows that the most intensively eroded sub-basins were situated in the northern part of the study area. The watershed-averaged soil erosion rates for the years1978,1987,1999, and2007were9.47,10.40,14.14, and7.64t/ha/yr, respectively. The maximum sub-basin loads of soil erosion in1978,1987,1999, and2007occurred in sub-basins8,8,34, and34, respectively. The watershed-averaged sediment yields for the years1978,1987,1999, and2007were3.72,5.36,7.30,3.69t/ha/yr, respectively. The sediment yield of the individual sub-basins varied significantly. The maximum sediment yields in1978,1987,1999, and2007were located in sub-basins8,6,39, and21, respectively. Soil erosion and sediment yield changed consistent with land use in the study area.
     (4) The15selected landscape metrics were used to analysis landscape pattern characteristics of soil erosion and sediment yield, which shows that the landscape characteristics of the107sub-basins in the analysis varied widely. Especially, the mean patch size (AREA_MN), patch density (PD), Shannon's diversity index (SHDI), edge density (ED), Mean Euclidian nearest-neighbor distance (ENN_MN) and largest patch index (LPI) shows greater variances than other measures. Partial least square regression (PLSR) was used to explore the relationship between soil erosion, sediment yield, sediment delivery ratio and landscape pattern, respectively. The results show that Shannon's diversity index (SHDI), Aggregation index (AI), Largest patch index (LPI), Contagion (CONTAG) and Patch cohesion index (COHESION) were the master factors controlling soil erosion and sediment yield. Greater interspersion and higher patch numbers of land cover types may significantly accelerate soil erosion and increase sediment export.
     (5) Nine typical tributaries in the Danjiangkou reservoir were chosen as the case study areas for characterizing the spatio-temporal patterns of water chemistry, which shows that the dissolved oxygen content was highest in Bai river, Taocha and Xun yang, while the content of potassium permanganate index and total phosphorus were relatively high in Shending river and Zhangwan. Compared with other watersheds, the content of ammonia nitrogen and petroleum in Shending river were highest, while the difference of arsenic content was not obvious. From2006to2009, water chemistry characteristics changed consistent with that in2005. The contents of potassium permanganate index and ammonia nitrogen were extremely high in Shengding river, which indicated that water quality in shending river was relatively poor.
     (6) Analysis of watershed characteristics for all the tributaries demonstrated that the proportion of urban area, forest, grassland and farmland, and the slope, watershed area and soil organic matter shows greater variances than other variables. LPI, CONTAG, LSI, SHDI and SIDI show greatest variances than other landscape metrics. Dissolved Oxygen was mainly controlled by the four morphometric variables, while hypsometric integral, proportion of urban area, soil organic matter, total nitrogen, and COHESION were the master factors of potassium permanganate index. The master factors of ammonia nitrogen and total phosphorus were almost the same with potassium permanganate index except watershed area. Arsenic was mainly controlled by watershed area, soil organic matter, LPI and LSI, while petroleum was mainly controlled by hypsometric integral, the proportion of urban area, soil organic matter, total nitrogen and COHESION. Summarily, watershed area, hypsometric integral, the proportion of urban area, soil organic matter, total nitrogen and COHESION determine the situation of water chemistry in the tributaries.
引文
1. 蔡强国.坡长对坡耕地侵蚀产沙过程的影响.云南地理环境研究,1998,10(1):34-43
    2.陈浩.黄土丘陵沟壑区流域系统侵蚀与产沙关系.地理学报,2000,55(3):354-363
    3.陈军锋,李秀彬.森林植被变化对流域水文影响的争论.自然资源学报,2001,16(5):474-480
    4. 陈雷.中国的水土保持.中国水土保持,2002,7:4-6
    5.陈利顶,傅伯杰,张淑荣,丘君,郭旭东,杨福林.异质景观中非点源污染动态变化比较研究.生态学报,2002,22(6):808-816
    6. 陈奇伯,解明曙,张洪江.长江三峡花岗岩地区坡面产沙及沟道输沙规律.水土保持通报,1995,15(4):20-24
    7.付永锋,陈文辉,赵基花.非点源污染的研究进展与前景展望.山西水利科技,2003,3:32-35
    8.傅国伟.河流水质数学模型及其模拟计算.北京:中国环境科学出版社,1987
    9.高学民,陈静生,王立新.Logistic Regression在我国河流水系氮污染研究中的应用.环境科学学报,2000,20(6):676-681
    10.耿晓东,郑粉莉,刘力.降雨强度和坡度双因子对紫色土坡面侵蚀产沙的影响.泥沙研究,2010,6:48-53
    11.关君蔚.水土保持原理.北京:中国林业出版社,1990
    12.郝芳华,陈利群,刘昌明,戴东.土地利用变化对产流和产沙的影响分析.水土保持学报,2004,18(3):5-8
    13.洪华生,黄金良,曹文志.九龙江流域农业非点源污染机理与控制研究.北京:科学出版社,2008
    14.胡良军,李锐,杨勤科.基于GIS的区域水土流失评价研究.土壤学报,2001,38(2):167-174
    15.黄金良,李青生,洪华生,林杰,曲盟超.九龙江流域土地利用/景观格局-水质的初步关联分析.环境科学,2011,32(1):64-72
    16.蒋定生.黄土区不同利用类型土壤抗冲刷能力的研究.土壤通报,1979,(4):20-29
    17.焦菊英,马祥华,王飞,焦峰,王万忠.渭河流域侵蚀产沙强度的区域分异特征.水土保持研究,2004,11(4):60-63
    18.金腊华,徐峰俊.水环境数值模拟与可视化技术.北京化学工业出版社,2004
    19.孔亚平,张科利,唐克丽.坡长对侵蚀产沙过程影响的模拟研究.水土保持学报,2001,15(2):17-20
    20.李怀恩,李越,蔡明.河流水质与流域人类活动之间的关系.水资源与水工程学报,2004,15(1):24-28
    21.李锦秀,廖文根.水流条件巨大变化对有机污染物降解速率影响研究.环境科学研究,2002,15(3):45-48
    22.李燕,李恒鹏.太湖上游流域下垫面因素对面源污染物输出强度的影响.环境科学,2008,29(5):1319-1324
    23.廖义善,蔡强国,程琴娟.黄土丘陵沟壑区坡面侵蚀产沙地形因子的临界条件.中国水土保持科学,2008,6(2):32-38
    24.刘纪根,蔡强国,樊良新,刘前进.流域侵蚀产沙模拟研究中的尺度转换方法.泥沙研究,2004(3):69-74
    25.刘纪根,雷廷武,潘英华,夏卫生,张晴雯.陡坡耕地施加PAM侵蚀产沙规律及临界坡长的试验研究.土壤学报,2003,40(4):504-510
    26.刘湘南,黄方,王平.GIS空间分析原理与方法.北京:科学出版社,2005
    27.卢金发.黄河中游流域特性对产沙量与降雨关系影响.地理学报,2000,55(6):737-743
    28.卢金发.黄河中游流域地貌形态对流域产沙量的影响.地理研究,2002,21(2):171-178
    29.彭建,蔡运龙,王秀春.基于景观生态学的喀斯特生态脆弱区土地利用/覆被变化评价.中国岩溶,2007,26(2):137-143
    30.彭文英,张科得.不同土地利用产流产沙与降雨特征的关系.水土保持通报,2001,21(4):25-29
    31.秦富仓.黄土地区流域森林植被格局对侵蚀产沙过程的调控研究.[博士学位 论文].北京林业大学,2006
    32.丘扬,傅伯杰,王勇.土壤侵蚀时空变异及其与环境因子的时空关系.水土保持学报,2002,16(1):108-111
    33.石培礼,李文华.森林植被变化对水文过程和径流的影响效应.自然资源学报,2001,16(5):481-487
    34.史培军,宫鹏,李晓兵.土地利用/土地覆盖变化研究的方法与实践.北京:科学出版社,2000
    35.孙厚才,李青云.应用分形原理建立小流域泥沙输移比模型.人民长江,2004,35(3):12-13
    36.田育新,李锡泉,袁正科,何友军,陈晓萍,倪爱平.湘南红壤不同林分类型涵水保土效益研究.水土保持研究,2002,9(4):80-82
    37.王让会,张慧芝.生态系统耦合的原理与方法.乌鲁木齐:新疆人民出版社,2005
    38.王宪礼,肖笃宁,布仁仓,胡远满.辽河三角洲湿地的景观格局分析.生态学报,1997,17(3):317-323
    39.王协康,敖汝庄,方铎.泥沙起动条件及机理的非线性研究.长江科学院院报,1999,16(4):39-45
    40.王占礼,邵明安,张晓萍.治理小流域侵蚀产沙特征研究.水土保持通报,1998,18(5):51-54
    41.吴普特,周佩华,郑世清.黄土丘陵沟壑区(Ⅲ)土壤抗冲性研究.水土保持学报,1993,7(3):19-36
    42.夏晖,尹澄清.农业流域”汇”型景观结构对径流调控及磷污染物截留作用的研究.环境科学学报,2005,25(3):293-299
    43.谢小立,王凯荣.红壤坡地雨水地表径流及其侵蚀.农业环境科学学报,2004,23(5):839-845
    44.杨爱民,王浩,孟莉.水土保持对水资源量与水质的影响研究.中国水土保持科学,2008
    45.杨丽蓉,陈利顶,孙然好.河道生态系统特征及其自净化能力研究现状与发展.生态学报,2009,29(9):5066-5075
    46.杨胜天,王雪蕾,刘昌明,盛浩然,李茜.岸边带生态系统研究进展.环境科学学报,2007,27(6):894-905
    47.杨玉盛.不同利用方式下紫色土可蚀性的研究.水土保持学报,1992,6(3):52-58
    48.姚文艺,汤立群.水力侵蚀产沙过程及模拟.黄河水利出版社,2001
    49.余常昭,马尔柯夫斯基,李玉梁.水环境中污染物扩散输移原理与水质模型.北京:中国环境科学出版社,1989
    50.余新晓,张学霞,李建牢,张满良,谢媛嫒.黄土地区小流域植被覆盖和降水对侵蚀产沙过程的影响.生态学报,2006,26(1):1-8
    51.岳勇,程红光,杨胜天,郝芳华.松花江流域非点源污染负荷估算与评价.地理科学,2007,27(2):231-236
    52.张国坤,邓伟,吕宪国,宋开山,李恒达,张洪岩.新开河流域湿地景观格局动态变化过程研究.自然资源学报,2007,22(2)204-210
    53.张宏,温永宁,刘爱利.地理信息系统算法基础.北京:科学出版社,2007
    54.张会茹,郑粉莉.不同降雨强度下地面坡度对红壤坡面土壤侵蚀过程的影响.水土保持学报,2011,25(3):40-43
    55.张科利,蔡永明,刘宝元,彭文英.土壤可蚀性动态变化规律研究.地理学报,2001,56(6):673-681
    56.张科利,彭文英,杨红丽.中国土壤可蚀性值及其估算.土壤学报,2007,44(1):7-13
    57.张水龙,庄季屏.农业非点源污染的流域单元划分方法.农业环境保护,2001,20(1):34-37
    58.张玉斌,郑粉莉,武敏.土壤侵蚀引起的农业非点源污染研究进展.水科学进展,2007,18(1):123-132
    59.张玉珍,陈能汪,曹文志,洪华生.南方丘陵地区农业小流域最佳管理措施模拟评价.资源科学,2005,27(6):151-155
    60.赵文智,程国栋.生态水文学-揭示生态格局和生态过程水文机制的科学.冰川冻土,2001,23(4):450-457
    61.赵兴实,顾仁德,祁国贵.黑土侵蚀区土壤理化特征及抗冲抗蚀性能初探.中 国水土保持,1981,6:25-29
    62.周学军,夏卫生.衡山土壤加速侵蚀与花岗岩地貌发育问题研究.土壤学报,2004,41(4):624-627
    63.朱求安,张万昌,余钧辉.基于GIS的空间插值方法研究.江西师范大学学报(自然科学版),2004,28(2):183-189
    64.朱显谟.黄土区土壤侵蚀分类.土壤学报,1956,4(2):99-115
    65. Abdi H. Partial least squares regression and projection on latent structure regression (PLS regression). Wiley Interdiscip Rev Comput Stat,2010,2:97-106
    66. Anderson H W. Suspended sediment discharge as related to stream flow, topography, soil and landuse. Transactions American Geophysical Union,1954, 35:268-281
    67. Assouline S, Ben-Hur M. Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing. Catena,2006,66: 211-220
    68. Bakker M M, Govers G., Van Doom A, Quetier F, Chouvardas D, Rounsevell M. The response of soil erosion and sediment export to land-use change in four areas of Europe:the importance of landscape pattern. Geomorphology,2008,98: 213-226
    69. Bartley R, Roth C H, Ludwig J, McJannet D, Liedloff A, Corfield J, Abbott B. Runoff and erosion from Australia's tropical semi-arid rangelands:influence of ground cover for differing space and time scales. Hydrol Process,2006,20: 3317-3333
    70. Beach T. Estimating soil loss from medium-size drainage basins. Phys Geogr, 1992,13:206-224
    71. Boers P. Nutrient emissions from agriculture in the Netherlands, causes and remedies. Water Sci Technol,1996,33:183-189
    72. Boggs G, Devonport C, Evans K, Puig P. GIS-based rapid assessment of erosion risk in a small catchment in the wet/dry tropics of Australia. Land Degrad Dev, 2001,12:417-434
    73. Bou K R, Cerdan O, Abdallah C. Regional soil erosion risk mapping in Lebanon. Geomorphology,2006,82:347-359
    74. Bouyoucos G J. The clay ratio as a criterion of susceptibility of soil to erosion. Journal of the American Society of Agronomy,1935,27:738-741
    75. Bronstert A, Niehoff D, Burger G. Effects of climate and land-use change on storm runoff generation:present knowledge and modelling capabilities. Hydrological Processes,2002,16:509-529
    76. Brut T P, Swank W T. Flow Frequency Responses to Grass Conversion and Subsequent Succession. Hydrological Processes,1992,6:179-188
    77. Bryan R B, Poesen J. Laboratory experiment on the influence of slope length on runoff, percolation and rill development. Earth Surf Proc Land,1989,14:211-231
    78. Bryan R B. The influence of slope angle on soil entrainment by sheetwash and rainsplash. Earth Surface Processes,1979,4:43-58
    79. Calvin K M, Cade E C. Soil erodibility variation during the year. Transactions of the American Society of Agricultural Engineers,1983,26:1102-1104
    80. Carper W J, Thomas M L, Ralph W K. The Use of intensity-hue saturation transformations for merging spot panchromatic and multispectral image data. Photogramm Eng Rem S.1990,56:459-467
    81. Carrascal L M, Galvan I, Gordo O. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos,2009,118: 681-690
    82. Casali J, Gimenez R, Diez J, Alvarez-Mozos J, de Lersundi J D, Goni M, Campo M A, Chahor Y, Gastesi R, Lopez J. Sediment production and water quality of watersheds with contrasting land use in Navarre (Spain). Agric Water Manage, 2010,97:1683-1694
    83. Chen L D, Liu Y, Lv Y H, Feng X M, Fu B J. Pattern analysis in landscape ecology:progress, challenges and outlook. Acta Ecol Sin,2008,28:5521-5531
    84. Ciesiolka C A A, Yu B, Rose C W, Ghadiri H, Lang D, Rosewell C. Improvement in soil loss estimation in USLE type experiments. J Soil Water Conserv,2006,61: 223-229
    85. Corry R C, Nassauer J I. Limitations of using landscape pattern indices to evaluate the ecological consequences of alternative plans and designs. Landscape Urban Plan,2005,72:265-280
    86. Corwin D L, Loague K, Ellsworth T R. GIS-based modeling of nonpoint source pollutants in the vadose zone. Soil and Water Cons,1998,53:34-38
    87. De Roo A, Wesseling C.G. A single-event, Physical based hydrological and soils erosion model for drainage basin. Theory, input and output. Hydrological Processes,1996,10:1107-1117
    88. De Vente J, Poesen J, Arabkhedri M, Verstraeten G. The sediment delivery problem revisited. Prog Phys Geogr,2007,31:155-178
    89. Ei-Swaify S A, Dangler E W. Erodibilities of selected tropical in relation to structural and hydrologic parameters. Soil erosion:prediction and control. Ankeny, Iowa,1976
    90. Feng X M, Wang Y F, Chen L D, Fu B J, Bai G S. Modeling soil erosion and its response to land-use change in hilly catchments of the Chinese Loess Plateau. Geomorphology,2010,118:239-248
    91. Flugel W A, Marker M, Moretti S, Rodolfi G, Staudenrausch H. Soil erosion hazard assessment in the Mkomazi river catchment (KwaZulu/Natal-South Africa) by using aerial photo interpretation. Zentralblatt fur Geologie und Palaontologie; Teil Ⅰ:Atgemeine, Angewandle, Regionale und Historische Geologie,1999,6: 641-653
    92. Flugel W A. Delineating Hydrological Response Units (HRUs) by GIS analysis regional hydrological modelling using PRMS/MMS in the drainage basin of the River Brol, Germany. Hydrological Processes,1995,9:423-436
    93. Forman R T T. Land Mosaics:The Ecology of Landscape and Regions. Cambridge University Press, New York,1995
    94. Fortin M J, Agrawal A A. Landscape ecology comes of age. Ecology,2005,86: 1965-1966
    95. Foster G R, Flanagan D C, Nearing M A, Lane L J, Risse L M, Finkner S C. Hillslope erosion component. In:Flanagan D C, Nearing M A.USDA-Water Erosion Prediction Project Hillslope Profile and Watershed Model Documentation. Iowa:Soil and Water Conservation Society,1995
    96. Fox D M, Bryan R B. The relationship of soil loss by interrill erosion to slope gradient. Catena,2000,38:211-222
    97. Fu B J, Wang Y F, Lu Y H, He C S, Chen L D, Song C J. The effects of land-use combinations on soil erosion:a case study in the Loess Plateau of China. Prog Phys Geogr,2009,33:793-804
    98. G G Leuven. Rill erosion on arable land in Central Belgium:rates, controls and predictability. Catena,1990,18:133-155
    99. Gilley J E, E R Kottwitz, Simanton J R. Hydraulic characteristics of rills.1990, 33:1900-1906
    100.Halpin C C, et al. The effect of crop type rotation and tillage practice on runoff and soil loss on a Vertisol in central Queensland. Aust J Soil Res,1997,35: 925-939
    101.Hans S, Sandra B. Scaling issues in watersheds assessments. Water Policy,2001, 3:475-489
    102.Hargis C D, Bissonette J A, David J L. The behavior of landscape metrics commonly used in the study of habitat fragmentation. Landscape Ecol,1998,13: 167-186
    103.He C S, Malcolm S B, Dahlberg K A, Fu B J. A conceptual framework for integrating hydrological and biological indicators into watershed management. Landscape Urban Plan,2000,49:25-34
    104.Herzog F. Lauseh A. Supplementing land-The statistics with landscape metries: some methodological considerations. Environ Monit Assess,2001,72:37-50
    105.Huang J, Li Q, Pontius R G, Klemas V, Hong H. Detecting the dynamic linkage between landscape characteristics and water quality in a subtropical coastal watershed, southeast China. Environ Manage,2011,51:1-13
    106.Huber W C, Dickinson R E. Storm water management model version 4:User's manual. US Environmental Protection Agency,1988
    107.Hudson J A, Gilman K. Long-term variability in the water balances of the Plynlimon catchments. J Hydrol,1993,143:355-380
    108.Imeson A C, Prinsen H A M. Vegetation patterns as biological indicators for identifying runoff and sediment source and sink areas for semi-arid landscapes in Spain. Agric. Ecosyst. Environ,2004,104:333-342
    109.Isaaks E H, Srivastava R M. Applied Geostatistics. Oxford:Oxford University Press.1989
    110.Jansen I M L, Painter R B. Predicting sediment yield from climate and topography. J Hydrol,1974,21:371-380
    111.Johnson L B. Analyzing spatial and temporal phenomena using geographical information systems. Landscape Ecology,1990,4:31-43
    112.Jordan G, Van Rompaey A, Szilassi P, Csillag G, Mannaerts C, Woldai T. Historical landuse change and their impact on sediment fluxes in the Balaton basin (Hungary). Agric. Ecosyst. Environ,2005,108:119-133
    113.Le Bissonnais Y, Montier C, Jamagne M, Daroussin J, King D. Mapping erosion risk for cultivated soil in France. Catena,2001,46:207-220
    114.Lee S W, Hwang S J, Lee S B, Hwang HS, Sung H C. Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics. Landscape Urban Plan,2009,92:80-89
    115.Leonard L J, Mariano H, Mary N. Process controlling sediment yield from watersheds as functions of spatial scale. Environ Modell Softw,1997,12:355-369
    116.Li L, Shi Z H, Yin W, Zhu D, Ng SL, Cai C F, Lei A L. A fuzzy analytic hierarchy process (FAHP) approach to eco-environmental vulnerability assessment for the danjiangkou reservoir area, China. Ecological Modelling,2009,220:3439-3447
    117.Li S Y, Gu S, Liu W Z, Han H Y, Zhang Q F. Water quality in relation to land use and land cover in the upper Han River Basin, China. Catena,2008,75:216-222
    118.Liu J Y. Zhan J Y. Deng X Z. Spatio-temporal patterns and driving forces of urban expansion in China during the Economic Reform Era. Ambio,2005,34:450-455
    119.Locantore N W, Tran L T, O'Neill R V, McKinnis P W, Smith E R, O'Connell M. An overview of data integration methods for regional assessment. Environ Monit Assess,2004,94:249-261
    120.Lovejoy S B, Lee J G, Randhir T O, Engel B A. Research needs for water quality management in the 21st century:A spatial decision support system. Soil and Water Cons,1997,52:19-23
    121.Lu H, Moran CJ, Prosser I P. Modelling sediment delivery ratio over the Murray Darling Basin. Environ. Model Softw,2006,21:1297-1308
    122.Ludwig J A, Wilcox B P, Breshears D D, Tongway D J, Imeson A C. Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes. Ecology,2005,86:288-297
    123.Luk S H. Effect of antecedent soil moisture content on rain wash erosion. Catena, 1985,12:129-139
    124.Ma A N. The Geo-code model based on geographical knowledge formalization. International Archives of Photogrammetry and Remote Sensing, USA:ISPRS, 1992,29:563-565
    125.McGarigal K, Cushman S A, Ene E. FRAGSTATS v4:Spatial Pattern Analysis Program for Categorical Maps. Computer Software Program Produced by the Authors at the University of Massachusetts, Amherst,2012
    126.Memarian H, Balasundram S K, Talib J B, Sood A M, Abbaspour K C. Trend analysis of water discharge and sediment load during the past three decades of development in the Langat basin, Malaysia. Hydrol Sci J,2012,57:1207-1222
    127.Middleton H E. Properties of soils which influence soil erosion. USD A Technical Bulletins,1930,178:16
    128.Milliman J D, Syvitski J. Geomorphic/tectonic control of sediment discharge to the ocean:the importance of small mountainous rivers. J Geol,1992,525-544
    129.Mitra B, Scott H D, Dixon J C, McKimmey J M. Applications of fuzzy logic to the prediction of soil erosion in a large watershed. Geoderma,1998,86:183-209
    130.Morgan R. The European Erosion Model:an update on its structure and, research base. In:Rickson, CAB Internation, Cambridge,1994,286-299
    131.Moriasi D N, Arnold J G, Van Liew M W, Bingner R L, Harmel R D, Veith T L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE,2007,50:885-900
    132.Nash J, Sutcliffe J. River flow forecasting through conceptual models. Part I-a discussion of principles. J Hydrol,1970,10:282-290
    133.Nearing M A, LaneL J. Prediction technology for erosion by water:Status and research needs. Soil Sci Soc Am,1990,54:1702-1711
    134.Ni J R, L X X, Borthwick A G L. Soil erosion assessment based on minimum polygons in the Yellow River basin, China. Geomorphology,2008,93:233-252
    135.Nigel R Rughooputh S. Mapping of monthly soil erosion risk of mainland Mauritius and its aggregation with delineated basins. Geomorphology,2010,114: 101-114
    136.Olson T C, Wischmeier W H. Soil erodibility evaluation foe soils on the runoff and erosion sations. Soil Science Soil of America Proceedings,1963,27:590-592
    137.Ouyang W, Skidmore A K, Hao F, Wang T. Soil erosion dynamics response to landscape pattern. Sci Total Environ,2010,408:1358-1366
    138.Peele T C, Beale T O W, Latham E E. The effect of time and organic matter on the erodibility of Cecil clay. Soil Science Society American Proceeding,1938,3: 289-295
    139.Pelacani S, Marker M, Rodolfi G..Simulation of soil erosion and deposition in a changing land use:a modelling approach to implement the support practice factor. Geomorphology,2008,99:329-340
    140.Phippen S J, Wohl E. An assessment of land use and other factors affecting sediment loads in the Rio Puerco watershed, New Mexico. Geomorphology,2003, 52:269-287
    141.Puigdefabregas J. The role of vegetation patterns in structuring runoff and sediment fluxes in drylands. Earth Surf Proc Land,2005,30:133-147
    142.Qin Y, Fu B J. Spatial variation and scale variation in soil and water loss in heterogeneous landscape:a review. Acta Ecological Sinica,2004,24:330-337
    143.Rejman J, Turski R, Paluszek J. Spatial and temporal variations in erodibility of loess soil. Soil and Tillage Research,1998,46:61-68
    144.Renschler C S, Harbor J. Soil erosion assessment tools from point to regional scales-the role of geomorphologists in land management research, implementation. Geomorphology,2002,47:189-209
    145.Roels J M. Estimation of soil loss at a regional scale based on plot measurements some critical considerations. Earth Surf Proc Land,1985,10:587-595
    146.Rose C W, Williams J R. A mathematical model of soil erosion and deposition Processes:Theory for a plane land element. Soil Sci of Am,1983,43:991-995
    147.Salvetti R, Acutis M, Azzellino A, Carpani M, Giupponi C, Parati P, Vale M, Vismara R. Modelling the point and non-point nitrogen loads to the Venice Lagoon (Italy):the application of water quality models to the Dese-Zero basin. Desalination,2008.226:81-88
    148.Schulz C, Gelbrecht J, Rennert B. Treatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal water flow. Aquaculture,2003,217:207
    149. Singh A, Jakubowski A R, Chidister I., Townsend P A. A MODIS approach to predicting stream water quality in Wisconsin. Remote Sens. Environ,2013,128: 74-86
    150.Swank W T. Streamflow changes associated with forest cutting, species conversions, and natural disturbances. In:Swank W T and Crossley DC, Jr. (Ed.), Forest Hydrology and Ecology at Coweeta. Ecol Stud,1988,66:297-312
    151.Truman C C, Wauchope R D, Sumner H R, Davis J G, Gascho G J, Hook J E, Chandler L D, Johnson A W. Slope length effects on runoff and sediment delivery. J Soil Water Conserv,2001,3:249-256
    152.Valentin C, d'Herbes J M, Poesen J. Soil and water components of banded vegetation patterns. Catena,1999,37:1-24
    153.Valmis S, Dimoyiannis D, Danalatos N G. Assessing interrill erosion rate from soil aggregate instability index, rainfall intensity and slope angle on cultivated soils in central Greece. Soil Till Res,2005,80:139-147
    154.Van Der Puy M E. Rating erosion susceptibility. Proceedings of the Fourth Federal Interagency Sedimentation Conference March 24-27. Las Vegas, Nevada. 1986,1:2-1,2-7
    155.Van Oost K, Govers G, Desmet P J J. Evaluating the effects of changes in landscape structure on soil erosion by water and tillage. Landscape Ecol,2000,15: 579-591
    156.Vanmaercke M, Poesen J, Verstraeten G, de Vente J, Ocakoglu F. Sediment yield in Europe:Spatial patterns and scale dependency. Geomorphology,2011,130: 142-161
    157.Verboom J, Opdam P, Metz J A J. European nuthatch metapopulations in a Fragmented agricultural landscape. Oikos,1991,61:149-156
    158. Wang J P, Yang L, Wei W, Chen L D, Huang Z L. Effects of landscape patterns on soil and water loss in the hilly area of Loess Plateau in China:landscape-level and comparison at multiscale. Acta Ecol. Sin,2011,31:5531-5541 (in Chinese)
    159.Wang X, Zheng D, Shen Y. Land use change and its driving forces on the Tibetan Plateau during 1990-2000. Catena,2008,2-7
    160. Wei W, Chen L D, Fu B J, Huang Z L, Wu D P, Gui L D. The effect of land uses and rainfall regimes on runoff and soil erosion in the semi-arid loess hilly area, China. J Hydrol,2007,335:247-258
    161.Wiens J A. Stenseth N C, Van H B, Ims R A. Ecological mechanisms and Landscape ecology. Oikos,1993,66:369-380
    162. Wischmeier W H, Smith D D. A universal soil loss equation to guide conservation farm planning. Trans 7th International Cong. Soil Sci,1960,1:418-425
    163.Woodburn R, Kozachyn J. Study of relative erodibility of a group of Mississippi gully soils. Transactions American Geophysical Union,1956,37:749-753
    164.Wu J. Effects of changing scale on landscape pattern analysis:scaling relations. Landscape Ecology,2004,19:125-138
    165.Xiao H, Ji W. Relating landscape characteristics to non-point source pollution in mine waste-located watersheds using geospatial techniques. J Environ Manage, 2007,82:111-119
    166.Yan B, Fang N F, Zhang P C, Shi Z H. Impacts of land use change on watershed streamflow and sediment yield:an assessment using hydrologic modelling and partial least squares regression. J Hydrol,2013,484:26-37
    167. Yang M, Li X, Hu Y, He X. Assessing effects of landscape pattern on sediment yield using sediment delivery distributed model and a landscape indicator. Ecol Indic,2012,22:38-52
    168.Zadeh L A. "Fuzzy Sets". Information and Control.1965,8:338-353
    169.Zadeh L A. "Fuzzy Logic and Approximate Reasoning". Synthese 1975,30: 407-428
    170.Zadeh L A. "A Theory of Approximate Reasoning". In Hayes, Michie & ikulich (eds) Machine Intelligence.1979,9:149-194
    171.Zhang N. Scale issues in ecology:concepts of scale and scale analysis. Acta Ecologica Sinica,2006,26:2340-2355
    172.Zhu B, Wang Z H, Wang T, Dong Z X. Non-point-source nitrogen and phosphorus loadings from a small watershed in the Three Gorges Reservoir area. JMtSci,2012,9:10-15
    173.Ziegler A D, Giambelluca T W, Plondke D, Leisz S, Tran L T, Fox J, Nullet M A, Vogler J B, Minh Troung D, Vien T D. Hydrological consequences of landscape fragmentation in mountainous northern Vietnam:buffering of Hortonian overland flow. J Hydrol,2007,337:52-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700