三种红树植物对潮水淹浸与水体盐度适应能力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于长期不合理的开发和乱砍滥伐,我国红树林面积急剧减少,林分质量和防护效能不断下降。为了促进红树林恢复与发展,亟需加强红树林人工营造工作。而大量造林实践表明,淹水时间和海水盐度是红树林造林成功与否的主要限制因子。开展红树植物对淹水时间及对盐度耐受程度的研究,将为今后的红树林造林的立地选择提供理论依据和技术支撑。本研究于2005-2009年,建立室内潮汐模拟湿地系统,以红树林常见造林树种尖瓣海莲(Bruguiera sexangula(Lour.) Poir. var. rhynchopetala Ko)、秋茄(Kandelia candel (L.) Druce)和白骨壤(Avicennia marina Vierh)为研究对象,人工控制不同淹水时间(即2、4、6、8、10、12、14、16、18、20、22、24 h·d~(-1))和水体盐度(即0、5、10、15、20、25、30、35、40‰),通过分析比较幼苗生长与生理生化指标、矿质元素含量等的变化,对比分析3种红树植物对潮水淹浸与盐度的适应能力。主要研究结果如下:
     (1)尖瓣海莲幼苗在淹浸时间超过14 h·d~(-1)后尖瓣海莲幼苗部分死亡,超过16 h·d~(-1)后其胚轴发芽率下降,淹浸24 h·d~(-1)苗木全部死亡;随淹浸时间的延长,叶片叶绿素含量、根系活力和硝酸还原酶活性先升后降,而游离脯氨酸含量、丙二醛含量和相对电导率则先降后升,并在12 h·d~(-1)处出现骤变分界点。尖瓣海莲的单株总生物量在淹浸6 h·d~(-1)处理下最大,当淹浸时间超过12 h·d~(-1)后,总生物量骤降。综合分析各项指标后得出:在水体盐度为10的处理下,尖瓣海莲幼苗的最适淹浸时间为6~8 h·d~(-1),临界淹浸值为12 h·d~(-1)。
     (2)淹水逆境对秋茄幼苗生长有显著影响,具体表现如下:秋茄幼苗的总生物量、茎及根干重均在淹浸12 h·d~(-1)的处理最大,当淹水超过16 h·d~(-1)后,秋茄幼苗总生物量骤降;淹水逆境对秋茄幼苗叶片的月均增长量影响最大,淹水2 h·d~(-1)的比淹水24 h·d~(-1)的增加了80%;随淹浸时间的延长,秋茄幼苗的叶绿素含量、过氧化物酶活性和根系活力先升后降,而SOD、游离脯氨酸、丙二醛和相对电导率则先降后升,并在淹水16 h·d~(-1)处理下出现骤变分界点。综合分析以上指标,结合适应度分析得出:在水体盐度为10的处理下,秋茄幼苗的最适淹水时间为8~12 h·d~(-1),临界值为16 h·d~(-1)。
     (3)随淹水时间的延长,白骨壤幼苗的月均苗高、地茎及叶片数增量均呈先増后减趋势,在8~12 h·d~(-1)的淹水处理下保持较高数值,淹水时间≥16 h·d~(-1)后,生长变弱;随着淹水时间的延长,苗木生物量先増后减,在10 h·d~(-1)的淹水处理下值最大,当淹水时间≥16 h·d~(-1)后,生物量显著下降;通过对不同时间淹水处理下白骨壤小苗的单株叶干重、单株茎干重、单株根干重、总生物量、月均苗高增量、月均地茎增量、叶面积、净光合速率、叶绿素总量和根活力等10项生长信息指标的主成分分析,在水体盐度为10的处理下,白骨壤苗在淹水<16 h·d~(-1)下均能正常生长,在淹水8~12h·d~(-1)下较适宜生长,当淹水时间超过16 h·d~(-1)后生长受到明显抑制,即临界值为16h·d~(-1)。
     (4)水体盐度梯度对尖瓣海莲苗影响的实验表明,随着盐度的升高,尖瓣海莲幼苗叶片内的SOD活性、游离脯氨酸含量、丙二醛含量及质膜透性均呈先减小后增大趋势;幼苗的生长量、各器官生物量及总生物量均呈现“高抑低促”的现象;盐度为5的处理下,幼苗生长最旺盛,盐度超过25后生长受抑制,盐度为5的总生物量比盐度为40的大25倍;主成分综合分析表明,尖瓣海莲幼苗适合生长的盐度为25以下,盐度5最适生长,当盐度超过25后,生长明显受抑。
     (5)水体盐度梯度对秋茄的实验表明,随着盐度的升高,秋茄幼苗的叶片SOD活性、游离脯氨酸含量、丙二醛含量及质膜透性均不断增大;秋茄幼苗的生长量、生物量、净光合速率、根系活力、叶片叶绿素含量均以盐度为5的处理最大,盐度高于10后,则随着盐度的升高而数值下降。秋茄幼苗的最适生长盐度为5,在盐度10~30处理下,随着盐度的升高,秋茄幼苗生长逐渐减慢;在淡水和盐度30的处理下,秋茄幼苗生长明显受抑。
     (6)以尖瓣海莲幼苗为对象,研究了不同淹水时间(4、8和12 h·d~(-1))和不同水体盐度(5、15、25)的组合下的交互作用。结果表明,淹水与盐度各自对尖瓣海莲幼苗的绝大多数生长指标(叶片数除外)均有显著影响,但两者的交互作用不显著,仅对叶片宽度有显著影响。10项生长信息指标的主成分分析结果表明:在淹水4~8h h·d~(-1)和盐度5~15的组合处理下,较适合尖瓣海莲幼苗生长。
     (7)以秋茄幼苗为对象,研究了淹水时间(4、8和12 h·d~(-1) )与水体盐度(5、15、25)组合下的交互作用。结果表明,淹水与盐度对秋茄幼苗的绝大多数生长指标均有不同程度的影响,但两者的交互作用影响不显著,仅对主根条数有显著作用。主成分分析结果显示:在淹水12h.d~(-1)与盐度5的组合处理下,秋茄苗生长最好。(8)测定了以上实验幼苗的元素含量,包括N、P、K、Ca、Cl、Mg、Na、Al、Fe、Mn、B等,结果表明:淹水和盐度对尖瓣海莲、秋茄和白骨壤幼苗各器官矿质元素均有影响,其中以叶片的元素含量变化最明显。在淹水试验中,秋茄幼苗叶片内元素Ca、Cl、Na、Fe、B含量随淹水时间的延长而显著上升,K却是较有规律的随着淹水时间的延长而减少,Al、Zn和Cu元素随淹水时间的延长呈现先降低再上升的趋势。尖瓣海莲幼苗叶片中元素N、Mg、Al、P和Fe含量随着淹水时间的延长而上升,且Mg、Al和Fe含量在淹水时间超过12h.d~(-1)后明显上升。白骨壤小苗叶片中P、Ca、Al、Fe、Mn、Ni和B元素均为有规律的随着淹浸时间的延长而上升,元素K较有规律的随着淹水时间的延长而减少,Zn含量随淹水时间的延长先升后降。在潮水盐度实验中,秋茄幼苗叶片中元素Na、Cl和Cu随盐度梯度增加呈增长,但元素K、Ca、Mg和Zn随着盐度的增加而减少;根部的P、Na、Cl、Fe和Mn随盐度增大而增大,但元素K和Ca随着盐度的增加而减少。
     (9)从植株矿质元素的分析结果可知:秋茄、尖瓣海莲和白骨壤幼苗在长时间的淹水胁迫下,植株缺氧处于还原状态使一些离子的溶解度降低,导致Fe、Al等金属元素的含量过高而逐渐中毒,可能是造成这3种红树植物幼苗在长时间淹水胁迫下生长不良或死亡的主要原因。秋茄幼苗在高盐度胁迫下体内Na、Cl含量过高和K、Ca、Mg、Zn含量的下降影响了幼苗的生理平衡,引起幼苗根部的Fe、Mn等金属离子毒害的产生,可能是秋茄幼苗在过高盐度胁迫下生长不良或死亡的主要原因。
Due to the long time deforestation, mangrove forest area in China dropped sharply, and forest quality and protective efficacy has been declined. In order to promote mangrove rehabilitation and sustainable development, strengthening the work of artificial mangrove reforestaion was urgent. Lots of forest practices showed that the tide-flooding time and salinity are the major limiting factor for mangrove forestation success. Therefore, Carrying out the study on adaption and tolerance of mangrove to tide-flooding and water salinity would provide theoretical basis and technical support to mangrove restoration. In this study, indoor tide simulated wetland system was establishment from 2005 to 2009, and the common mangrove species Bruguiera sexangula, Kandelia candel and Avicennia marina were the studied. Manual controlled the tide-flooding time was twelve gradients (2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 h.d~(-1)) and the water salinity was eight gradients (0, 5, 10, 15, 20, 25, 30, 35, 40‰). Through analyzing and comparing the growth indexes, physiological indexes and mineral elements of mangrove seedlings, the adaptability of mangrove species to tide-flooding and water salinity was studied. The major results are as follow:
     (1) B. sexangula seedlings died partly when the tide-flooding time was more than14 h·d~(-1),and hypocotyl germination rate decreased when the tide-flooding time was more than16 h·d~(-1), but seedlings all died when the tide-flooding time was 24h·d~(-1). As increasing of the tide-flooding time, chlorophyll, root activity and nitrate reductase activity increased fist and then decreased, but free proline, malonaldehyde and relative conductivity decreased first and then increased. The physiological indexes changed suddenly at the tide-flooding treatment of 12h·d~(-1). The largest total biomass was occurred at the treatment of 6h·d~(-1), and total biomass decreased suddenly when the tide-flooding time was more than12 h·d~(-1). Comprehensive analysis of indicators shows that the optimal flooding time of B. sexangula is 6~8h.d~(-1), and the critical flooding time is 12h.d~(-1) in the water salinity treatment of 10‰.
     (2) Water-logging stress has a significant effect on the growth of K. candel seedlings, specific performance is as follows: total biomass, stem dry weight, root dry weight are highest at the treatment of 12h·d~(-1), and total biomass decreased suddenly when the tide-flooding time was more than 16h·d~(-1). Water-logging stress has greatest impact on the leaf increment per month of the K. candel seedlings, and the leaf increment per month with the treatment of 2h·d~(-1) is 0.8 times more than the value with the treatment of 24h·d~(-1). As increasing of the tide-flooding time, chlorophyll, nitrate reductase activity and root activity increased fist and then decreased, but SOD, free proline, malonaldehyde and relative conductivity decreased first and then increased. The physiological indexes changed suddenly at the tide-flooding treatment of 16h·d~(-1). Comprehensive analysis of indicators shows that the optimal flooding time of K. candel is 8~12h.d~(-1), and the critical flooding time is 16h.d~(-1) in the water salinity treatment of 10‰.
     (3) As increasing of the tide-flooding time, the height increment, stem increment and leaf increment per month of A. marina seedlings all increased fist and than decreased. The values of growth keep high at the treatment of 8~12 h.d~(-1), and grow changed bad when the tide-flooding time was more than 16 h.d~(-1). As increasing of the tide-flooding time, biomass of A. marina seedlings increased fist and than decreased, the largest value is at the treatment of 10h.d~(-1), and biomass decreased significantly when the tide-flooding time was more than 16h.d~(-1). Principal component analysis of ten growth information indexes including leaf dry weight, stem dry weight, root dry weight, total biomass, height increment per month, stem increment per month, leaf area, net photosynthesis rate, chlorophyll and root activity shows that A. marina seedlings grows normally when the tide-flooding time was less than 16 h.d~(-1), the optimal flooding time is 8~12h.d~(-1), and the critical flooding time is 16 h.d~(-1) in the water salinity treatment of 10‰.
     (4)The water salinity experiment of B. sexangula seedlings indicated that SOD, free proline, malonaldehyde and membrane permeability decreased first and than increased with rising of salinity. The growth, biomass of every organs and total biomass of seedlings are promoted with the low salinity treatment, and are inhibited with the high salt treatment. B. sexangula seedlings grow best at the salinity treatment of 5‰, and growth inhibited when the treatment salinity was more than 25‰. The maximum value of total biomass is 25 times more than the minimum value. Principal component synthesized analysis shows that B. sexangula seedlings can grow normally with the treatment salinity less than 25‰, and grows best with the treatment salinity of 5‰, but the growth inhibited obviously when the treatment salinity was more than 25‰.
     (5) The water salinity experiment of K. candel seedlings indicated that SOD, free proline, malonaldehyde and membrane permeability increased constantly with rising of salinity. The maximum value of growth, biomass, net photosynthesis rate, root activity and chlorophyll are all at the salinity treatment of 5‰, and decreased as increasing of salinity when the treatment salinity was more than 10‰. The optimum salinity to K. candel seedlings is 5‰, and the growth slow down gradually as increasing of salinity when the treatment salinity was 10 to 30‰. The growth of K. candel seedlings inhibited obviously when the salinity was 0 or 30.
     (6) Interaction of different flooding time and water salinity on B. sexangula seedlings was studied. Dealt the flooding time with three gradients of 4, 8, 12 h.d~(-1)and water salinity with three gradients of 5, 15, 20‰. The result shows that flooding time and water salinity have significant effect at the most of the growth indexes excepting leaf number, but their interaction is not significant excepting leaf width. Principal component analysis of ten growth information indexes with the interaction of different flooding time and water salinity shows that the optimum treatment combination is flooding with 4 to 8 h.d~(-1)and salting with 5-15‰.
     (7) Interaction of different flooding time and water salinity on K. candel seedlings was studied. Dealt the flooding time with three gradients of 4, 8, 12 h.d~(-1)and water salinity with three gradients of 5, 15, 20‰. The result shows that flooding time and water salinity have varying degrees effect at the most of the growth indexes. The impact of salinity is greater than flooding time. Principal component analysis of ten growth information indexes with the interaction of different flooding time and water salinity shows that the optimum treatment combination is flooding with 12h.d~(-1)and salting with 5‰.
     (8) Mineral elements which including N, P, K, Ca, Cl, Mg, Na, Al, Fe, Mn and B of experiment seedlings were measured. The result shows that flooding time and water salinity all have effect on the organs of B. sexangula, K. candel and A. marina seedlings. Leaf elements changed most obviously. In the flooding experiment, as rising of the flooding time, Ca, Cl, Na, Fe and B in the leaf of K. candel seedlings increased obviously, and K contend decreased, but Al, Zn, Cu decreased first and then increased. N, Mg, Al, P and Fe contend in the leaf of B. sexangula seedlings increased, and Mg, Al and Fe increased obviously when the flooding time was more than 12h.d~(-1). P, Ca, Al, Fe, Mn, Ni and B in the leaf of A. marina seedlings increased, but K contend decreased, and Zn increased first and then decreased. In the water salinity experiment of K. candel seedling, as rising of the water salinity, Na, Cl, and Cu in the leaf increased, K, Ca, Mg and Zn decreased, P, Na, Cl, Fe and Mn in the root increased, but K and Ca decreased.
     (9) Analysis of mineral element shows that, the long-time flooding lead B. sexangula, K. candel and A. marina seedlings to plant hypoxia. Plant hypoxia cause some ion in a state of lower solubility, and this can result in accumulation of metal elements such as Fe, Al and so on. Excessive accumulation of mental elements can cause poisoning. This may be the major factor cause the die of three mangrove species in the long-time flooding. Excessive accumulation Na, Cl and lower contend of K, Ca, Mg, Zn of K. candel seedlings in the high-salinity treatments can affect physiological balance, and this will cause metal poisoning such as Fe, Mn poisoning. This may be the major reason of poor growth of K. candel seedlings in the high-salinity treatments.
引文
包淑云,林文翰.红树植物尖瓣海莲的化学成分研究[J].中国中药杂志,2006,31(14):1168-1171.
    陈桂珠,缪绅裕,谭凤仪,等.人工合成污水对秋茄幼苗的几个生理生态学指标影响初报[J].应用生态学报,1994,5(2):221-224.
    陈建华.红树林人工造林经验初报[J].钦州林业科技.1986,(2):22-27.
    陈鹭真,林鹏,王文卿.红树植物对淹水胁迫响应研究进展[J].生态学报,2006,26(2):586-591.
    陈鹭真,王文卿,林鹏.潮汐淹水时间对秋茄幼苗生长的影响[J].海洋学报,2005,27(2):141-147.
    杜秀敏,殷文璇,赵彦修,等.植物中活性氧的产生及清除机制[J].生物工程学报,2001,17(2):121-125.
    范航清,黎广钊.海堤对广西沿海红树林的数量、群落特征和恢复的影响[J].应用生态学报,1997,8 (3):240-244.
    高海燕.不同高程下秋茄和白骨壤幼苗生长的动态研究[J].科技信息,2007,33:21-31.
    管致和.植物医学导论[M].北京:中国农业大学出版社,1996:100-104.
    郭会军,陈桂珠.适应度分析-一种从生理指标评价植物对逆境反应的方法.见范航清,梁士楚主编.中国红树林研究与管理[M].北京:科学出版社,1995:71-75.
    国家海洋局.中国海洋21世纪议程行动计划[M].北京:国家海洋局,1996,30-33.
    何斌源,赖廷和,陈剑锋,等.两种红树植物白骨壤和桐花树的耐盐性[J].生态学报,2007,27(3):1131-1139.
    胡倩芳,叶勇.不同滩面高程和光照条件下白骨壤幼苗的早期生长差异[J].福建林业科技,2008,36(1):106-110.
    黄薇,林栖凤,李冠一,等.盐分对红树植物秋茄某些生理特性的影响[J].海南大学学报(然科学版)2002,20(4):328-331.
    黄运挺.福建省滨海秋茄红树林栽培技术探讨[J].林业勘察设计(福建),2007,2:133-135.
    雷安平,唐旭蔚.不同盐度对红树林植物-秋茄的胚轴的生长发育的影响[J].广西林业科学,2004,33(3):124-125.
    李合生.植物生理生化实验原理与技术[M].高等教育出版社,2000,121-137.
    李玫,章金鸿,陈桂珠.化工废水对红树林湿地的影响[J].重庆环境科学,2003,25(6):21-25.
    李巧姿.沿海滩涂生态因子对秋茄生长的影响分析[J].福建林业科技,2000,27(4):31-34.
    李元跃,林鹏.3种红树植物叶片结构及其生态适应[J].海洋科学,2006,30(7):53-57.
    梁山,周仁超,董穗穗,等.红树植物的盐适应性及其进化的研究进展[J].科学通报,2008,53(8)865-871.
    廖宝文,郑德璋,郑松发,等.海桑育苗技术及其幼苗生长规律的研究[J].林业科学研究,1997,10(3):296-302.
    廖宝文,郑德璋,郑松发,等.白骨壤物候变化规律及育苗造林技术的研究[J].防护林科技, 1999 (增刊) :1-5.
    廖宝文,郑德璋,郑松发,等.红树植物秋茄胚轴主要性状及其贮藏方法的研究[J].林业科学研究,1996,9(1):58-63.
    廖宝文,郑德璋,郑松发,等.红树植物秋茄造林技术研究[J].林业科学研究,1996,9(6):586-592.
    廖宝文,郑德璋,郑松发,等.红树植物桐花树育苗造林技术的研究[J].林业科学研究,1998,11(5):474-480.
    廖宝文,郑德璋,郑松发,等.我国华南沿海红树林造林现状及其展望[J].防护林科技,1996,4(29):30-34.
    廖岩,陈桂珠.三种红树植物对盐胁迫的生理适应[J].生态学报,2007,27(6):2208-2214.
    廖岩,陈桂珠.盐度对红树植物影响研究[J].湿地科学,2007,5(3):266-273.
    林鹏,陈德海,肖向明,等.盐度对两种红树植物叶片糖类含量的影响[J].海洋学报. 1984, 6 (6) : 851-855.
    林鹏,张宜辉,杨志伟.厦门海岸红树林的保护与生态恢复[J].厦门大学学报(自然科学版),2005,44(增刊):1-6.
    林鹏.红树林[M].北京:海洋出版社,1984.
    林鹏.红树林研究论文集[M].厦门:厦门大学出版社,1990.98.
    林鹏.中国东南部海岸红树林的类群及其分布[J].生态学报,1981,1(3):283-290.
    林鹏.中国红树林生态系[M].北京:科学出版社,1997.
    林鹏.中国红树林湿地及其生态工程的几个问题[J].中国工程科学.2003.5(6):33-38.
    林栖凤,邓用川,黄薇,等.红树DNA导入茄子获得耐盐性后代的研究.生物工程进展,2001,21(5):40-44.
    刘爱荣,赵可夫.盐胁迫对盐芥生长及硝酸还原酶活性的影响[J].植物生理与分子生物学学报,2005,31(5):469-476
    刘海龙,郑桂珍,关军锋,等.干旱胁迫下玉米根系活力和膜透性的变化[J].华东农学报,2002,17(2):20-22.
    刘亚云,孙红斌,陈桂珠,等.秋茄幼苗对多氯联苯污染的生理生态响应[J].生态学报,2007,27(2):746-754.
    刘友良.植物水分逆境生理[M].北京:农业出版社,1992.144-187.
    刘治平.深圳福田红树林生态造林方法技术研究[J].生态科学,1995,2:100-104.
    卢昌义,林松.盐度对拉贡木种子发芽的影响[J].厦门大学学报(自然科学版),2008,47(6):887-890.
    罗祺,张纪林,郝日明,等.淹水胁迫下10个树种某些生理指标的变化及其耐淹水能力的比较[J].植物资源与环境学报,2007,16(1):69-73
    莫竹承,范航清,何斌源.海水盐度对两种红树植物胚轴萌发的影响[J].植物生态学报. 2001, 25 (2) : 235-239.
    莫竹承,梁士楚,范航清.广西红树林造林技术的初步研究.见范航清、梁士楚主编的中国红树林研究与管理[M].北京:科学出版社,1995.
    潘文,周涵韬,陈攀等.木榄属3种红树植物的遗传变异和亲缘关系分析[J].海洋科学,2005,29(5):23-28.
    庞士铨.植物逆境生理学基础[M].哈尔滨:东北林业大学出版社,1990:103.
    茹巧美,郑海雷,肖强.红树植物耐盐机理研究进展[J].云南植物研究, 2006, 28(1): 78-84
    孙海菁,王树凤,陈益泰.盐胁迫对6个树种的生长及生理指标的影响[J].林业科学研究,2009,22(3):315~324.
    孙一荣,朱教君,康宏樟.水分处理对沙地樟子松幼苗膜脂过氧化作用及保护酶活性影响[J].生态学杂志,2008,27(5):729-734.
    汤章诚.逆境条件下植物脯氨酸的累积及其可能的意义[J].植物生理学通讯,1984,20(1):15-21.
    王波,宋凤斌.燕麦对盐碱胁迫的反应和适应性[J].生态环境,2006,15(3):625-629.
    王焕校.污染生态学基础[M].昆明:云南大学出版社,1990:91-94
    王晶英,敖红,张杰,等.植物生理生化技术与原理[M].哈尔滨:东北林业大学出版社,2003:135-136.
    王文卿,林鹏.红树植物秋茄和红海榄叶片元素含量及季节动态的比较研究[J].生态学报,2001,21(8): 1 233-1 238.
    王文卿,林鹏.盐度对红树植物木榄生长的影响[J].厦门大学学报(自然科学版),1999,38(2):273-279.
    王文卿,王瑁.中国红树林[M].北京:科学出版社,2007:20-21
    王雪峰,陈桂珠,许夏玲.白骨壤对石油污染的生理生态响应[J].生态学报,2005,25(5):1095-1100.
    杨传平,焦喜才,刘文样,等.树木的细胞膜透性与抗盐性[J].东北林业大学学报,1997,25(1):1-3.
    杨根平,荆家海,王韶唐.钙在干旱胁迫植株内作用的初步研究[J].西北植物学报,1992 ,12 (5) :13 - 16.
    叶庆华,林鹏.两种盐度下桐花树叶肉细胞结构变化[J].厦门大学学报(自然科学版),1995,34(1):104-107.
    叶庆华,吴韩志,王文卿,等.基质盐度对木榄叶柄导管分子形态特征的影响[J].实验生物学报, 2003, 36(1):61-65.
    叶庆华,陈海朋,吴韩志,等.用流式细胞仪研究秋茄叶柄薄壁细胞大小及叶绿素含量与海水盐度关系[J].分析仪器, 2004, 3:17-20.
    叶勇,卢昌义,胡宏友,等.三种泌盐红树植物对盐胁迫的耐受性比较[J].生态学报,2004,24(11):2444-2450.
    叶勇,卢昌义,谭凤仪.木榄和秋茄对水渍的生长与生理反应的比较研究[J].生态学报,2001,21(10):1654-1661.
    叶勇,卢昌义,郑逢中,等.模拟海平面上升对红树植物秋茄的影响[J].生态学报,2004,24(10):2238-2244.
    袁志发,周静芋.多元统计分析[M].北京:科学出版社,2002.188~189.
    张乔民,隋淑珍.中国红树林湿地资源及其保护.自然资源学报,2001,16(1):28-35.
    张乔民,于红兵,陈欣树.红树林生长带与潮汐水位的研究[J].生态学报,1997,17(3):258-265.
    张宜辉,王文卿,林鹏.红树植物的盐分平衡机制[J].海洋科学,2007,31(11):86-90.
    赵胡,郑文教,孙娟,等.红树植物桐花树生长发育过程的元素动态与抗盐适应性[J].海洋科学, 2004,28(9): 1-5
    赵可夫.植物抗盐生理[M].北京:中国科学技术出版社, 1993.
    赵世杰,许长城,邹琦,等.植物组织中丙二醛测定方法的改进[J].植物生理学通讯,1994,30(3):207- 210.
    赵中秋,郑海雷,张春光,等.盐度对白骨壤和秋茄幼苗叶细胞质膜硝酸还原酶活性的影响[J].厦门大学学报:自然科学版,2001,40(6):1350-1354.
    郑德璋,廖宝文,郑松发,等.广东省红树林湿地保护的重要性[J].广东林业科技,1997,13(1):8-14.
    郑德璋,郑松发,廖宝文.海南岛清澜港红树林发展动态研究[M].广州:广东科技出版社,1995.
    郑海雷,林鹏.红树植物白骨壤对盐度某些生理反应[J].厦门大学学报(自然科学版),1997,36(2):278-282.
    郑海雷,林鹏.培养盐度对海莲和木榄幼苗膜保护系统的影响[J].厦门大学学报(自然科学版),1998,37(1):135-139.
    郑文教,林鹏.盐度对红树植物海莲幼苗的生长和某些生理生态特性的影响[J].应用生态学报,1992,3(1):9-14.
    郑文教,林鹏.盐度对秋茄幼苗的生长和水分代谢的效应[J].厦门大学学报(自然科学版) , 1990, 29 (5) :575-579.
    周涵韬,林鹏,孙晟.福建九龙江口红树植物分子分类的研究[J].海洋科学,2001,25(8):42-46.
    朱广廉,钟海文,张爱琴.植物生理学实验[M].北京:北京大学出版社,1990:51-254
    朱颖,吴纯德.红树林对水体进化作用研究进展[J].生态科学,2008,27(1):55-60.
    Achmadi S , Syahbirin G, Choong ET, et al. Catechin-3-O-rham noside chain extender units in polymeric procyanidins from mangrove bark [J ] . Phytochem , 1994,35 : 217 -219.
    Agastian P , Kingsley SJ , Vivekanandan M. Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes[J ] . Photosynthetica , 2000,38 (2) : 287 -290.
    Allaway W G, Curran M, Hollington L M, Ricketts M C,Skelton N J. Gas space and oxygen exchange in roots of Avicennia marina (Forssk. ) Vierh. Var. australasica (Walp.) Moldenke ex N. C. Duke, the Grey mangrove. Wetlands Eco. & Management, 2001, 9: 211-218.
    Andersen FΦ,Kristensen E. Oxygen microgradients in the rhizosphere of mangrove Avicennia marina. Mar. Ecol. Prog. Ser. , 1988, 44: 201-204.
    Atkinson, M. R., Findlay, G. P., Hope, A. B., Pitman, M. G., Saddler, H. D. W., and West, K. R. Salt regulation in the mangroves Rhizophora mucronata Lam. And Aegialitis annulata R. Br. Australian Journal of Biological Sciences ,1967,20, 589-599.
    Aziz I, KhanM. A.. Effect of seawater on the growth, ioncontent and water potential of Rhizophora m ucronata [ J ]. Lam.J. Plant Res.2001,114: 369 - 373.
    Ball M C, Farquhar G D. Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long term salinity and humidity conditions. Plant Physiol, 1984, 74: 1-6.
    Ball M C. Ecophysiology of mangroves[J].Trees , 1988a , 2 :129-142.
    Ball M C. Salinity tolerance in the mangroves Aegiceras corniculatum and Avicennia marina I. Water use in relation to growth, carbon partitioning and salt balance. Aust. J. Plant Physiol, 1988b, 15: 447-464.
    Ball M C. Salinity tolerance in the mangroves Aegiceras corniculatum and Avicennia marinaⅠ. Water use in relation to growth , carbon partitioning and salt balance. Aust[J]. Plant Physiol ,1988,15 :447-464.
    Ball, M. C. Physiology of Photosynthesis in Two Mangrove Species: Responses to Salinity and Other Environmental Factors. Ph. D. Thesis, Australian National University. 1981.
    Banzai T, Hanagata N, Dubinsky Z, et al. Fructose-2, 6-bisphosphate contents were increased in response to salt, water and osmotic stress in leaves of Bruguiera gymnorrhiza by differential changes in the activity of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphate 2-phosphatase. PlantMol Biol, 2003, 53: 51-59
    Banzai T, Hershkovits G, Katocoff D J, et al. Identification and characterization of mRNA transcripts differentially expressed in response to high salinity by means of differential display in the mangrove, Bruguiera gymnorrhiza . Plant Sci, 2002, 162: 499-505
    Banzai T, Sumiya K, Hanagata N, et al. Molecular cloning and characterization of genes encoding BURP domain-containing protein in the mangrove, Bruguiera gymnorrhiza . Trees, 2002, 16: 87-93
    Benavides M P, Marconi P L, Gallego SM, et al. Relationship between antioxidant defence systems and salt tolerancein Solanum tuberosum [J]. Aust. Plant Physiol, 2000,27: 273 -278.
    Boto K G and Robertson A I.The relationship between nitrogen fixation and tidal expot of nitrogen in a tropical mangrove system.Estuarine, Coastal and Shelf Science.1990,31(5)531-540.
    Bowler C, Van Montagu M , Inze D, et al. Superoxide dismutase and stress to lerance [J]. Annu. Rev. Plant Mol. Biol, 1992, 43: 83-116
    Burchett, M. D., Field, C. D. & Pulkownik, A. Salinity, growth and root respiration in the grey mangrove Avicennia marina. Physiol. Plantarum, 1984. 60: 113-118.
    Chai P K. Themangrove trees and shrubs of Sarawak[ J ].TheMalaysian Forester, 1975,38 (3) : 187 - 208.
    Chen G Z , Miao S Y, Tam N F Y, et al. Effect of synthetic wastewater on young Kandelia candel plants growing under greenhouse conditions[J]. Hydrobiologia, 1995,295 :263-273
    Chen L Z, Wang W Q, Lin P. Photosynthetic and physiological responses of Kandelia candel L. Druce seedlings to duration of tidal immersion in artificial seawater[J]. Environmental and Experimental Botany,2005,54(3):256-266.
    Chiu C Y, Hsiu F S, Chen S S, et al. Reduced Toxicity of Cu and Zn to mangrove seedlings (Kandelia-candel(L) Druce) in saline environments[J]. Botanical Bulletin of Academia Sinica,1995,36(1):19-24.
    Clarke L D, Hannon N J. The mangrove swamp and salt marsh communities of the Sydney district. Part III: p lant growth in relation to salinity and waterlogging [ J ]. J. Ecol. , 1970, 58: 351 - 369.
    Clarke, L. D. & Hannon, N. J. The mangrove swamp and salt marsh communities of the Sydney district.Ⅰ. Vegetation, soils and climate. J. Ecol. 1967,55: 753-771.
    Clarke, L. D., and Hannon, N. J. The mangrove swamp and salt marsh communities of the Sydney district. Ⅲ. Plant growth in relation to salinity and waterlogging. Journal of Ecology ,1970,58, 351-369.
    Clough B F. Constraints on the growth, propagation and utilization of mangroves in arid regions. H Lieth &A Al Masoom (eds): Towards the rational use of high salinity tolerant plants. Kluwer Academic Publishers. Printed in the Netherlands.1993, 1: 341-352.
    Clough, B. F. & Sim, R. G. Changes in fas exchange characteristics and water use efficiency of mangroves in response to salinity and vapour pressure deficit. Oecologia ,1989,79: 38-44.
    Clough, B. F. Growth and salt balance of the mangroves Avicennia marina (Forsk.) Vierh. And Rhizphora stylosa Griff. In relation to salinity. Aust. J. Plant Physiol,1984,11: 419-430.
    Clough, B. F., and Attiwill, P. M. Nutrient cycling in a community of Avicennia marina in a temperate region of Australia. In“Proceedings of the International Symposium on Biology and Management ofMangroves”(G. E. Walsh, S. C. Snedaker and H. J. Teas. Eds.), 1975,l: 137-146. University of Florida, Gainesville.
    Clough, B. F., and Attiwill, P. M. Primary productivity of mangroves. In“mangrove Ecosystems in Australia: Structure, Function and Management”(B.F. Clough, ed.), 1982, 213-222. Australian National University Press, Canberra.
    Clough, B. F., Andrews, T. J., and Cowan, I. R. Physiological processes in mangroves. In“Mangrove Ecosystems in Australia: Structure, Function and Management”(B. F. Clough, ed.), 1982,193-210. Australian National University Press, Canberra.
    Clüsener, M. & Breckle, S.–W. 1987. Reasons for the limitation of mangrove along the west coast of northern Peru. Vegetation ,1983, 68: 173-177.
    ConnerV J. Growth of grey mangrove (Avicennia m arina) in nutrient culture[ J ]. Biotrop ica, 1969,1 (2) : 37 - 40.
    CramJW, Torr PG, Rose DA. Salt allocation during leaf development and leaf fall in mangroves [J ] . Trees , 2002,16 : 112 -119
    Curran M, Cole M, Allaway W G. Root aeration and respiration in young mangrove plants Avicennia marina (Forssk..) Vierh. . J. Exp. Bot. , 1986, 37: 1225-1233.
    De Hean,J.D. Het een en auder over de Tjilatjapsche vloedbosschen.Tectona,1976,24,39-76. (Quoted in: Chapman,V.J.,Mangrove Vegetation.Strauss & Cramer.1976.447)
    Downton, W. J. S. Growth and osmotic relations of the mangrove Avicennia marina, as influenced by salinity. Australian Journal of Plant Physiology ,1982,9, 519-528.
    Ellison A M, Farnsworh E J. Simulated sea level change alters anatomy, physiology, growth, and reproduction of red mangrove (Rhizophora mangle L.). Oecologia. , 1997, 112: 435-446.
    Ellison A M, Farnsworth E J. Seedling survivorship, growth, and response to disturbance in Belizean mangal. Am. J. Bot. , 1993, 80: 1137-1145.
    FAO. Mangrove management in Thailand, Malaysia and Indonesia, Rome, 1985,2-3.
    Flowers, T. J. & Yeo, A. R. Ion relations of plants under drought and salinity. Aust. J. Plant Physiol,1986, 13: 75-91.
    Fu X H, Huang Y L, Deng S L, et al. Construction of a SSH library of Aegiceras corniculatum under salt stress and expression analysis of four transcripts. Plant Sci, 2005, 169: 147-154
    Fukushima Y, Baba S, Ashihara H, et al. The effect of salt stress on the catabolism of sugars in leaves and boots of a mangrove plant Avicennia marina[J].Journal of Biosciences,1997,52(3-4):187-192.
    Grattan S R, GrieveM. Mineral element acquisition and grow thresponse of plants growth in saline enviroments[J]. Agriculture, Eco system and Environment,1992,38:275-300
    Hernandez J A, Olmos E, Corpas F J, et al. Salt - induced oxidative stress in chlorop lasts of pea p lants [ J ]. Plant Sci. , 1995, 105: 151 -167.
    Hernandez J, Jimenez A, Mullineaux P, et al. Toleranceof pea plants( Pisum sativum ) to long - term salt stress is associated with induction of antioxidant defences[J]. Plant Cell Environ, 2000,23: 853 - 862.
    Hernes PJ , Benner R , Cowie GL , et al , 2001. Tannin diagensis in mangrove leaves from a tropical estuary : A novel molecular approach [J ] .Geo Cosmo Acta , 65 (18) : 3109 -3122.
    Hovenden M J, Curran M, Cole M A, Coulter P F E, et al. Ventilation and respiration in roots of one-year-old seedlings of grey mangrove Avicennia marina (Forssk..) Vierh. Hydrobiologia, 1995, 295: 23-29.
    Hsu FL , Nonaka GI , Nishioka I. Tannins and related compounds.XXXI. Isolation and characterization of proanthocyanidins in Kandelia candel (L. ) Druce [J ] . Chem Pham Bull , ,1985,33 : 3142 -3152.
    Hutchings P, Saenger P. Ecology of mangroves. St Lucia: University of Queensland Press, 1987. 1-388.
    Hwang Y H, Chen S C. Effects of ammonium, phosphate,and salinity on growth, gas exchange characteristics, and ionic contents of seedlings of mangrove Kandelia candel (L. ) Druce[ J ]. Bot Bull Acad Sin. , 2001,42: 131 - 139.
    Hwang Y H, Chen S C. Salt tolerance in seedlings of the mangrove Kandelia-candel(L)Druce, Rhizophoraceae[J]. Botanical Bulletin of Academia Sinica, 1995,36(1): 25-31.
    Jayatissa L P, Wickramasinghe W, Dahdouh-Guebas F, et al. Interspecific variations in responses of mangrove seedlings to two contrasting salinities [J]. International review of hydrobiology,2008,93(6):700-710.
    KaoW Y, Tsai H C, Tsai T T. Effect ofNaCl and nitrogen availability on growth and photosynthesis of seedlings of a mangrove species, Kandelia candel (L. ) Druce [ J ]. J. Plant Physiol, 2001,158: 841– 846.
    KaoW Y, Tsai H C. The photosynthesis and chlorophyll a fluorescence in seedlings of Kandelia candel (L. ) Druce grown under different nitrogen and NaCl controls[ J ]. Photosynthetica, 1999,37: 405 - 412.
    Kozlowski T T. Flooding and plant growth. London: Academic Press, INC, 1984.
    Lee D H, Kim Y S, Lee C B. The inductive responses of the antioxidant enzymes by salt stress in the rice (O ryza sativa L.) [J]. Plant Physiol, 2001,158: 737-745.
    Li N Y, Chen S L, Zhou X Y, et al. Effect of NaCl on photosynthesis, salt accumulation and ion compartmentation in two mangrove species, Kandelia candel and Bruguiera gymnorhiza [J].Aquatic Botany,2008,88(4):303-310.
    Li R Q, Wang J P. Plant stress physiology. Wuhan: Wuhan University Press, 2002.
    Lin G, Sternberg L da S L. Effects of salinity fluctuation on photosynthetic gas exchange and plant growth of the red mangrove (Rhizophora mangle L.) . J. exp. Bot. , 1993, 90: 9-16.
    Lin G, Sternberg L, Da S L. Differences in morphology, carbon isotope ratios, and photosynthesis between scrub and fringe mangroves in Florida, USA [J]. Aquatic Botany, 1992, 42:303-313.
    Lin J M, Tang Y W. The regulation oflow pH on dark induction of nitrate reductase activity in the leaves etiolated rice seedling[J]. Acta Phytophysiol Sin, 1986, 12(4): 307-314
    Lopez-Hoffman L, Anten NPR, Martinez-Ramos M, et al. Salinity and light interactively affect neotropical mangrove seedlings at the leaf and whole plant levels [J].Oecologia,2007,150(4):545-556.
    Macnae, W. A general account of the flora of mangrove swamps and forests in the Indo-West-Pacific region. Advances in Marine Biology ,1968,6, 73-270.
    Macnae. Mangroves in eastern and southern Austrian[ J ].Australian Journal of Botany, 1966,14: 67 - 104.
    Maurel C, Chrispeels M J. Aquaporins, a molecular entry into plant water relations. Plant Physiol, 2001, 125: 135-138
    McKee K L. Growth and physiological responses of neotropical mangroves seedlings to root zonehypoxia. Tree Physiol, 1996, 16: 883-889.
    Miao S Y, Chen G Z, Delaune R D, et al. Partitioning and removal of Cd and Mn using a simulated mangrove wastewater treatment system[J]. Journal of Environmental Science and Health,2007,42(4):405-411.
    Michelet B , Boutry M.The plasma membrane H+2ATPase : A highly regulated enzyme with multiple physiological functions [ J ] .Plant Physiol , 1995. 108 : 1 -6.
    Mimura T, Washitaninemoto S, Siripatanadilok S, et al. Nacl-dependent growth, ion content and regeneration of calluses initiated from the mangrove plant, Bruguiera sexangula. Journal of Plant Research, 1997, 110(1097):31-36.
    Mishra S, Das, A B. Effect ofNaCl on leaf salt secretion and antioxidative enzyme level in roots of a mangrove, Aegiceras corniculatum [ J ]. Indian J. Exp. Biol. , 2003,41 (2) : 160 - 165.
    Miyama M, Hanagata N. Microarray analysis of 7029 gene expression patterns in burma mangrove under high-salinity stress. Plant Sci,2007, 172(5): 948-957
    Miyama M, Shimizu H, Sugiyama M, et al. Sequencing and analysis of 14, 842 expressed sequence tags of burma mangrove, Bruguiera gymnorrhiza . Plant Sci, 2006, 171: 234-241
    Monk L S, Fagerstedt K V, Crawford R M M. Superoxide dismutase as anaerobic polypeptide. A key factor in recovery form oxygen deprivation in Iris pseudacorus. Plant Physiol. , 1987, 85: 1016-1020.
    Moon, G. J., Clough, B. F., Peterson, C. A. & Allaway, W. G. Apoplastic and symplastic pathways in Avicennia marina (Forsk.) Vierh. Roots revealed by fluorescent tracer dyes. Aust. J. Plant Physiol. 1986,13:637-648.
    Muthukumarasamy M, Gupta SD , Pannerselvam R. Enhancement of peroxidase , polyphenol oxidase and superoxide dismutase activity by triadimefon in NaCl stressed Paphanus sativus L. [J ] . Biol Plant , 2000,43 :317 -320.
    Naidoo, G. Effects of waterlogging and salinity on plant-water relations and on the accumulation of solutes in three mangrove species. Aquat. Bot. 1985,22, 133-143.
    Naidoo, G., Rogalla, H., Von-Willert, D.J. Gas exchange responses of a mangrove species, Avicennia marina, to waterlogged and drained conditions. Hydrobiologia ,1997. 352(0),39-47.
    Parida A K, DasA B, Mittra B. Effects of salt on growth,ion accumulation photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora [ J ]. Trees - Struct. Funct. , 2004,18:167 - 174.
    Parida AK, Das AB , Mohanty P. Defense potentials to NaCl in a mangrove , Bruguiera parviflora : Differential changes of isoforms of some antioxidative enzymes [J ] . Plant Physiol , , 2004b, 161 (5) : 531 -542.
    Parida AK, Das AB , Sanada Y, et al. Effects of salinity on biochemical components of the mangrove , Aegiceras corniculatum [ J ] .Aqua Bot , 2004c, 80 : 77 -87.
    Pezeshki S R , DeLaune R D , Patrick W H. Differential response of selected mangroves to soil flooding and salinity : Gas exchange and biomass partitioning. Can[J]. For. Res, 1990,20:869-874.
    Pezeshki S R, Delaune R D, Meeder J F. Carbon assimilation and biomass partitioning Avicennia germinans and Rhizophora mangle seedlings in response to soil redox conditions. Environ. Exp.Bot., 1997, 37: 161-171.
    Pezeshki S R, Delaune R D, Patrick W H Jr. Differential response of selected mangroves to soil flooding and salinity: gas exchanges and biomass partitioning. Can. J. For. Res. , 1989, 20, 869-874.
    Popp M, Larher F , Weigel P. Osmotic adaptation in Australian mangroves [J ] . Vegetatio , 1985,61 : 247 -254.
    Qiu D L, Lin P, Su J W. Relationship of leaf ultrastructure of mangrove Kandelia candel (L.) Druce to salt tolerance[J]. Journal of Forest Science,2005,51(10):476-480.
    Samuel C. Snedaker, Jane G. Snedaker (郑德璋,郑松发,廖宝文译).红树林生态系统研究方法.广州:广东科技出版社,1994.
    Scholander P F , Hammerl H T , Hemmingen E , et al . Salt balance in mangroves[J].Plant Physiol , 1962 , 37 :722-729.
    Scholander P F , Van DamL , Scholander S I. Gas exchange in the roots of mangroves Amer [J]. Bot, 1995 , 42 : 92-98.
    Scholander, P. F. How mangroves desalinate seawater. Physiologia Plantarum ,1968,21, 251-261.
    Smith T J. III, Effect of light and intertidal position on seedling survival and growth in tropical tidal forest. J.Exp.Mar.Biol.Ecol, 1987,110(2):133-146.
    Smith, J. A. C., Popp, M., Luttge, U., Cram, W. J., Diaz, M., Griffiths, H., Lee, H. S. J., Medina, E., Schafer, C., Stimmel, K.–H. & Thonke, B. Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela.Ⅵ. Water gelations and gas exchange of mangroves. New Phytol. 1989,111: 293-307.
    Stern, W. L., and Voigt, B. K. Effect of salt concentration on growth of red mangrove in culture. Botanical Gazette ,1959,121, 36-39.
    Stitt MR, Lilley MC. Adenine nucleatide levels in chloroplasts, cytosol and mitochondrin of wheat leaf protoplasts[J].Photosyn Res,1996, 47:1-11.
    Sugihara K, Hanagata N, Dubinsky Z, et al. Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the Mangrove Bruguiera gymnorrhiza . Plant Cell Physiol, 2000, 41: 1279-285
    Suzuki M, Hashioka A, Mimura T, et al. Salt stress and glycolytic regulation in suspension-cultured cells of the mangrove tree, Bruguiera sexangula. Physiologia Plantarum, 2005, 123(3):246-253.
    Suzuki M, Mimura T, Ashihara, H. Effect of short-term salt stress on the metabolic profiles of pyrimidine, purine and pyridine nucleotides in cultured cells of the mangrove tree, Bruguiera sexangula[J]. Physiologia Plantarum, 2006,128 (3):405-414.
    Takemura T, Hanagata N, Dubinsky Z, et al. Molecular characterization and response to salt stress of mRNAs encoding cytosolic Cu/Zn superoxide dismutase and catalase from Bruguiera gymnorrhiza . Trees, 2002, 16: 94-99
    Takemura T, Hanagata N, Sugihara K, et al. Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquat. Bot. , 2000, 68: 15-28.
    Teas, H. J. Silviculture with saline water. In: A. Hollaender, J. C. Aller, E. Epstein, A. San Pietro & O. R. Zaborsky (eds), The Biosaline Concept. An Approach to the Utilization of Underexploited Resources,1979: 117-161. Plenum Press, New Youk.
    Tomlinson P B. The botany of mangroves. Cambridge: Cambridge University Press, 1994. 1-419.
    Tomlinson PB. The Botany of Mangroves [M] . London : Cambridge University Press, 1986.
    Walsh, G. E. Mangroves: A review. In“Ecology of Halophytes”(R. J. Reimold and W. H. Queen, eds.), 1974, 51-174. Academic Press, New York.
    Wang W Q , Ke L , Tam N F Y, et al. Changes in the main osmotica during the development of Kandelia candel hypocotyls and after mature hypocotyla were transplanted in solutions with different salinities [J ] .Marine Biol , , 2002, 141 (6) : 1029 -1034
    Wang W Q, Ke L, Tam N F Y, et al. Change in the main osmotica during the development of Kandelis candel hypocotyls and after mature hypocotyls were transplanted in solutions with different salinities. Mar Biol, 2002, 141: 1029-1034
    Wang W Q, Wang M, Lin P. Seasonal changes in element contents in mangrove element retranslocation during leaf senescence[J]. Plant and Soil, 2003, 252: 187-193.
    Wang W Q, Zhang F S. The physiological and molecular mechanism of adaptation to anaerobiosis in higher plants. Plant Physiology Communications, 2001, 37,63-70.
    Watson,J.G.Mangrove forests of the Malay Peninsula. Singapore, Fraser and Neave,1928, (6):275.(Malayan Forest.Rec.)
    Wyn Jones, R. B., and Storey, R. Betaines. In“Physiology and Biochemistry of Drought Resistance in Plants”(L. G. Paleg and D. Aspinall, eds.), 1981: 171-204. Academic Press, Sydney.
    Yamada A, Saitoh T, Mimura T, et al. Expression of mangrove allene oxide cyclase enhances salt tolerance in Escherichia coli, yeast, and tobacco cells. Plant and Cell Physiology, 2002, 43(8):903-910.
    Yasseen B T, Abu-Al-Basal M A. Ecophysiology of Limonium axillare and Avicennia marina from the coastline of Arabian Gulf-Qatar[J].Journal of Coastal Conservation, 2008,12(1):35-42.
    Ye Y, Tam N F Y, Wong Y S, et al. Growth and physiological responses of two mangrove sepices (Bruguiera gymnorrihiza and Kandelia candel) to waterlogging. Environ. Exp. Bot. ,2003, 49: 209-221.
    Youssef T , Saenger P. Anatomical adaptive strategies to flooding and rhizophere oxidation in mangrove seedlings. Aust[J].Bot,1996,44,297-313.
    Zheng W J, Wang W Q, Lin P. Dynamics of element contents during the development of hypocotyls and leaves of certain mangrove species. J Exp Mar Biol Ecol, 1999, 233: 248-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700