气体再燃化学动力学分析及机理简化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤污染物NO_x的排放将严重危害人类的身体健康,污染环境。随着我国对NO_x排放控制要求的提高,有效地控制燃煤过程中NO_x排放已是一项十分紧迫的任务。在众多的NO_x排放控制技术中,再燃被认为是最经济和最有应用前景的技术之一。
     本文对气体燃料再燃技术的影响因素和反应动力学机理做了分析和研究。为了实现反应和流动的耦合计算,对规模较大的详细反应动力学机理进行了简化,得到符合要求的骨架简化机理。
     本文基于典型的气体再燃实验工况,借助化学动力学软件Chemkin4.1,对主要的还原性气体CH_4、CO、H_2及其混合的生物质热解气再燃还原NO特性进行了模拟研究,分析了不同再燃燃料、再燃反应温度、再燃燃料量和入口氧气浓度对NO脱除效率的影响。结果表明,CH_4具有NO最佳的还原效率,1350~1400K是相应的脱硝率较高的反应温度。在混合热解气中CH_4对NO的还原起到了关键作用,主要是因为CH_4分解产生CHi和NO反应成为消减NO的主要途径。运用敏感性分析方法得出各气体燃料再燃还原NO情形下的主要基元反应。通过和实验结果的对照,证实了SKG03详细化学反应动力学模型对气体再燃还原NO的模拟具有较好的适用性。
     因此本文在SKG03详细化学反应动力学机理的基础上,运用直接关系图法(DRG)对详细反应机理进行了骨架机理的简化,得到了一个由37种组分,218个反应组成的骨架反应机理。通过和实验结果的对照分析证实了骨架机理模型对模拟三种主要还原性气体再燃还原NO良好的适用性。并在此基础上分析了骨架机理中物质之间的耦合作用关系和碳氢基团之间的转化关系。然后把简化的骨架反应动力学机理作为反应动力学部分带入Fluent软件中进行耦合计算。对CH_4再燃过程进行计算,结果表明对NO还原的预测趋势和实验结果一致,随着温度的升高,NO的出口浓度减少,脱硝率增加。燃料和氧化剂在反应过程中混合充分,CH_4和O_2迅速反应被消耗。对于气相反应,在Fluent中带入详细的化学反应动力学机理计算,时间上可行,计算准确度有待于进一步地提高。为预测实际工程应用中加入异相反应的再燃脱硝性能奠定了基础。
NO_x emissions of pollutants from coal burning would seriously endangerhuman health, pollute the environment. Recently, China has specified more rigorouslimits for the NO_x emissions. Among the most recent developments for reducingNO_x emissions, reburning technology is considered to be one of the most promisingand cost-effective NO_x reduction strategies for coal combustion systems.
     The key influencing factors of the gaseous fuel reburning process and thereaction mechanism were analyzed and studied in this thesis. In order to achieve thecoupling of reaction and flow computing, the detailed reaction mechanism of largescale was reduced to the skeletal mechanism which meet the requirements of fluidcomputing.
     NO reburning process by the gaseous fuel of CH4、CO、H_2 and biomass pyrtedolysis gas was simulabased on the typical gas reburn experiments using chemicalkinetics software Chemkin4.1. The key influencing factors of reburning fuel type,reaction temperature, reburning fuel quantity and the inlet O_2 concentration werestudied. The research results indicate that, CH4 has the highest NO reductionefficiency compared to CO and H_2.The most appropriate temperature is 1350~1400Kfor CH4 as reburn fuel.CH4 has the most important effects on reducing NO in themixed prolysis gas because that the reactive radical CHi produced by thedecomposition of CH4 reacts with NO which is the major way to consume NO. Thekey elementary reactions of gaseous fuel reburning process were obtained withsensitivity method. Comparing to the experiment results, it confirmed the SKG03detailed chemical kinetic model has good applicability for the simulation of gasreburning NO reduction.
     Using the directed relation graph (DRG) method, a skeletal mechanism wasdeveloped from the SKG03 mechanism which contains 37 species and 218 reactions.The skeletal mechanism showed very good applicability for the simulation of thethree gases reburning NO compared to the detailed mechanism. The couplingrelationships between species and transforming relationships between hydrocarbonradicals in the mechanism were analyzed. The reduced skeletal mechanism wascoupled as the chemical model in the Fluent software. The CH4 reburn process hasbeen computed, the results showed that the Fluent simulation agree with theexperimental results on the forecast trends of NO reduction. The outlet NOconcentration decreased with the reaction temperature increased. The oxidizer andfuel mixed well.CH4 and O_2 reacted quickly and consumed in a short time. For thegas reaction, the calculations in Fluent coupled of detailed chemical kinetics are time possible. However the accuracy need to be further improved. It provided the basis ofpredicting the NO_x reburning performance in engineering applications addingheterogeneous reactions.
引文
1.中国电力企业联合会统计信息部.全国电力工业统计快报.北京: 2008
    2.刘孜,易斌,高晓晶,井鹏,岳涛,庄德安.我国火电行业氮氧化物排放现状及减排建议.环境保护,2008,402:7-10
    3.毕玉森.氮氧化物燃烧技术的状况.热力发电, 2002, 2: 2-9
    4.何华庆,朱跃,潘志强等. NOx燃烧技术综述.锅炉制造, 2000, NO.4: 34-38
    5.文军,许传凯.分级燃烧对NOx生成及燃烧经济性的影响.中国电力, 1997,30: 8-12
    6.高晋生,沈本贤.煤燃烧中NOx的来源和抑制其生成的有效措施.煤炭转化,1994, 3(17): 3-7
    7.毕玉森.我国电站锅炉低NOx燃烧器的应用状况及运行实绩.热力发电,1998, 1: 4-11
    8.张琳,张秀玲,代斌等.催化脱除大气污染物NOx研究进展.低温与特气,2000, 18: 7-10
    9.滕加伟,宋庆英,于岚等.催化法脱除NOx的研究进展.环境污染治理技术与设备, 2000, 1: 38-45
    10.钟秦.选择性非催化还原法脱除NOx的实验研究.南京理工大学学报,2000, 24: 68-71
    11.钟北京,傅维标.再燃过程中HCN对NOx还原的重要性.燃烧科学与技术,2000,6: 77-84
    12.刘振琪.三级燃烧降低NOx生成量试验.热力发电, 1999, 2: 27-30
    13. U. Greul, H. Rudiger, H. Spliethoff. NOx controlled combustion in a bench scaletest facility. Proceedings of the 21st technical conference on coal utilization &fuel systems, Clearwater. 1996: Florida, USA
    14. Dieter Stapf, Kai Ehrhardt, Wolfgang Leuckel. Modeling of NOx reduction byreburning. Chem. Eng. Technol., 1998, 21: 5~12
    15. Hartmut Spliethoff, Ulrich Greul, Helmut Rudiger, et al. Basic effects on NOxemissions in air staging and reburning at a bench-scale test facility. Fuel, 1996,75(5): 560-564
    16. D. R. Tree, A. W. Clark. Advanced reburning measurements of temperature andspecies in a pulverized coal flame. Fuel, 2000, 79(13): 1687-1695
    17. Maria U A, Peter Glarborg, Kim Dam-Johansen.Low temperature interactionsbetween hydrocarbons and nitric oxide: an experimental study. Combustion andFlame, 1997, 109(1): 25-36
    18.栾积毅,孙锐,路军锋,等.生物质再燃脱硝的试验研究.中国电机工程学报,2008, 28(14): 73-79
    19.苏胜.气体再燃降低氮氧化物排放的实验研究与数值模拟.华中科技大学博士学位论文. 2007: 39-41
    20. Fenimore, C.P.. Fromation of Nitric Oxide in Premixed Hydrocarbon Flames.The Combust. Institute, 1971: 373–380
    21. J.A. Miller, P. Glarborg,J. Wolfrum, H.-R.Volpp, R. Rannacher, J. Warnatz(Eds.). Experiments and Models 100 Years After Max Bodenstein, SpringerSeries in Chemical Physics, vol. 61.Springer, New York, 1996: 318–333
    22. Myerson, A.L.. The reduction of nitric oxide in simulated combustion effluentsby hydrocarbon-oxygen mixtures. Proc. Combust. Inst, 1981, 15(1): 1085–1092
    23. A.L. Myerson, F.R. Taylor, B.G. Faunce. Ignition limits and products of themultistage flames of propane-nitrogen dioxide mixtures. Proc. Combust. Inst.1957, 6 (1): 154–163
    24. J.O.L. Wendt, C.V. Sternling. Effect of ammonia in gaseous fuels on nitrogenoxide emissions. Journal of the Air Pollution Control Association, 1974, 24(11):1055-1058
    25. J. A. Miller, J. L. Durant, and P. Glarborg. Some Chemical Kinetics Issues inReburning: The Branching Fraction of the HCCO + NO Reaction. TheCombustion Institute, 1998: 235-243
    26. D. Stapf, W. Leuckel. Flow reactor studies and testing of comprehensivemechanisms for NOx reburning. Proc. Combust. Inst, 1996, 26(2): 2083–2090
    27. J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke and R.J. Kee. The Conversion of HCN to NO and N2 in H2-O2-HCN-Ar Flames at LowPressure. The Combustion Institute, 1985: 673-684
    28. J. A. Miller and C. T. Bowman. Mechanism and Modeling of Nitrogen Chemistryin Combustion. Prog. Energy Combust. Sci, 1989, 15( 4): 287-338
    29. Glarborg P, Alzueta M U, Dam-Johansen K, et al.Kinetic modeling ofhydrocarbon/nitric oxide interactions in a flow reactor.Combustion and Flame,1998(115): 1-27
    30. L. Prada and J. A. Miller. Reburning Using Several Hydrocarbon Fuels:A KineticModeling Study. Combust.Sci. Technol, 1998, 132: 225-250
    31. J. C. Hewson, M. Bollig,Rwth Aachen, Reduced Mechanisms for NOx EmissionFrom Hydrocarbon Diffusion Flames. The Combustion Institute, 1996:2171–2179
    32. Glarborg P, Alzueta MU, Dam-Johansen K, Miller JA. Kinetic modeling ofhydrocarbon/nitric oxide interactions in a flow reactor. Combust Flame 1998, 115:1–27
    33. C. J. Sung, C. K. Law, J.-Y. Chen, Augmented Reduced Mechanisms for NOEmission in Methane Oxidation. Combustion and Flame, 2001, 125: 906–919
    34. I. Giral, M.U. Alzueta, An augmented reduced mechanism for the reburningprocess. Fuel, 2002, 81: 2263–2275
    35. T. Mendiara, M. U. Alzueta, A. Millera and R. Bilbao. An Augmented ReducedMechanism for Methane Combustion. Energy & Fuels, 2004, 18: 619-627
    36. Eduardo Vilas, Ulrik Skifter, Anker Degn Jensen, Christian Lo′pez, Jo¨rg Maierand Peter Glarborg. Experimental and Modeling Study of Biomass Reburning.Energy & Fuels 2004, 18: 1442-1450
    37. Tianfeng Lu, Chung K. Law. A criterion based on computational singularperturbation for the identification of quasi steady state species: A reducedmechanism for methane oxidation with NO chemistry. Combustion and Flame,2008, 154: 761–774
    38. Terese Lφvas. Automatic generation of skeletal mechanisms for ignitioncombustion based on level of importance analysis. Combustion and Flame,2009, 156: 1348–1358
    39.孔文俊,张孝谦,周向阳. CH4/O2/N2预混、层流、稳态火焰反应机理分析.燃烧科学与技术, 1998, 4(2): 168-176
    40.栗工,高泰荫,陈中洲,胡宗杰,邓俊,于水.甲烷-空气燃烧过程中NOx生成机理和影响因素分析.燃烧科学与技术, 2005, 11(2): 142-148
    41.魏小林,韩小海, Uwe Schnell, Gunter, Scheffknecht, Benedetto Risio.煤粉燃烧中NOx和SOx生成的详细反应机理模拟.力学学报, 2008,40(6): 760-766
    42.孙绍增,钱琳,王志强,曹华丽,秦裕琨.温度及氧含量对煤气再燃还原NOx的影响,动力工程, 2008, 28(2): 265-269
    43.徐晓光,徐明厚,乔瑜.反应动力学机理简化的研究现状及进展.煤炭转化,2004, 27(4): 1-6
    44. Gear C W.常微分方程初值问题的数值解法.费景高,刘德贵,高永春译.北京:科学出版社, 1978
    45. Cukier R I, Schaibly J H, Shuler K E. Study of the sensitivity of coupled reactionsystems to uncertainties in rate coefficientsⅢ: Analysis of the approximation. JChem Phys, 1975, 63 (3): 1140-1149
    46. J Hwang, E P Dougherty, S Rabitz, et al. The Green’s function method ofsensitivity analysis in chemical kinetics. J Chem Phys, 1978, 69 (11): 5180-5191
    47. Dickinson R P,Gelinas R J. Sensitivity analysis of ordinary differentialequation systems-A direct method. J Com p Phys,1976,21 (2):123-143
    48. Lam S H,Goussis D A. The CSP method for simplifying kinetics.Inter.J.Chem.Kinet.,1994,26(4):461-468
    49. Massias A, Diamantis D, Mastorakos E,et al.An algorithm for the constructionof global reduced mechanisms with CSP data. Combust.Flame, 1999, 117(4):685-708
    50. Mass U, Pope S B. Implementation of simplified chemical kinetics based inintrinsic low-dimensional manifolds.24th Symp (Int.) on Combust.TheCombustion Institute, Pittsburgh, 1992: 103-112
    51. Mass U, Pope S B.Laminar flame calculations using simplified chemical kineticsbased on intrinsic low-dimensional manifolds. The Combustion Institute, 1994:1349-1356
    52. Pope S B.Computationally efficient implementation of combustion chemistryusing in situ adaptive tabulation.Combust.Theory and Modeling, 1997, 1(1):41-63
    53. H. Scott Fofler,李术元,朱建华.化学反应工程.化学工业出版社, 2005
    54. Kee R J, Rupley F M, Miller J A, et a1.Chemkin theroy manual.USA: ReactionDesign, 2006
    55..Kee R J, Rupley F M, Miller J A, et a1.Chemically reacting flow.Hoboken:John Wiley & Sons, 2003: 653-657
    56. Kee R J, Rupley F M, Miller J A. The chemkin thermodynamic database.Livermore: Sandia National Laboratories, 1991
    57.朱丙辰.化学反应工程.化学工业出版社, 1993
    58. J. A. Miller, C. T. Bowman. Mechanism and modeling of nitrogen chemistry incombustion. Progress in Energy and Combustion Science, 1989, 15: 287~338
    59. P. Dagaut, F. Lecomte, S. Chevailler, et al. Experimental and detailed kineticmodeling of nitric oxide reduction by natural gas blend in simulated reburningconditions. Combustion Science and Technology, 1998, 139(1): 329~363
    60. G. P. Smith, D. M. Golden, M. Frenklach, et al. GRI-Mech 3.0.http://www.me.berkeley. edu/gri_mech
    61. P. Glarborg, M. U. Alzueta, K. Dam-Johansen, et al. Kinetic modeling ofhydrocarbon/nitric oxide interactions in a flow reactor. Combustion and Flame,1998, 115(1): 1~27
    62. ?yvind Skreiberg, Pia Kilpinen, Peter Glarborg.Ammonia chemistry below 1400K under fuel-rich conditions in a flow reactor.Combustion and Flame, 2004(136):501-518
    63.乔瑜,徐明厚, Green W H.基于敏感性分析的H2/O2反应机制最优简化.中国电机工程学报, 2006, 26(4): 16-20
    64. Miller J A.Theory and modeling in combustion chemistry.Twentry-sixthSymposium (international) on Combustion Institute, Pittsburg, 1996: 461-480
    65. Maria U A, Peter Glarborg, Kim Dam-Johansen.Low temperature interactionsbetween hydrocarbons and nitric oxide: an experimental study.Combustion andFlame, 1997, 109(1): 25-36
    66. Glarborg P, Kristensen P G, Dam-Johansen K.Nitric oxide reduction bynon-hydrocarbon fuels.Implications for reduction with gasification gases. Energy&Fuels, 2000, 14(4): 828-838
    67. Kee R J, Rupley F M, Miller J A. The chemkin thermodynamic database.Livermore: Sandia National Laboratories, 1991
    68. Millera J A, Klippensteina S J, Glarborgb P.A Kinetic issue in reburning: the fateof HCNO. Combustion and Flame. 2003, 135(3): 357-362
    69. Frassoldati A, Faravelli T, Ranzi E.Kinetic modeling of the interactions betweenNO and hydrocarbons at high temperature.Combustion and Flame, 2003,135(1-2): 97-112
    70.钱琳.煤气再燃还原氮氧化物化学反应动力学的研究.哈尔滨工业大学硕士学位论文, 2007: 37-38
    71. Miller J A.Theory and modeling in combustion chemistry.Twentry-sixthSymposium (international) on Combustion Institute, Pittsburg, 1996: 461-480
    72. Diau E W G, Lin M C, He Y, et al.Theoretical aspects of H/N/O-chemistryrelevant to the thermal reduction of NO by H2. Progress in Energy andCombustion, 1995, 21(1): 1-23
    73. Jiyi Luan, Rui Sun, Shaohua Wu, et al.Experimental studies on reburning ofbiomasses for reducing NOx in a drop tube furnace.Energy & Fuels, 2009, 23(3):1412-1421
    74. Lu, T. F., Law, C. K. A directed relation graph method for mechanism reduction.In: 30th symposium (international) on combustion. The Combustion Institute,2005: 1333-1341
    75. Lu, T. F.,Law, C. K. Linear time reduction of large kinetic mechanisms withdirected relation graph: n-Heptane and iso-octane.Combust. Flame, 2006,144(1-2): 24-36
    76. Pepiot-Desjardins, P.; Pitsch, H. An efficient error-propagation-based reductionmethod for large chemical kinetic mechanisms. Combust. Flame, 2008, 154(1-2):67-81
    77. B. E. Launder, D. B. Spalding. Mathematical Models of Turbulence. London,Academic Press, 1972
    78.王福军编著.计算流体力学分析——CFD软件原理与应用.北京:清华大学出版社, 2004
    79. H. Zhou, A.D. Jensen, P. Glarborg, P.A. Jensen., A. Kavaliauskas. NumericalModeling of Straw Combustion in a Fixed Bed. Fuel, 2006, 84 (4): 389–403
    80. Brandon S. Brewster, L. Douglas Smoot, and Stephen H. Barthelson. ModelComparisons with Drop Tube Combustion Data for Various DevolatilizationSubmodels. Energy & Fuels, 1995, 9: 870-879

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700