生殖支原体MgPa模拟表位的筛选与鉴定及其MAP免疫效果的观察
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     生殖支原体(Mycoplasma genitalium, Mg)是近年新明确的一种性病病原体,研究表明,Mg可能引起泌尿生殖道感染,与盆腔炎、呼吸道感染、关节炎等疾病有关,并可导致不育。另外,Mg还是引起艾滋病患者发生机会感染的主要病原体之一,被称为AIDS相关支原体。
     对于Mg的感染,目前仍然没有满足临床需要的疫苗可供使用,临床上急需安全、有效的疫苗以用于预防Mg的感染。生殖支原体粘附素蛋白(MgPa)是位于其尖形结构的一种主要的粘附素,其C端具有很强的免疫原性(最强区位于第1248~1364aa)。因此,MgPa是一种重要的中和抗原,在Mg的诊断和预防中起着重要的作用。本研究拟利用噬菌体展示随机肽库技术筛选MgPa的模拟表位,采用多抗原肽(MAP)的设计方案,制备并纯化含有模拟表位的八分枝MAP,并对其免疫原性进行研究。
     研究目的
     表达并纯化含生殖支原体MgPa优势表位(1075~1364aa的重组蛋白(rMgPa),制备并纯化rMgPa的多克隆抗体(pAb),以此pAb为靶分子,利用噬菌体展示随机12肽库筛选并鉴定MgPa的模拟表位,为研究MgPa的抗原表位结构提供实验依据;制备含有多个模拟表位的多抗原肽(MAP),检测其诱导小鼠产生特异性体液免疫和细胞免疫应答水平,为研制安全、有效的基于多个抗原表位的Mg表位肽疫苗奠定实验基础。
     研究方法
     (1)利用构建好的原核表达载体PET-30a(+)/MgPa在大肠杆菌中诱导表达MgPa的重组蛋白,并用ELISA、SDA-PAGE和Western blot等方法对其进行鉴定,再用Ni-NAT亲和层析柱纯化重组蛋白,用BCA法测定重组蛋白的浓度。
     (2)将经纯化的重组蛋白免疫新西兰兔以制备其相应的pAb,用饱和硫酸铵法和溴化氰活化的琼脂糖4B亲和层析柱纯化pAb,用间接ELISA法检测免疫兔血清中pAb的效价,再用Western blot鉴定pAb的特异性和免疫原性。
     (3)以此pAb为靶分子对噬菌体展示随机12肽库进行4轮生物淘洗,随机挑取经淘洗后的噬菌体克隆进行扩增培养,提取并纯化其单链DNA进行DNA测序分析,推导出噬菌体表面展示的外源性氨基酸序列,并用MIMOX工具进行生物信息学分析。用ELISA、竞争性结合试验和Western blot等方法检测噬菌体与pAb结合的特异性。
     (4)以多聚赖氨酸为核心基质,人工合成含有筛选到的模拟表位的八分枝MAP,用反向高效液相色谱(RP-HPLC)分析MAP的纯度,再用质谱分析仪测定MAP的分子量以期对其进行鉴定。
     (5)将30只6~8周龄雌性BALB/c小鼠随机分为PBS组、WP组、AS组、KH组和混合组,将100L PBS或100g各种合成的MAP或其混合物分别经皮下多点注射免疫小鼠,共免疫4次,每间隔2w免疫1次。每次于免疫前1天剪尾取血,末次免疫后第14d摘眼球放血收集小鼠血清,无菌制备脾细胞悬液。
     (6)间接ELISA测定小鼠血清中的特异性IgG抗体及其亚类的水平;ELISA检测脾细胞培养上清中的IL-4和IFN-γ水平;MTT比色法检测小鼠脾淋巴细胞的增殖反应。
     研究结果
     (1)SDS-PAGE显示,IPTG诱导转化有PET-30a(+)/MgPa的大肠杆菌成功表达了一分子量约为37kD的含6×His的融合蛋白rMgPa,经Ni-NAT亲和纯化获得了较高纯度的目的蛋白,目的蛋白在菌体内主要以包涵体形式存在,BCA法测定经纯化的目的蛋白浓度达到1160μg/mL。
     (2)利用纯化的经复性后的rMgPa免疫新西兰兔后获得了相应的pAb,间接ELISA结果显示血清中特异性pAb的效价为1∶25600;Western blot的结果表明rMgPa能与免疫血清发生特异性结合;免疫血清经饱和硫酸铵法初步纯化,随后经亲和层析法纯化后得到具有较高纯度的抗rMgPa的pAb,SDS-PAGE分析的结果表明所制备的pAb的轻链分子量约为25kD,重链分子量约为50kD,因此,该pAb的分子量约为150kD。
     (3)以经纯化的抗rMgPa的pAb抗体为靶分子,对噬菌体展示随机12肽库进行了4轮生物淘洗,第一轮和第四轮生物淘洗的产率分别为1.45×10-6和9.25×10-4,说明特异性噬菌体克隆得到了明显富集;经对45种不同的肽序列进行比较分析以及用MIMOX进行生物信息学分析,结果表明45个肽序列中的3组一致性的核心序列分别为: P-S-A-A/V-X-R-F/W-E/S-L-S-P,A-K-I/L-T/Q-X-T-L-X-L和K-S-L-S-R-X-D-X-I。
     (4)ELISA实验的结果显示:45个含不同肽序列的噬菌体克隆中,共有36个为阳性噬菌体克隆,其中23个噬菌体克隆有较高的结合力,其A450值均高于1.5;竞争性结合试验的结果表明,这些噬菌体与pAb的特异性结合能被不同浓度的rMgPa部分抑制,且随着其浓度的增加其抑制效果也相应的增加;Western blot方法检测的结果表明A450值高于1.5的23个阳性噬菌体能与pAb发生特异性结合。
     (5)反向高效液相色谱分析的结果表明合成的3个MAP的纯度都在90%以上,质谱分析的结果说明所合成的MAP的分子量与预期的理论分子量基本一致,因此,成功地合成了较高纯度的3个模拟表位的MAP。
     (6)小鼠经4次免疫后,WP组、AS组、KH组和混合免疫组血清中IgG抗体的A450值分别为0.935±0.028、0.640±0.022、0.841±0.103和1.326±0.025,与PBS对照组(0.118±0.023)比较,均具有统计学意义(p<0.01);与WP组、AS组和KH组相比,混合免疫组小鼠血清中IgG抗体的A450值升高更为明显(p<0.05)。
     (7)WP组、AS组、KH组和混合免疫组的IgG抗体效价分别为1∶2560、1∶640、1∶2560和1∶5120。WP组、AS组、KH组和混合免疫组小鼠血清中的IgG抗体以IgG2a型为主,其相应的IgG2a/IgG1分别为1.835±0.125、1.708±0.180、1.690±0.202和2.095±0.179,均显著高于PBS组(0.967±0.142)(p<0.01)。
     (8)WP组、AS组、KH组和混合组的IL-4含量分别为55.588±2.407、42.996±1.935、54.754±2.270和81.598±2.649pg/mL,与PBS组(16.673±1.662)相比,具有统计学意义(p<0.01)。与WP、AS、KH组相比,混合组产生的IL-4水平具有显著性差异(p<0.01)。
     (9)WP组、AS组、KH组和混合免疫组的刺激指数(SI)分别为1.560±0.036、1.353±0.131、1.424±0.041和1.874±0.060,明显高于PBS组(1.107±0.032,p<0.01);混合免疫组的刺激指数(SI)显著高于WP组、AS组和KH组(p<0.01)。
     (10)WP组、AS组、KH组和混合免疫组的IFN-γ含量分别为168.496±7.919、98.327±5.030、111.437±5.243和235.815±8.430pg/mL,显著高于PBS组(31.476±1.717,p<0.01);且与WP组、AS组、KH组相比,混合免疫组的脾淋巴细胞产生了更多的IFN-γ(p<0.01),差异具有统计学意义。
     结论
     (1)成功表达并纯化了分子量为37kD的重组蛋白rMgPa;
     (2)成功制备并纯化了高效价、高特异性的兔抗rMgPa的pAb;
     (3)成功筛选到MgPa的3个可能的模拟表位:P-S-A-A/V-X-R-F/W-E/S-L-S-P,A-K-I/L-T/Q-X-T-L-X-L和K-S-L-S-R-X-D-X-I;
     (4)成功制备并纯化了3个模拟表位相应的MAP——WP、AS和KH;
     (5)WP、AS和KH均能刺激小鼠产生较强的体液免疫和细胞免疫应答,且混合免疫组诱导的免疫应答效果比单个MAP组更好。
Background
     Mycoplasma genitalium (M. genitalium) is a newly defined pathogen of causessexually transmitted diseases. M. genitalium has been well described as a pathogenwith acute and chronic nongonococcal urethritis (NGU), and may cause genital tractdiseases in women, such as bacterial vaginosis cervicitis, pelvic inflammatory disease(PID), endometritis and infertility. And M. genitalium can cause conjunctivitis andpneumonia for newborn by the mother`s genital tract infection during childbirth. M.genitalium is one of the main pathogens cause opportunistic infection for AIDSpatients, and a synergistic factor of human immunodeficiency virus (HIV), thus it isknown as the AIDS-associated mycoplasma.
     So far, there is still not available vaccine to meet the clinical needs. Thus clinicaldoctors are badly in need of safe, effective vaccines to prevent M. genitalium infection.M. genitalium adhesion protein (MgPa) is the major adhesion of M. genitalium andit`s C-terminal part (amino acid1248~1364) is the most immunogenic region. ThusMgPa plays an important role in the diagnosis and prevention of M. genitalium. Thisstudy aim to screen the mimic epitopes of MgPa by phage display random peptidelibrary, and prepare the eight branches MAP containing the mimic epitopes, and studythe immunogenicity of MAP.
     Objectives
     To express and purify the recombinant adhesion protein of M. genitalium (rMgPa)containing the dominant epitope (1075~1364aa), and prepare and purify the rabbit anti-rMgPa polyclonal antibody (pAb). A12-mer phage display peptide library wasscreened by using the purified pAb for target molecular in order to obtain theantigenic mimic epitopes of MgPa, and thus facilitate the understanding of theantigenic structure of MgPa. The multiple antigen peptides (MAP) containing themimic epitope were prepared, and the humoral and cellular immune response levelswere analyzed in MAP-immunized BALB/c mice, in order to provide the theoreticalbasis for the development of the safe, effective multi-epitope-baseded markervaccines to prevent M. genitalium infection.
     Methods
     (1)The recombinant prokaryotic expression plasmid was transformed into E.co1iRosettaTM2(DE3) to express the adhesion protein of M.genitalium. Therecombinant protein (rMgPa) was identified by ELISA, SDS-PAGE andWestern blot, and then purified by Ni-NAT immunoaffinity chromatography.The concentration of MgPa was analyzed by bicinchoninic acid method.
     (2) New Zealand Whites rabbits were immunized with the purified MgPa togenerate the corresponding polyclonal antibody. Polyclonal antibody wasinitially purified by saturated ammonium sulfate, and then affinitychromatography with CNBr-activated Sepharose4B coupled with recombinantprotein. The immune sera were characterized by ELISA and Western blotanalysis.
     (3)The purified pAb was used to target molecular to screen the immunodominantmimic epitopes of MgPa by using a random12-peptide phage display library.Phage clone were randomly selected and then the single chain DNA wereextracted and purified, DNA sequence analysis and computer-basedbioinformatics analysis were performed to define the consensus amino acidresidues of the mimotopes by MIMOX. The binding specificities of the selected phage-displayed peptides to the purified pAb were confirmed byELISA, competitive ELISA and Western blot analysis.
     (4)The eight branches MAP containing the screened mimic epitopes of MgPa wereprepared using poly-lysine as the core matrix. The purity of MAP was analyzedby reverse phase high performance liquid chromatography (RP-HPLC), andthen the molecular weights of MAP were characterizated by MassSpectrometry.
     (5)A total of30female BALB/c mice were randomly divided into5groups: GroupPBS, Group WP, Group AS, Group KH and Group mixed MAP. The miceswere inoculated intramuscularly with100g of MAP or100L of PBS attwo-week interval for four times. The sera of mice were collected and stored at-20℃in the day before every immunization or the day before execution. Themice spleen lymphocytes were separated for preparing the spleens cellssuspensions.
     (6)The specific IgG antibody and the subtype of IgG antibody in serum of theimmunized mice and. IFN-γ or IL-4levels in the cultured supernatant of spleenlymphocytes were detected by indirected ELISA. The proliferation responsesof the spleen lymphocyte were detected using MTT assay and delegated bystimulation index (SI).
     Results
     (1)The results of SDS-PAGE showed the recombinant protein containing6×His,with molecular weight of about37kD, was successfully expressed in E.co1iRosettaTM2(DE3). And the target protein in bacteria was mainly in the form ofinclusion bodies, the target protein with high purity were obtained by Ni-NATaffinity chromatography. The protein concentration reaches1160μg/mL byBCA method.
     (2)The corresponding polyclonal antibody were obtained by immunizing New Zealand rabbits with the purified and refolded rMgPa. The results of ELISAdemonstrated that the titer of pAb in serum is1∶25600. The results ofWestern blot showed that the polyclonal antibody has high specificity.SDS-PAGE analysis proved that the pAb in sera has high purity and themolecular weight of light chain of the prepared pAb was about25kD, and thatof heavy chain was approximately50kD, therefore, the molecular weight ofpAb about150kD.
     (3)After four rounds of biopanning to phage display random12peptide library, theyield ratios of the first and fourth round biopanning were1.45×10-6and9.25×10-4, respectively, which demonstrated the specific phages weresignificant enriched. The single-stranded DNA were successfully extractedfrom74phage clones and sequenced. The exogenous inserts from74phageclones distinguished45peptides sequences that can be divided into three groupsaccording to the different amino acid sequence. The results of bioinformaticsanalysis by MIMOX and comparative analysis for the45different peptidesequences revealed three different consistent core sequence wereP-S-A-A/V-X-R-F/W-E/S-L-S-P, A-K-I/L-T/Q-X-T-L-X-L andK-S-L-S-R-X-D-X-I.
     (4)Amongst45peptides, a total of36peptides were ELISA positive and theabsorbance values of23phage clones were higher than1.5,which demonstratedthe high reactivities with pAb. Competitive binding assay showed that thespecific binding between these phages and pAb could be partially inhibited bydifferent concentration of rMgPa, and the inhibitory effect was correspondinglyincreased when the concentration of rMgPa increased.23phage clones that theabsorbance values were higher than1.5could specifically bind with pAb.
     (5)The purity of three MAP were higher than90%by reverse phase highperformance liquid chromatography analysis. The results of MS analysis showed the molecular weight of MAP was basically consistent with theexpected theoretical molecular weight, which three MAP containing the mimicepitopes were successfully prepared.
     (6)The A450value of IgG antibody in the last immunized sera of group WP, AS,KHand mixed group were respectively0.935±0.028、0.640±0.022、0.841±0.103and1.326±0.025, which were significantly higher than that of PBS group(0.118±0.023)(p<0.01). And the A450value from mixed group was obviouslyhigher than those of group WP, AS and KH (p<0.05).
     (7)The titers of specific IgG antibody were1∶2560、1∶640,1∶2560, and1∶5120for group WP, AS, KH and mixed group, respectively. The IgG2a antibodywas mainly antibody in the mice sera of Group WP, AS, KH and mixed group,and the corresponding ratios IgG2a/IgG1were respectively1.835±0.125,1.708±0.180,1.690±0.202and2.095±0.179, which were significantly higherthan that of PBS group (0.967±0.142,p<0.01).
     (8)The contents of IL-4in the supernatant of the cultured spleen lymphocyte ofGroup WP, AS, KH and mixed group were respectively55.588±2.407,42.996±1.935,54.754±2.270and81.598±2.649pg/mL, which were higher thanthat of Group PBS(16.673±1.662)(p<0.01). And the IL-4level of mixed grouphas significantly difference from those of group WP, AS and KH (p<0.01).
     (9)The stimulation indexs (SI) of the spleen lymphocyte from Group WP, AS, KHand mixed group were higher than that of Group PBS (1.107±0.032,p<0.01).And the SI of the mixed group was higher than those of other groups (p<0.01).
     (10)The contents of IFN-γ in the supernatant of the cultured spleen lymphocyte ofGroup WP, AS, KH and mixed group were significantly higher than that ofGroup PBS (31.476±1.717),(p<0.01). Meanwhile, the contents of IFN-γ fromthe mixed group was obviously higher than that those of other groups (p<0.01).
     Conclusion
     (1)The rMgPa with molecular weight of about37kD was successfully expressed inE.co1i RosettaTM2(DE3) and purified by by Ni-NAT affinity chromatography.
     (2)The rabbit anti-rMgPa pAb that had high titer and specificity was successfullyprepared and purified by affinity chromatography.
     (3)The mimic epitopes of MgPa were successfully screened and identified by phagedisplay peptide library and the motif P-S-A-A/V-X-R-F/W-E/S-L-S-P,A-K-I/L-T/Q-X-T-L-X-L and K-S-L-S-R-X-D-X-I may represent theimmunodominant mimic epitopes of MgPa.
     (4)The three corresponding MAP (WP, AS and KH) containing the three mimicepitopes were successfully prepared, identificated and purified.
     (5)The WP, AS and KH could induce strong specific cellular immune and humoralimmune response. And the competence of mixed group was stronger than thatof the Group WP, AS and KH.
引文
[1] Tully JG, Taylor-Robinson D, Cole RM, et al. A newly discovered mycoplasma inthe human urogenital tract[J]. Lancet,1981,1(6):1288-1291.
    [2] Manhas A, Sethi S, Sharma M, et al. Association of genital mycoplasmasincluding Mycoplasma genitalium in HIV infected men with nongonococcalurethritis attending STD&HIV clinics[J]. Indian J Med Res,2009,129(3):305-310.
    [3] Jensen JS. Mycoplasma genitalium: the aetiological agent of urethritis and othersexually transmitted diseases[J]. J Eur Acad Dermatol Venereol,2004,18(1):1–11.
    [4] Bjartling C, Osser S, Persson K. Mycoplasma genitalium in cervicitis and pelvicinflammatory disease among women at a gynecologic outpatient service [J]. Am JObstet Gynecol,2012,206(6):476.e1-8.
    [5] Simms I, Eastick K, Mallinson H, et al. Associations between Mycoplasmagenitalium, Chlamydia trachomatis, and pelvic inflammatory disease[J]. SexTransm Infect,2003,79(2):154-156.
    [6] Patel KK, Salva PS, Webley WC. Colonization of paediatric lower respiratorytract with genital Mycoplasma species. Respirology,2011,16(7):1081-1087.
    [7] Mavedzenge SN, Van Der Pol B, et al. The association between Mycoplasmagenitalium and HIV-1acquisition in African women [J]. AIDS,2012,26(5):617-624.
    [8] Vergara-Alert J, Argilaguet JM, Busquets N,et al.Conserved synthetic peptidesfrom the hemagglutinin of influenza viruses induce broad humoral and T-cellresponses in a pig model[J]. PLoS One,2012,7(7):e40524.
    [9] Hashimoto C, Nomura W, Ohya A, et al. Evaluation of a synthetic C34trimer ofHIV-1gp41as AIDS vaccines [J]. Bioorg Med Chem,2012,20(10):3287-3291.
    [10] Tan CW, Chan YF, Sim KM, et al. Inhibition of enterovirus71(EV-71)infections by a novel antiviral peptide derived from EV-71capsid protein VP1[J].PLoS One,2012,7(5):e34589.
    [11] Melief CJ.Treatment of established lesions caused by high-risk humanpapilloma virus using a synthetic vaccine[J]. J Immunother,2012,35(3):215-216.
    [12]Baseman JB.The cytadhesins of Mycoplasma pneumoniae and M. genitalium [J].Subcell Biochem.1993,20:243-59.
    [13] You X, Wu Y, Zeng Y, et al. Mycoplasma genitalium-derived lipid-associatedmembrane proteins induce activation of MAPKs, NF-kappaB and AP-1in THP-1cells[J]. FEMS Immunol Med Microbiol,2008,52(2):228-236.
    [14] Baseman JB, Reddy SP, Dallo SF. Interplay between mycoplasma surfaceproteins, airway cells, and the protean manifestations of mycoplasma-mediatedhuman infections [J]. Am J Respir Crit Care Med,1996,154(4Pt2):137-144.
    [15] Svenstrup HF, Nielsen PK, Drasbek M, et al. Adhesion and inhibition assay ofMycoplasma genitalium and M. pneumoniae by immunofluorescencemicroscopy[J]. J Med Microbiol,2002,51(5):361-73.
    [16] Opitz O, Jacobs E. Adherence epitopes of Mycoplasma genitalium adhesin[J]. JGen Microbiol,1992,138(9):1785-1790.
    [17] Fraser CM, Gocayne JD, White O, et al.The minimal gene complement ofMycoplasma genitalium [J]. Science,1995,270(5235):397-403.
    [18] Inamine JM, Loechel S, Collier AM, et al. Nucleotide sequence of the MgPa(mgp) operon of Mycoplasma genitalium and comparison to the P1(mpp) operonof Mycoplasma pneumoniae [J]. Gene,1989,82(2):259-267.
    [19] Mernaugh GR, Dallo SF, Holt SC, et al. Properties of adhering and nonadheringpopulations of Mycoplasma genitalium[J]. Clin Infect Dis,1993,17(Suppl.1):S69-S78.
    [20] Mader B, Hu PC, Huang CH, et al.The mature MgPa-adhesin of Mycoplasmagenitalium [J]. Zentralbl Bakteriol,1991,274(4):507-513.
    [21] Burgos R, Pich OQ, Ferrer-Navarro M, et al. Mycoplasma genitalium P140andP110cytadhesins are reciprocally stabilized and required for cell adhesion andterminal-organelle development[J]. J Bacteriol,2006,188(24):8627-8637.
    [22] Svenstrup HF, Jensen JS, Gevaert K, et al. Identification and characterization ofimmunogenic proteins of mycoplasma genitalium[J]. Clin Vaccine Immunol,2006,13(8):913-922.
    [23] Clausen HF, Fedder J, Drasbek M, et al. Serological investigation ofMycoplasma genitalium in infertile women[J]. Hum Reprod,2001,16(9):1866-1874.
    [24] Iverson-Cabral SL, Astete SG, Cohen CR, et al. mgpB and mgpC sequencediversity in Mycoplasma genitalium is generated by segmental reciprocalrecombination with repetitive chromosomal sequences[J]. Mol Microbiol,2007,66(1):55-73.
    [25] Ma L, Jensen JS, Mancuso M, et al. Variability of trinucleotide tandem repeats inthe MgPa operon and its repetitive chromosomal elements in Mycoplasmagenitalium[J]. J Med Microbiol,2012,61(Pt2):191-197.
    [26]吴玉章,朱锡华.对表位生物学研究的认识和体会[J].上海免疫学杂志,1998,18(1):12.
    [27] Wang Y, Whittall T, McGowan E, et al. Identification of stimulating andinhibitory epitopes within the heat shock protein70molecule that modulatecytokine production and maturation of dendritic cells[J]. J Immunol,2005,174(6):33063316.
    [28] Goletti D, Carrara S, Vincenti D, et al. Accuracy of an immune diagnostic assaybased on RD1selected epitopes for active Tuberculosis in a clinical setting: a pilotstudy [J]. Clin Microbiol Infect,2006,12(6):544550.
    [29] Wu Y, Zhu X. A new approach for B-cell epitope prediction in viral protein [J].Chinese Science Bulletin,1995,40(9):761-763.
    [30] Wang X, Zhang L, Su C, et al. The nature and combination of subunits used inepitope based Schistosoma japonicum vaccine formulations affect their efficacy[J]. Parasit Vectors,2010,3:109.
    [31] Tam JP, Zavala F. Multiple antigen peptide: a novel approach to increasedetection sensitivity of synthetic peptides in solid-phase immunoassays [J]. JImmunol Methods,1989,124(1):53-61.
    [32] Zhao G, Sun S, Du L, et al. An H5N1M2e-based multiple antigenic peptidevaccine confers heterosubtypic protection from lethal infection with pandemic2009H1N1virus[J]. Virol J,2010,7:151.
    [33] Lin S, Arcangel P, Medina-Selby A, et al. Design of novel conformational andgenotype-specific antigens for improving sensitivity of immunoassays forHepatitis C virus-specific antibodies[J]. J Clin Microbiol,2005,43(8):3917-3924.
    [34] Cruz LJ, Cabrales A, Iglesias E et al. Enhanced immunogenicity andcross-reactivity of HIV-1V3-peptide and multiple antigen peptides conjugated todistinct carrier proteins[J]. Int Immunopharmacol,2009,9(12):1452-1459.
    [35] Smith GP. Filamentous fusion phage: novel expression vectors that displaycloned antigens on the virion surface [J]. Science,1985,228(4705):1315-1317.
    [36] Schirrmann T, Meyer T, Schütte M, et al. Phage display for the generation ofantibodies for proteome research, diagnostics and therapy[J].Molecules,2011,16(1):412-426.
    [37] Takakusagi Y, Takakusagi K, Sugawara F, et al. Use of phage display technologyfor the determination of the targets for small-molecule therapeutics[J]. ExpertOpin Drug Discov,2010,5(4):361-389.
    [38] Bratkovic T. Progress in phage display: evolution of the technique and itsapplication[J]. Cell Mol Life Sci,2010,67(5):749-767.
    [39] Naseem S, Meens J, Jores J, et al. Phage display-based identification andpotential diagnostic application of novel antigens from Mycoplasma mycoidessubsp. mycoides small colony type[J].Vet Microbiol,2010,142(3-4):285-292.
    [40] Li W, Caberoy NB. New perspective for phage display as an efficient andversatile technology of functional proteomics[J]. Appl Microbiol Biotechnol,2010,85:909-919.
    [41] Wang LF, Yu M. Epitope identification and discovery using phage displaylibraries: applications in vaccine development and diagnostics [J].Curr DrugTargets,2004,5(1):1-15.
    [42] Scott JK, Smith GP. Searching for peptide ligands with an epitope library[J].Science,1990,249(1):386-390.
    [43] Wilkinson RA, Evans JR, Jacobs JM, et al. Peptides selected from a phagedisplay library with an HIV-neutralizing antibody elicit antibodies to HIV gp120in rabbits, but not to the same epitope [J]. AIDS Res Hum Retroviruses,2007,23(11):1416-1427.
    [44] El-Attar LM, Partidos CD, Howard CR et al. A peptide mimotope of Hepatitis Cvirus E2protein is immunogenic in mice and block human anti-HCV sera[J]. JMed Virol,2010,82(10):1655-1665.
    [45] Sun EC, Zhao J, Yang T, et al. Identification of a conserved JEV serocomplexB-cell epitope by screening a phage–display peptide library with a mAbgenerated against West Nile virus capsid protein[J]. Virol J,2011,8:100.
    [46] Kügler J, Nieswandt S, Gerlach GF, et al. Identification of immunogenicpolypeptides from a Mycoplasma hyopneumoniae genome library by phagedisplay[J]. Appl Microbiol Biotechnol,2008,80(3):447-458.
    [47] Beghetto E, De Paolis F, Montagnani F, et al. Discovery of new Mycoplasmapneumoniae antigens by use of a whole-genome lambda display library[J].Microbes Infect,2009,11(1):66-73.
    [48] Beghetto E, Gargano N, Ricci S, et al. Discovery of novel Streptococcuspneumoniae antigens by screening a whole-genome lambda-display library[J].FEMS Microbiol Lett,2006,262(1):14-21.
    [49] Li Y, Ning YS, Wang YD, et al. Production of mouse monoclonal antibodiesagainst Helicobacter pylori Lpp20and mapping the antigenic epitope by phagedisplay library[J]. J Immunol Methods,2007,325(1-2):1-8.
    [50] Fan H, Wang Y, Tang F, et al.Determination of the mimic epitope of the M-likeprotein adhesin in swine Streptococcus equi subsp. zooepidemicus[J]. BMCMicrobiol,2008,8:170.
    [51]金亮亮,刘艳,李维娜,等.应用噬菌体展示技术筛选人树突状细胞的特异结合分子[J].细胞与分子免疫学杂志,2011,27(4):467-469.
    [52]唐正宇,吴移谋,余敏君,等.生殖支原体MgPa原核载体的构建[J].医学临床研究,2008,25(6):1042-1043.
    [53] J萨姆布鲁克, D.W.拉塞尔.分子克隆实验指南[M].第三版.北京:科学出版社,2002.
    [54]颜子颖,王海林编译.精编分子生物学实验指南[M].北京:科学出版社,2001.
    [55]李敬华,柳明波,马彦,等.重组人促甲状腺激素β亚基的切胶纯化及多克隆抗体制备[J].中国免疫学杂志,2010,26(5):428-431.
    [56]李骅,胡嘉,李艳君,等.人LC3蛋白在大肠杆菌中的表达纯化及其抗体的制备与鉴定[J].细胞与分子免疫学杂志,2012,28(5):517-523.
    [57]吴移谋,叶元康.支原体学(第2版)[M].北京:人民卫生出版社,2008.
    [58] de Groot NS, Sabate R, Ventura S. Amyloids in bacterial inclusion bodies[J].Trends Biochem Sci,2009,34(8):408-416.
    [59] Wang LF, Yu M. Epitope identification and discovery using phage displaylibraries: applications in vaccine development and diagnostics.Curr Drug Targets,2004,5(1):1-15.
    [60] Adda CG, Anders RF, Tilley L, et al. Random sequence libraries displayed onphage: Identification of biologically important molecules[J]. Comb Chem HighThroughput Screen,2002,5(1):1-14.
    [61] Folgori A, Tafi R, Meola A, et al. A general strategy to identify mimotopes ofpathological antigens using only random peptide libraries and human sera [J].EMBO J.1994,13(9):2236-2243.
    [62] Wang JJ, Liu Y, Zheng Y, et al. Screening peptides binding specifically tocolorectal cancer cells from a phage random peptide library[J]. Asian Pac J CancerPrev,2012,13(1):377-381.
    [63] Huang J, Gutteridge A, Honda W, et al. MIMOX: a web tool for phage displaybased epitope mapping[J]. BMC Bioinformatics,2006,7:451.
    [64] Galfrè G, Monaci P, Nicosia A, et al. Immunization with phage-displayedmimotopes[J]. Methods Enzymol,1996,267:109-115.
    [65] Szardenings, M. Phage display of random peptide libraries: Applications, limits,and potential [J]. J Recept Signal Transduct Res,2003,23(4):307-349.
    [66] Zhang L, Yin G, Yan,. D, et al. In vitro screening of ovarian tumor specificpeptides from a phage display peptide library [J]. Biotechnol Lett,2011,33(9):1729-1735.
    [67] Yang, L, Jiang, H, Shi B, et al. Identification and characterization of Ch806mimotopes[J]. Cancer Immunol Immunother,2010,59(10):1481-1487.
    [68] Irving MB, Pan O, and Scott JK. Random-peptide libraries and antigen-fragmentlibraries for epitope mapping and the development of vaccines and diagnostics [J].Curr opin chem boil,2001,5(3):314-324.
    [69]杨华,冯勤,徐慧玉,等.应用噬菌体肽库技术获得与猪鼻支原体蛋白P37结合的多肽序列[J].生物医学工程学杂志,2011,28(6):1165-1169.
    [70]万涛,孙涛,吴加金.蛋白质顺序性抗原决定族多参数综合预测.中国免疫学杂志,1997;13:329-333.
    [71] Geysen HM, Barteling SJ, Meloen RH. Small peptides induce antibodies with asequence and structural requirement for binding antigen comparable to antibodiesraised against the native protein[J]. Proc Natl Acad Sci USA,1985,82(1):178-82.
    [72] Loffet A. Synthesis of a pentapeptide by the Merrifield method [J]. Experientia,1967,23(5):406-407.
    [73] Wang Y, Tian HJ, Qin L, et al. Three candidate peptide-vaccines in combinationto induce high levels of multiantibodies against HIV-1[J]. Tsinghua Sci Technol,2001,3:260-264.
    [74] Balasuriya UB, Maclaehlan NJ, Devries AA, et al. Identification ofaneutralization site in the major envelope glycoprotein (GL) of equine arteritisvirus [J].Virology,1995,207(2):518-527.
    [75] Boris T,Shmuel C, Meir W.The epitopes for natural polyreactive antibodies arerich in proline[J]. lmmunolo,1997,94:6335-6339.
    [76] WuYZ,WanY,Bian J,et al. Phage display particles expressing tumor-specificantigens induce preventive and therapeutic anti-tumor immunity in murine p815model [J].Int J cancer,2002,98:748-753.
    [77] Ertl HC, Xiang Z. Novel vaccine approaches [J]. J Immunol,1996,156(10):3579-3582.
    [78]吴玉章,刘茂昌,贾正才,等. HBV新型免疫原的设计、合成及免疫原性研究[J].第三军医大学学报,2000,22(10):919-923.
    [79] Wu YZ, Zhu XH. A new approach for B cell epitope prediction in viral proteins[J]. Chin Sci Bull,1995,40(9):761-767.
    [80] Chen J, Wang Y, Guo D, et al. A systems biology perspective on rational designof peptide vaccine against virus infections[J]. Curr Top Med Chem,2012,12(12):1310-1319.
    [81] Pashov A, Canziani G, Monzavi-Karbassi B, et al. Antigenic properties ofpeptide mimotopes of HIV-1-associated carbohydrate antigens[J].J Biol Chem,2005,280(32):28959-65.
    [82] Wolf AI, Mozdzanowska K, Williams KL, et al. Vaccination with M2e-basedmultiple antigenic peptides: characterization of the B cell response and protectionefficacy in inbred and outbred mice[J]. PLoS One,2011,6(12):e28445.
    [83] Gómara MJ, Fernández L, Pérez T, et al. Assessment of synthetic chimericmultiple antigenic peptides for diagnosis of GB virus C infection[J].2010,396(1):51-58.
    [84] Lin S, Arcangel P, Medina-Selby A, et al. Design of novel conformational andgenotype-specific antigens for improving sensitivity of immunoassays forhepatitis C virus-specific antibodies[J]. J Clin Microbiol,2005,43(8):3917-3924.
    [85] Amexis G, Young NS. Multiple antigenic peptides as vaccine platform for theinduction of humoral responses against dengue-2virus [J]. Viral Immunol,2007,20(4):657-663.
    [86] Snapper CM,Mond JJ. Towards a comprehensive view of immunoglobulin classswitching [J]. Imunol Today,1993,14(l):15-17.
    1. Smith GP. Filamentous fusion phage: novel expressi on vectors that display clonedantigens on the virion surface [J]. Science,1985,228(4705):1315-1317.
    2. Scott JK, Smith GP. Searching for peptide ligands with an epitope library[J].Science,1990,249(1):386-390.
    3. Zaman GJ, Kaan AM, Schoenmakers GJ, et al. Gene V protein-mediatedtranslational regulation of the synthesis of gene Ⅱprotein of the filamentousbacteriophage M13: A dispensable function of the filamentous-phage genome [J].Bacteriol,1992,174(2):595-600.
    4.刘志刚,俞炜源.工程抗体的体外成熟[J].生物技术通讯,2002,13(1):50-53.
    5.刘志刚,俞炜源.林建波.新型噬菌体表面呈现载体的构建[J].生物技术通讯,2002,13(1):11-13.
    6. Sidhu SS. Phage display in pharmaceutical biotechnology [J]. Curr OpinBiotechnol,2000,(6):610-616.
    7. Kalie E, Jaitin DA, Abramovich R, et al. An IFN alpha-mutant optimized byphage display for IFN ARI binding confers specifically enhanced antitumoractivities [J]. J BiolCh em,2007,274(1-2):233-244.
    8. Kalnina Z. Evaluation of T7and lambda phage display systems for survey ofautoantibody profiles in cancer patients [J]. J Immunol Methods,2008,24(1):1-10.
    9.吴健敏,任兆钧,余兴龙,等.利用T4噬菌体展示猪瘟病毒E2抗原[J].中国生物工程杂志,2004,24(11):61-64.
    10.李晓慧,唐亮,刘岽,等.异种血管内皮生长因子基因重组T7噬菌体疫苗对小鼠Lew is肺癌的抑制作用[J].癌症,2006,25(10):1221-1226.
    11. Maruyama IN, Maruyama HI, Brenner SLambda foo: a lambda phage vector forthe expression of foreign proteins [J].1994,91(17):8273-8277.
    12. Lowman HB. Phage display of peptide libraries on protein scaffolds [J]. Methmolbio,1998,87:249.
    13.秦思远,董关木.噬菌体展示抗体库技术的研究进展[J].中国生物制品学杂志,2009,(2):201-204.
    14. Li W, Caberoy NB. New perspective for phage display as an efficient andversatile technology of functional proteomics [J]. Appl Microbiol Biotechnol,2010,85:909-919.
    15. Inamine JM, Loechel S, Collier AM, et al. Nucleotide sequence of the MgPa (mgp)operon of Mycoplasma genitalium and comparison to the P1(mpp) operon ofMycoplasma pneumoniae [J]. Gene,1989,82(2):259-267.
    16. Wilkinson RA, Evans JR, Jacobs JM, et al. Peptides selected from a phage displaylibrary with an HIV-neutralizing antibody elicit antibodies to HIV gp120inrabbits, but not to the same epitope [J]. AIDS Res Hum Retroviruses,2007,23(11):1416-1427.
    17. Rechkina EA, Denisova GF, Masalova OV, et al. Epitope mapping of antigenicdeterminants of hepatitis C virus proteins by phage display [J]. Mol Biol (Mosk),2006,40(2):357-368.
    18. Sun EC, Zhao J, Yang T, et al. Identification of a conserved JEV serocomplexB-cell epitope by screening a phage–display peptide library with a mAbgenerated against West Nile virus capsid protein [J]. Virol J,2011,8:100.
    19. Kügler J, Nieswandt S, Gerlach GF, et al. Identification of immunogenicpolypeptides from a Mycoplasma hyopneumoniae genome library by phagedisplay [J]. Appl Microbiol Biotechnol,2008,80(3):447-458.
    20. Beghetto E, De Paolis F, Montagnani F, et al. Discovery of new Mycoplasmapneumoniae antigens by use of a whole-genome lambda display library [J].Microbes Infect,2009,11(1):66-73.
    21. Beghetto E, Gargano N, Ricci S, et al. Discovery of novel Streptococcuspneumoniae antigens by screening a whole-genome lambda-display library [J].FEMS Microbiol Lett,2006,262(1):14-21.
    22. Li Y, Ning YS, Wang YD, et al. Production of mouse monoclonal antibodiesagainst Helicobacter pylori Lpp20and mapping the antigenic epitope by phagedisplay library[J]. J Immunol Methods,2007,325(1-2):1-8.
    23. Fan H, Wang Y, Tang F, et al. Determination of the mimic epitope of the M-likeprotein adhesin in swine Streptococcus equi subsp. zooepidemicus [J]. BMCMicrobiol,2008,8:170.[24]金亮亮,刘艳,李维娜,等.应用噬菌体展示技术筛选人树突状细胞的特异结合分子[J].细胞与分子免疫学杂志,2011,27(4):467-469.
    25. Romanov VI. Phage display selection and evaluat ion of cancer drug targets [J].Curr Cancer Drug Targets,2003,3(2):119-129.
    26. Goletti D, Carrara S, Vincenti D, et al. Accuracy of an immune diagnostic assaybased on RD1selected epitopes for active tuberculosis in a clinical setting: a pilotstudy [J]. Clin Microbiol Infect,2006,12(6):544550.
    27. Naseem S, Meens J, Jores J, et al. Phage display-based identification and potentialdiagnostic application of novel antigens from Mycoplasma mycoides subsp.mycoides small colony type [J].Vet Microbiol,2010,142(3-4):285-292.
    28. Santos EM, Cardoso R, Souza GR, Selection of peptides for serological detectionof equine infectious anemia. Genet Mol Res [J].2012,11(3):2182-2199.
    29. Machold KP, Smolen J S. Adalim umab-a new TNF-alpha antibody for treatmentof inflammatory joint disease [J]. Expert Opin Biol Ther,2003,3(2):351-360.
    30. Weetman AP. Autoimmune thyroid disease: propagation and progression [J]. EurJ E ndocrinol,2003,148(1):1-9.
    31. Cutler CS, Chanda N, Shukla R, et al. Nanoparticles and phage display selectedpeptides for imaging and therapy of cancer [J].Recent Results Cancer Res.2012,194:133-47.
    32. Samoylova TI, Norris MD, Samoylov AM, Infective and inactivated filamentousphage as carriers for immunogenic peptides [J]. J Virol Methods,2012,183(1):63-68.
    33. Kolly R, Thiel MA, Herrmann T, et al. Monovalent antibody scFv fragmentsselected to m-odulate T-cell activation by inhibition of CD86-CD28interaction[J]. Protein Eng Des Se1,2007,20(2):91-98.
    34. Beenhouner DO, May RJ, Valadon P, et al. High affinity mimotope of thepolysaccharide capsule of Cryptococcusne of or mans identified from anevolutionary phage peptide library [J]. J Immunol,2002,169(12):6992-6999.
    35. Charles-Ni o C, Pedroza-Roldan C, Viveros M,et al.Variable epitope libraries:new vaccine immunogens capable of inducing broad human immunodeficiencyvirus type1-neutralizing antibody response [J].Vaccine.2011,29(32):5313-5321.
    36.陈鹤,陈福,赵悦.利用噬菌体肽库进行抗原中和位点的鉴定[J].哈尔滨医科大学学报,2000,34(4):246-248.
    37. Azzazy HM, Highsmith WE. Phage display technology: clinical applications andrecent innovations [J]. Clin Biochem,2002,35(6):425-445.
    39. Pini A, Ricci C, Bracci L. Phage display of antibody fragments [J]. Curr ProteinPept Sci,2000,1(2):155-169.
    39. Brekke OH, Loset GA. New technologies in therapeutic antibody development [J].Curr Opin Pharmacol,2003,3(5):544-550.
    40. Mc Cafferty. Phage antibodies: filamentous phage displaying antibody variabledomains [J]. Nature,1990,348(6301):552-554.
    41. Lillo AM, Ayriss JE, Shou Y, et al. Development of phage-based single chain Fvantibody reagents for detection of Yersinia pestis [J]. PLOS One,2011,6(12):e27756.
    42. Lun YZ, Cheng J, Zhong YW, et al. Cloning, expression and identification byimmunohistochemistry of humanized single-chain variable fragment antibodyagainst Hepatitis C virus core protein [J]. Pol J Microbiol,2011,60(1):13-17.
    43. Gabbard J, Velappan N, Di Niro R, et al. A humanized anti-M2scFv showsprotective in vitro activity against influenza [J]. Protein Eng Des Sel,2009,22(3):189-198.
    44. Aavula SM, Nimmagadda SV, Biradhar N, et al. Generation and Characterizationof an scFv Directed against Site II of rabies glycoprotein [J]. Biotechnol Res Int,2011,2011:652147.
    45. Zitzmann S, Mier W, Schad A, et al. A new prostate carcinoma binding peptide(DUP-1) for tumor imaging and therapy [J]. Clin Can cer Res,2005,11(1):139-
    146.
    46. Sarkis PT, Han T, Pudney J, et al. Anti-gp120Minibody Gene Transfer to FemaleGenital Epithelial Cells Protects against HIV-1Virus Challenge In Vitro[J]. PLoSOne,2011,6(10): e26473.
    47. Agell N, Aligue R, Alemany V, et al. New nuclear functions for calmodulin [J].Cell Calcium,1998,23(2-3):115-121.
    48. Wu J,Ma QN,Lam KS,et al.Biochemistry,1994,33(49):14825-14833.
    49. Falke D, Juliano RL. Selective gene regulation with designed transcription factors:implications for therapy [J]. Curr Opin Mol Ther,2003,5(2):161-166.
    50. Deocharan B, Qing X, Beger E, et al. Antigenic triggers and molecular targets foranti-double-stranded DNA antibody[J]. Lupus,2002,11(12):865-871.
    51. Hyde-Deruyscher R, Paige LA, Christensen DJ, et al. Detection of small-moleculeenzyme inhibitors with peptides isolated from phage-displayed combinatorialpeptide libraries [J]. Chem Biol.2000,7(1):17-25.
    52. Bai Y, Feng H. Selection of stably folded proteins by phage-display withproteolysis [J]. Eur J Biochem.2004,271(9):1609-1614.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700