细胞传感器及纳米材料生物相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文开展了细胞传感新方法和纳米材料生物相容性的研究。纳米生物材料是纳米材料和生物材料交叉而成的一个全新领域。纳米尺度的特殊生物效应使得纳米生物材料具有广泛的应用前景。细胞体外分析对细胞生理学行为的研究以及药物的体外筛选都具有重要意义。纳米生物材料细胞相容性界面的构建对促进细胞传感器的研制、组织工程的发展和组织工程材料的临床应用都起着重要的作用。磁弹性传感器是近几年迅速发展起来的无线无源传感器,在活体、在体及无损检测等领域具有广泛的应用前景,特别适用于需无菌操作(如细胞检测)的科学实验中。另外,细胞的新陈代谢、呼吸作用、光合作用、信息传递、物质的跨膜运输等活动都涉及到细胞荷电粒子或电活性粒子的定向有序传递、传导或转移,即涉及到细胞物质有序、专一、特异的氧化和还原。电化学方法具有简单、快速、方便等优点。因此,可用电化学手段研究细胞的生理行为或评估药物与细胞的相互作用等。基于上述描述,本论文主要进行了以下几方面的研究工作:
     1.乳腺癌细胞(MCF-7)无线磁弹性传感器制备及应用。本工作应用无线传感器原位监测了MCF-7细胞的正常生长及抗癌药物作用下的生长过程,评价了5-氟尿嘧啶和顺铂对MCF-7细胞生长的抑制效果。无线传感器是由非晶态金属铁合金磁条带切割而成的矩形磁振片,表面涂一层聚氨酯膜保护磁振片不被氧化腐蚀,提供一个细胞相容性好的细胞生长附着面。传感器在一定频率范围内的激发磁场中振动,振动产生的电磁流可以通过感应线圈远距离遥感检测,而传感器与检测系统无需任何物理连接,这一特性有利于实现生物实验过程的无菌操作,特别是细胞培养过程。MCF-7细胞贴附在传感器表面生长,可引起传感器共振振辐减小,并且共振振幅的减少与细胞的初始接种浓度成线性关系,线性范围为5×104-1×106 cells mL-1,检出限为1.2×104 cells mL-1。本工作中通过增大激发共振振辐来评价细胞贴壁的生长能力,并用磁传感器评价了5-氟尿嘧啶和顺铂这两种抗癌药物对MCF-7细胞生长的抑制作用。当MCF-7细胞生长到20 h时,5-氟尿嘧啶和顺铂的半数致死浓度(LC50)分别为19.9和13.1μM。
     2. Escherichia coli O157:H7 (E. coli O157:H7)无线磁弹性传感器制备及应用。以预聚合了聚氨酯膜的磁性膜片为敏感元件,制备了无线磁弹性微生物传感器;研究了微生物生长导致培养基性质(如黏度、密度等)改变对传感器共振频率的影响,考察了细菌在传感器表面吸附对传感器响应的贡献;研究了庆大霉素注射液对E. coli 0157:H7生长的抑制作用,依据庆大霉素注射液对细菌的抑制作用可以进行抗生素的药效评测。E. coli O157:H7的生长和繁殖导致溶液黏度减小,从而引起磁弹性传感器共振频率增大;细菌生长过程中在传感器表面有一定吸附,从而引起传感器共振频率减小,溶液性质变化和细菌吸附程度共同影响共振频率的变化。该传感器可测定的E.coli O157:H7浓度为2×102-3×106 cellsmL-1,检测限为102 cells mL-1。基于此,建立了可用于细菌早期诊断和快速分析的无线磁弹性传感检测新方法。
     3.支原体无线磁弹性传感器制备及应用。支原体是最小、最简单、能够自我复制的无细胞壁致病微生物。本文应用无线磁弹性传感器实时监测了生殖支原体的正常生长及抗生素抑制生长过程,评价了四环素和左氧氟沙星对生殖支原体的抑制效果。无线传感器是由28μm厚的带状非晶态铁磁合金2826MB(Fe40Ni38Mo4B18)切割而成的矩形磁振片,表面涂一层聚氨基甲酸酯膜保护磁振片不被氧化腐蚀,为生殖支原体提供了一个生长附着面。传感器在一定频率范围内的激发磁场中纵向振动,振动产生的磁通量可以通过感应线圈远距离遥感检测,而传感器与检测系统无需任何物理连接,这一特性有利于实现生殖支原体培养过程的无菌操作。生殖支原体黏附在传感器表面生长使传感器共振频率下降,共振频率下降值与生殖支原体的接种浓度存在线性关系,通过细菌生长抑制实验评价了两种抗生素的抑制效果。由实验得到,当细菌生长时间为120 h时,四环素的平均抑制浓度(MIC50)为1.5μg mL-1,左氧氟沙星的MIC50为0.5μg mL-1。
     4.大肠杆菌碳纳米管方波伏安传感器制备及应用。采用循环伏安和方波伏安技术研究了多壁碳纳米管(MWCNTs)修饰玻碳电极上大肠杆菌细胞的电化学行为。与裸玻碳电极相比,修饰电极对细胞悬浮液中电化学活性物质的氧化有催化作用。在细胞生长过程中,各个时期的细胞活性与方波伏安分析信号趋势一致。利用该技术评估了抗生素庆大霉素对大肠杆菌细胞的活性抑制作用,同时用形态学技术进行了验证。
     5.TiO2纳米管(TiO2 NTs)阵列的细胞相容性及应用。在本工作中,应用纯Ti片阳极氧化技术制得管径大约为100 nm,且易于被酒精分散或从Ti片基底上分离的良好的TiO2 NTs。为了探索此种纳米结构的细胞相容性及组织工程应用的可能,通过使用荧光显微镜,研究和比较了不同的癌细胞以及正常细胞在此种材料表面生长的情况。实验结果表明此种新的生物材料能够维持细胞的生长,并且不需要被覆细胞外基质(Extracellular matrix, ECM)。相继研究了纳米管中顺铂药物的释放动力学及对成骨肉瘤细胞(human osteosarcoma, MG-63)贴壁生长的影响。表面积为0.75 cm×1 cm的二氧化钛基底上实验载药量分别为75μg、150μg和225μg顺铂。实验结果表明,此种TiO2 NTs易于载抗癌药物,并且载药TiO2 NTs能够有效地减少MG-63细胞在纳米管表面的贴附。这些研究发现表明,TiO2 NTs是一种良好的潜在载药材料,并且有希望在移植工程(尤其是肿瘤切除病例)中发挥巨大的作用。
This dissertation is mainly devoted to study the biocompatibility of nanobiomaterials and the new sensor method for cell detection. Nanobiomaterial is a new field which combines nanomaterials and biological materials. Nanobiomaterials have many potential applications due to their special size effect on bio-systems. In vitro assays using cultured cells are of great significance for studying many aspects of cell biology and drug screening. The construction of cellular compatible (cytocompatible) interface of nanomaterials plays a key role for the fabrication of cell-based biosensors, and could undoubtedly promote the development of tissue engineering. Magnetoelastic sensors are wireless passive sensors and developed rapidly in recent years. The wireless nature of the magnetoelastic sensor makes it a powerful candidate for in situ and in vivo analysis, particularly appropriate for aseptic operations (such as cell detection) experiment. Moreover, the metabolism, respiration, photosynthesis, message communication and substance transportation between membranes of living cells are all related to electron or electroactive species transfering in order and specific manner. Electrochemical technique is very simple, rapid and cheap. Therefore, it can be easily used to study many aspects of cell biology and drug screening. Based on the above description, this dissertation is devoted to the wireless magnetoelastic/electrochemical cell sensors and the cytocompatibility of TiO2 nanotube arrays. The details of work are summarized as follows:
     1. The fabrication of wireless magnetoelastic human breast cancer cells (MCF-7) sensor and its application. A wireless sensing device was developed for the in-situ monitoring of the growth of MCF-7 cells and evaluation of the cytotoxicity of the anticancer drugs fluorouracil and cisplatin. The sensor is fabricated by coating a magnetoelastic ribbon-like sensor with a layer of polyurethane that protects the iron-rich sensor from oxidation and provides a cell-compatible surface. In response to a time-varying magnetic field, the magnetoelastic sensor longitudinally vibrates, emitting magnetic flux that can be remotely detected by a pick-up coil. No physical connections between the sensor and the detection system are required. The wireless property facilitates aseptic biological operation, especially in cell culture as illustrated in this work. The adhesion of cells on the sensor surface results in a decrease of the resonance amplitude, which is proportional to the cell concentration. A linear response was obtained in cell concentrations of 5×104-1×106 cells mL-1, with a detection limit of 1.2×104 cells mL-1. The adhesion strength of cells on the sensor is qualitatively evaluated by increasing the amplitude of the magnetic excitation field. And the cytotoxicity of the anticancer drugs fluorouracil and cisplatin is evaluated by the magnetoelastic biosensor. The cytostatic curve is related with the quantity of cytostatic drug. The LC50 (Lethal Concentration) for cells incubated in the presence of drugs for 20 h is calculated to be 19.9μM for fluorouracil and 13.1μM for cisplatin.
     2. The fabrication of wireless magnetoelastic E. coli O157:H7 sensor and its application. The microorganism sensor is fabricated by coating a magnetoelastic-ribbon with a polyurethane protecting film. Bacteria consume nutrients from the culture medium and produce small molecules during the growing process, causing a corresponding change in viscosity of culture medium. The resonant frequency of a magnetoelastic sensor changes due to the properties changes of a liquid culture medium and the adhesion of bacteria to the sensor surface. The effect of gentamycin sulfate injection (GSI) on proliferation of the bacteria was investigated, which can be used to evaluate the medicament effect of antibiotic. The growth and reproduction of E. coli O157:H7 decreases the solution viscosity, and in turn the resonance frequency of the magnetoelastic sensor increases, the bacteria adhesion reversely results in the decrease of the resonance frequency, change of solution properties and bacteria adhesion affect the resonance frequency together. Using the described sensor we are able to directly quantify E. coli O157:H7 concentrations over the range of 2×102-3×106 cells mL-1, with a detection limit of 102 cells mL-1. Thus, a wireless magnetoleastic microorganism sensor is developed for the early diagnosis and rapid detection of bacteria.
     3. The fabrication of wireless magnetoelastic Mycoplasma genitalium (Mg) sensor and its application. Mg is the smallest and simplest self-replicating bacteria lacking of cell wall and is a human pathogen causing various diseases. This paper describes the real-time, long-term and in-situ monitoring of the growth of Mg and evaluation of the effect of the antibiotics tetracycline and levofloxacin on the growth using a wireless magnetoelastic sensor. The sensor is fabricated by coating a magnetoelastic strip with a polyurethane protecting film, which protects the iron-rich sensor from oxidation and provides an Mg-compatible surface. In response to a time-varying magnetic field, the sensor longitudinally vibrates at a resonance frequency, emitting magnetic flux that can be remotely detected by a pick-up coil. No physical connections between the sensor and the detection system are required. The wireless property facilitates aseptic operation. The adhesion of Mg on the sensor surface results in a decrease in the resonance frequency, which is proportional to the concentration of Mg. The shift of the resonance frequency-time curves shows that under routine culture condition the growth curve of Mg is composed of three phases which are lag, logarithmic and stationary phase, respectively. In the presence of the antibiotics, the lag phase in the growth inhibition curves is prolonged obviously and the stationary phase is substituted by a decline phase. The growth inhibition of Mg is related to the concentration of the antibiotics. The MIC50 (Minimal Inhibitory Concentration required to inhibit the growth of 50% of organisms) of Mg incubated in the presence of the antibiotics for 120 h is calculated to be 1.5 and 0.5μg mL-1 for tetracycline and levofloxacin respectively.
     4. The fabrication of square-wave voltammetry (SWV) carbon nanotubes sensor for E. coli and its application. The electrochemical behavior of E. coli cell suspension on multi-walled carbon nanotube (MWCNT) modified glassy carbon electrode was studied by using cyclic voltammetry (CV) and SWV. Compared with bare glassy carbon electrode, the MWCNTs-modified electrode shows electrocatalytic property to the oxidation of electroactive species in the cell suspension. The baseline-corrected SWV signal is found to be related to the viability of cells and the technique was used for monitoring the growth of E. coli cells. The effect of antibiotics drug GSI on the growth of E. coli cells was also investigated by SWV and microscopy methods.
     5. The cytocompatibility of TiO2 nanotube arrays and its application. We have developed well-controlled TiO2 nanotubes (NTs) array by anodic oxidation of a pure titanium sheet in an electrolyte solution containing sodium fluoride. To explore the cytocompatibility of this novel nanostructured surface, the growth of different cancer and normal cells on the TiO2 NTs substrate was investigated by fluorescence microscopy, with the aim to evaluate NTs films as substrates for cell-based and tissue-based applications. Our results strongly suggest that this new biomaterial supports normal growth and adhesion of cells with no need for coating with ECM protein. We have loaded these TiO2 nanotube substrates (0.75 cm x 1 cm) with 75μg, 150μg and 225μg of cisplatin. The cisplatin release kinetics from these nanotubes and its effect on MG-63 cell adhesion was investigated. Our results indicate that we can effectively fill the nanotubes with the antineoplastic drug and the drug eluting nanotubes significantly reduce MG-63 adhesion on the surface. These findings suggest that TiO2 nanotube is a potential candidate for a delivery vehicle of therapeutic agents in implantable drug delivery applications.
引文
[1]王会宗.磁性材料及其应用[M].北京:国防工业出版社,1989:7
    [2]戴道生,钱昆明,钟文定,等.铁磁学[M].北京:科学出版社,1992:1
    [3]龙毅,张正义,李守卫.新型功能磁性材料及其应用[M].北京:机械工业出版社,1997:4
    [4]田民伯.磁性材料.清华大学出版社,2001,4
    [5]Del M A, Algarabel P A, Arnaudas J I, et al. Magnetostriction effects. Journal of Magnetism and Magnetic Materials,2002,242-245(2):788-796
    [6]Grimes C A, Mungle C S, Zeng K F, et al. Wireless magnetoelastic resonance sensors:a critical review. Sensors,2002,2(7):294-313
    [7]吴仕辉.磁弹性无线生物传感器在生化分析中的应用研究[M].湖南大学硕士学位论文.长沙:湖南大学,2006:1-38
    [8]高先娟.无线磁弹性生物传感器制备与应用研究[M].湖南大学硕士学位论文.长沙:湖南大学,2007:1-43
    [9]Puckett L G. An integrated approach to the development of sensing systems for clinical and pharmaceutical applications:[dissertation]. Kentucky:University of Kentucky,2003:1
    [10]Doherty S A. Swellable polymer substrates for use in magnetochemical and optical chemical sensing:[dissertation]. New Hampshire:University of New Hampshire,2000:1
    [11]姚守拙.化学与生物传感器.北京:化学工业出版社,2006:79-124
    [12]庞鹏飞.无线磁弹性化学/生物传感器的研制及应用研究:[湖南大学博士学位论文].长沙:湖南大学,2008:1-88
    [13]Cai Q Y, Zeng K F, Ruan C M, et al. A wireless, remote query glucose biosensor based on a pH-sensitive polymer. Analytical Chemistry,2004, 76(14):4038-4043
    [14]Grimes C A, Stoyanov P G, Kouzoudis D, et al. Remote query pressure measurement using magnetoelastic sensors. Review of Scientific Instruments, 1999,70(12):4711-4714
    [15]Kouzoudis D, Grimes C A. Frequency response of magnetoelastic sensors to stress and atmospheric pressure. Smart Materials and Structures,2000,9(6): 885-889
    [16]Grimes C A, Kouzoudis D. Remote query measurement of pressure, fluid-flow velocity, and humidity using magnetoelastic thick-film sensors. Sensors and Actuators A:Physical,2000,84(3):205-212
    [17]Jain M K, Grimes C A. A wireless magnetoelastic micro-sensor array for simultaneous measurement of temperature and pressure. IEEE Transactions on Magnetics,2001,37(4):2022-2024
    [18]Jain M K, Cai Q Y, Grimes C A. A wireless micro-sensor for simultaneous measurement of pH, temperature, and pressure. Smart Materials and Structures,2001,10(2):347-353
    [19]Cai Q Y, Cammers-Goodwin A, Grimes C A. A wireless, remote query magnetoelastic CO2 sensor. Journal of Environmental Monitoring,2000,2(6): 556-560
    [20]Cai Q Y, Jain M K, Grimes C A. A wireless, remote query ammonia sensor. Sensors and Actuators B:Chemical,2001,77(3):614-619
    [21]Zorn M E, Rahne K A, Tejedor-Tejedor M I, et al. Characterization of gas-phase adsorption on metal oxide thin films using a magnetoelastic resonance microbalance. Analytical Chemistry,2003,75(22):6223-6230
    [22]Zhang R, Tejedor M I, Anderson M A, et al. Ethylene detection using nanoporous PtTiO2 coatings applied to magnetoelastic thick films. Sensors, 2002,2(8):331-338
    [23]Giannakopoulos I G, Kouzoudis D, Grimes C A, et al. Synthesis and characterization of a composite zeolite-metglas carbon dioxide sensor. Advanced Functional Materials,2005,15(7):1165-1170
    [24]Xu X W, Wang J, Long Y C. Zeolite-based materials for gas sensors. Sensors, 2006,6(12):1751-1764
    [25]Cai Q Y, Grimes C A. A remote query magnetoelastic pH sensor. Sensors and Actuators B:Chemical,2000,71(1-2):112-117
    [26]Cai Q Y, Grimes C A. A salt-independent pH sensor. Sensors and Actuators B: Chemical,2001,79(2-3):144-149
    [27]Ruan C M, Zeng K F, Grimes C A. A mass-sensitive pH sensor based on a stimuli-responsive polymer. Analytica Chimica Acta,2003,497(1-2):123-131
    [28]Ruan C M, Ong K G, Mungle C, et al. A wireless pH sensor based on the use of salt-independent micro-scale polymer spheres. Sensors and Actuators B: Chemical,2003,96(1-2):61-69
    [29]Pang P F, Ge S T, Cai Q Y, et al. Determination of glucose using bienzyme layered assembly magnetoelastic sensing device. Sensors and Actuators B: Chemical,2009,136(2):310-314
    [30]Gao X J, Yang W Y, Pang P F, et al. A wireless magnetoelastic biosensor for rapid detection of glucose concentrations in urine samples. Sensors and Actuators B:Chemical,2007,128(1):161-167
    [31]Yang W Y, Pang P F, Gao X J, et al. Detection of lactose in milk samples using a wireless multi-enzyme biosensor. Sensor Letters,2007,5(2):419-424
    [32]Zourob M, Ong K G, Zeng K F, et al. A wireless magnetoelastic biosensor for the direct detection of organophosphorus pesticides. Analyst,2007,132(4): 338-343
    [33]Grimes C A, Stoyanov P G, Liu Y C, et al. A magnetostatic-coupling based remote query sensor for environmental monitoring. Journal of Physics D: Applied Physics,1999,32(12):1329-1335
    [34]Ong K G, Paulose M, Jain M K, et al. Magnetism-based remote query glucose sensors. Sensors,2001,1(5):138-147
    [35]Ruan C M, Zeng K F, Varghese O K, et al. A magnetoelastic bioaffinity-based sensor for avidin. Biosensors and Bioelectronics,2004,19(12):1695-1701
    [36]Ong K G, Leland J M, Zeng K F, et al. A rapid highly-sensitive endotoxin detection system. Biosensors and Bioelectronics,2006,21(12):2270-2274
    [37]Ersoz A, Ball J C, Grimes C A, et al. Characterization of electrochemically deposited polypyrrole using magnetoelastic material transduction elements. Analytical Chemistry,2002,74(16):4050-4053
    [38]Bouropoulos N, Kouzoudis D, Grimes C A. The real-time, in situ monitoring of calcium oxalate and brushite precipitation using magnetoelastic sensors. Sensors and Actuators B:Chemical,2005,109(2):227-232
    [39]Gao X J, Ge S T, Cai Q Y, et al. Kinetic study on the interaction between tannin and bovine serum albumin with a wireless magnetoelastic biosensor. Sensors and Actuators B:Chemical,2008,129(2):929-933
    [40]Ball J C, Puckett L G, Bachas L G. Covalent immobilization of β-galactosidase onto a gold-coated magnetoelastic transducer via a self-assembled monolayer: toward a magnetoelastic biosensor. Analytical Chemistry,2003,75(24): 6932-6937
    [41]Wu S H, Cai Q Y, Grimes C A. Kinetic assay of trypsin with a wireless magnetoelastic sensor. Sensor Letters,2006,4(2):160-164
    [42]Wu S H, Zhu Y, Cai Q Y, et al. A wireless magnetoelastic α-amylase sensor. Sensors and Actuators B:Chemical,2007,121(2):476-481
    [43]Wu S H, Gao X J, Cai Q Y, et al. A wireless magnetoelastic biosensor for convenient and sensitive detection of acid phosphatase. Sensors and Actuators B:Chemical,2007,123(2):856-859
    [44]Gao X J, Pang P F, Wu S H, et al. Acid phosphatase assay with a wireless magnetoelastic biosensor. Analytical Letters,2007,40(1):139-150
    [45]Ruan C M, Zeng K F, Varghese O K, et al. Magnetoelastic immunosensors: amplified mass immunosorbent assay for detection of Escherichia coli O157:H7. Analytical Chemistry,2003,75(23):6494-6498
    [46]Ruan C M, Zeng K F, Varghese O K, et al. A staphylococcal enterotoxin B magnetoelastic immunosensor. Biosensors and Bioelectronics,2004,20(3): 585-591
    [47]Shankar K, Zeng K F, Ruan C M, et al. Quantification of ricin concentrations in aqueous media. Sensors and Actuators B:Chemical,2005,107(2):640-648
    [48]Ruan C M, Varghese O K, Grimes C A, et al. A magnetoelastic ricin immunosensor. Sensor Letters,2004,2(2):138-144
    [49]Guntupalli R, Hu J, Lakshmanan R S, et al. A magnetoelastic resonance biosensor immobilized with polyclonal antibody for the detection of Salmonella typhimurium. Biosensors and Bioelectronics,2007,22(7): 1474-1479
    [50]Guntupalli R, Lakshmanan R S, Hu J, et al. A. Rapid and sensitive magnetoelastic biosensors for the detection of Salmonella typhimurium in a mixed microbial population. Journal of Microbiological Methods,2007,70(1): 112-118
    [51]Lakshmanan R S, Guntupalli R, Hu J, et al. Phage immobilized magnetoelastic sensor for the detection of Salmonella typhimurium. Journal of Microbiological Methods,2007,71(1):55-60
    [52]Lakshmanan R S, Guntupalli R, Hu J, et al. Detection of Salmonella typhimurium in fat free milk using a phage immobilized magnetoelastic sensor. Sensors and Actuators B:Chemical,2007,126(2):544-550
    [53]Wan J H, Johnson M L, Guntupalli R, et al. Detection of Bacillus anthracis spores in liquid using phage-based magnetoelastic micro-resonators. Sensors and Actuators B:Chemical,2007,127(2):559-566
    [54]Wan J H, Shu H H, Huang S C, et al. Phage-based magnetoelastic wireless biosensors for detecting Bacillus anthracis spores. IEEE Sensors Journal, 2007,7(3):470-477
    [55]Guo M L, Chen J H, Yun X B, et al. Monitoring of cell growth and assessment of cytotoxicity using electrochemical impedance spectroscopy. Biochimica et Biophysica Acta-General Subjects,2006,1760(3):432-439
    [56]Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods,1983,65(1-2):55-63
    [57]姚守拙.压电化学与生物传感.长沙:湖南师范大学出版社,1997:1-478
    [58]Gryte D M, Ward M D, Hu W S. Real-time measurement of anchorage-dependent cell adhesion using a quartz crystal microbalance. Biotechnology Progress,1993,9(1):105-108
    [59]Redepenning J, Schlesinger T K, Mechalke E J, et al. Osteoblast attachment monitored with a quartz crystal microbalance. Analytical Chemistry,1993, 65(23):3378-3381
    [60]Wegener J, Janshoff A, Galla H J. Cell adhesion monitoring using a quartz crystal microbalance:comparative analysis of different mammalian cell lines. European Biophysics Journal with Biophysics Letters,1998,28(1):26-37
    [61]Braunhut S J, Marx K A, Zhou T, et al. Endothelial cells (EC) adhesion and spreading studied with the quartz crystal microbalance (QCM). Molecular Biology of the Cell,1999,10:64a-a,369
    [62]Marx K A, Zhou T, Montrone A, et al. Quartz crystal microbalance biosensor study of endothelial cells and their extracellular matrix following cell removal: evidence for transient cellular stress and viscoelastic changes during detachment and the elastic behavior of the pure matrix. Analytical Biochemistry,2005,343(1):23-24
    [63]Marx K A, Zhou T, Montrone A, et al. A quartz crystal microbalance cell biosensor:detection of microtubule alterations in living cells at nM nocodazole concentrations. Biosensors and Bioelectronics,2001,16(9-12): 773-782
    [64]Marx K A, Zhou T, Warren M, et al. Quartz crystal microbalance study of endothelial cell number dependent differences in initial adhesion and steady-state behavior:evidence for cell-cell cooperativity in initial adhesion and spreading. Biotechnology Progress,2003,19(3):987-999
    [65]Galli M C, Collaud C M, Greber T, et al. Cell spreading on quartz crystal microbalance elicits positive frequency shifts indicative of viscosity changes. Analytical and Bioanalytical Chemistry,2003,377(3):578-586
    [66]Alessandrini A, Croce M A, Tiozzo R, el al. Monitoring cell-cycle-related viscoelasticity by a quartz crystal microbalance. Applied Physics Letters, 2006,88(8):083905 1-083905 3
    [67]韦晓兰.肝癌细胞压电传感技术平台的构建与应用:[重庆大学博士学位论文].重庆:重庆大学生物工程学院,2005:1-121
    [68]Muramatsu H, Kajiwara K, Tamiya E, et al. Piezoelectric immunosensor for the detection of candida albicans microbes. Analytica Chimica Acta,1986, 188(1):257-261
    [69]Loung J H T, Prusak-Sochaczewski E, Guilbault G G. Development of a piezoimmunosensor for the detection of Salmonella typhimurium. Annals of the New York Academy of Sciences,1990,613(1):439-443
    [70]Cater R M, Mekalanos J J. Quartz crystal microbalance detection of vibro cholerae 0139 serotype. Journal of Immunological Methods,1995,187(1): 121-129
    [71]He F, Zhu W, Geng Q, et al. Rapid detection of Escherichia coliform using a series electrode piezoelectric crystal sensor. Analytical Letters,1994,27(4): 655-669
    [72]Bao L, Tan H, Duan Q, et al. A rapid method for determination of Staphylococcus aureus based on milk coagulation by using a series piezoelectric quartz rystal sensor. Analytica Chimica Acta,1998,369(1-2): 139-145
    [73]Yao S, Tan H, Zhang H, et al. Bulk acoustic wave ammonia sensor applied to analysis antimicrobial properties of tea. Biotechnology Progress,1998,14(4): 639-704
    [74]Wu Y, Xie Q, Zhou A, et al. Detection and analysis of bacillus subtilis growth with piezoelectric quartz crystal impedance based on starch hydrolysis. Analytical Biochemistry,2000,285(1):50-54
    [75]Pancrazio J J, Whelan J P, Borkholder D A, et al. Development and'application of cell-based biosensors. Annals of Biomedical Engineering,1999,27(6): 697-711
    [76]Wang P, Xu G, Qin L, et al. Cell-based biosensors and its application in biomedicine. Sensors and Actuators:B Chemical,2005,108(1-2):576-584
    [77]Compton R G, Perkin S J, Gamblin D P, et al. Clostridium isatidis colonised carbon electrodes:voltammetric evidence for direct solid state redox processes. New Journal of Chemistry,2000,24(3):179-181
    [78]Li H N, Ci Y X. Electrochemical method for analyzing intracellular redox activity changes of the etoposide-induced apoptosis in HL-60 cells. Analytica Chimica Acta,2000,416(2):221-226
    [79]Hobson N S, Tothill I, Turner A P F. Microbial detection. Biosensors and Bioelectronics,1996,11(5):455-477
    [80]Matsunaga T, Namba Y. Detection of microbial cells by cyclic voltammetry. Analytical Chemistry,1984,56(4):798-801
    [81]Ci Y X, Feng J, Jiang Z W, et al. The voltammetric behavior of Saccharomyces cerevisiae. Bioelectrochemistry and Bioenergetics,1997,43(2):293-296
    [82]Matsunaga T, Nakajima T. Electrochemical classification of gram-negative and gram-positive bacteria. Applied and Environmental Microbiology,1985, 50(2):238-242
    [83]Han S, Li X, Guo G, et al. Voltammetric measurement of microorganism populations. Analytica Chimica Acta,2000,405(1-2):115-121
    [84]Chen D Y, Dovichi N J. Single-molecule detection in capillary electrophoresis: molecular shot noise as a fundamental limit to chemical analysis. Analytical Chemistry,1996,68(4):690-696
    [85]Kuznetsov B A, Davydova M E, Shleeva M O, et al. Electrochemical investigation of the dynamics of Mycobacterium smegmatis cells' transformation to dormant, nonculturable form. Bioelectrochemistry,2004, 64(2):125-131
    [86]Du D, Liu S, Chen J, et al. Colloidal gold nanoparticle modified carbon paste interface for studies of tumor cell adhesion and viability. Biomaterials,2005, 26(33):6487-6495
    [87]Yan F, Chen J, Ju H X. Immobilization and electrochemical behavior of gold nanoparticles modified leukemia K562 cells and application in drug sensitivity test. Electrochemistry Communications,2007,9(2):293-298
    [88]Ding L, Cheng W, Wang X J, et al. Carbohydrate monolayer strategy for electrochemical assay of cell surface carbohydrate. Journal of the American Chemical Society,2008,130(23):7224-7225
    [89]Jia X E, Zhou P Y, Tan L, et al. Hydroxyapitie-multiwalled carbon nanotubes nanocomposite for adhesion and electrochemical study of human osteoblast-like cells(MG-63). Electrochemistry Acta,2009,54(13):3611-3617
    [90]Chen K, Chen J, Guo M, et al. Electrochemical behavior of MCF-7 cells on carbon nanotube modified electrode and application in evaluating the effect of 5-fluorouracil. Electroanalysis,2006,18(12):1179-1185
    [91]Xing J Z, Zhu L, Jackson J A, et al. Dynamic monitoring of cytotoxicity on microelectronic sensors. Chemical Research in Toxicology,2005,18(2): 154-161
    [92]Yu N, Atienza J M, Bernard J, et al. Real-time monitoring of morphological changes in living cells by electronic cell sensor arrays:an approach to study G protein-coupled receptors. Analytical Chemistry,2006,78(1):35-43
    [93]Choi C K, English A E, Jun S I, et al. An endothelial cell compatible biosensor fabricated using optically thin indium tin oxide silicon nitride electrodes. Biosensors and Bioelectronics,2007,22(11):2585-2590
    [94]Mitra P, Keese C R, Giaever I. Electric measurements can be used to monitor the attachment and spreading of cells in tissue-culture. Biotechniques,1991, 11(4):504-510
    [95]Wegener J, Keese C R, Giaever I. Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Experimental Cell Research,2000,259(1):158-166
    [96]Giaever I, Keese C R. Micromotion of mammalian cells measured electrically. Proceedings of the National Academy of Sciences of the United States of America,1991,88(17):7896-7900
    [97]Lo C M, Keese C R, Giaever I. Monitoring motion of confluent cells in tissue-culture. Experimental Cell Research,1993,204(1):102-109
    [98]Tiruppathi C, Malik A B, Vecchio P J D, et al. Electrical method for detection of endothelial cell shape change in real time:assessment of endothelial barrier function. Proceedings of the National Academy of Sciences of the United States of America,1992,89(17):7919-7923
    [99]Giaever I, Keese C R. A morphological biosensor for mammalian cells. Nature, 1993,366(6455):591-592
    [100]Lo C M, Keese C R, Giaever I. Impedance analysis of MDCK cells measured by electric cell-substrate impedance sensing. Biophysical Journal,1995,69(6): 2800-2807
    [101]Tsionsky M, Cardon Z G, Bard A J, et al. Photosynthetic electron transport in single guard cells as measured by scanning electrochemical microscopy. Plant Physiology,1997,113(3):895-901
    [102]Mauzeroll J, Bard A J. Scanning electrochemical microscopy of menadione-glutathione conjugate export from yeast cells. Proceedings of the National Academy of Sciences of the United States of America,2004,101(21): 7862-7867
    [103]Mauzeroll J, Bard A J, Owhadian O, et al. Menadione metabolism to thiodione in hepatoblastoma by scanning electrochemical microscopy. Proceedings of the National Academy of Sciences of the United States of America,2004, 101(51):17582-17587
    [104]Liu B, Rotenberg S A, Mirkin M V. Scanning electrochemical microscopy of living cells:different redox activities of nonmetastatic and metastatic human breast cells. Proceedings of the National Academy of Sciences of the United States of America,2000,97(18):9855-9860
    [105]Liu B, Cheng W, Rotenberg S A, et al. Scanning electrochemical microscopy of living cells:Part 2. Imaging redox and acid/basic reactivities. Journal of Electroanalytical Chemistry,2001,500(1-2):590-597
    [106]Liu B, Rotenberg S A, Mirkin M V. Scanning electrochemical microscopy of living cells.4. Mechanistic study of charge transfer reactions in human breast cells. Analytical Chemistry,2002,74(24):6340-6348
    [107]Shiku H, Shiraishi T, Ohya H, et al. Oxygen consumption of single bovine embryos probed by scanning electrochemical microscopy. Analytical Chemistry,2001,73(15):3751-3758
    [108]Shiku H, Shiraishi T, Aoyagi S, et al. Respiration activity of single bovine embryos entrapped in cone-shaped microwell monitored by scanning electrochemical microscopy. Analytica Chimica Acta,2004,522(1):51-58
    [109]Kaya T, Torisawa Y, Oyamatsu D, et al. Monitoring the cellular activity of a cultured single cell by scanning electrochemical microscopy (SECM). A comparison with fluorescence viability monitoring. Biosensors and Bioelectronics,2003,18(11):1379-1383
    [110]徐翔晖,王雪微,陈晓农.纳米生物材料的应用.纳米科技,2009,6(1):72-78
    [111]王琦,张宏芳,骆凯,等.纳米金、碳纳米管和纳米线及其在电化学生物传感器研究中的应用.化学研究与应用,2008,20(10):1247-1253
    [112]张阳德.纳米生物材料科学.北京:化学工业出版社,2005:1
    [113]陈琨.细胞电化学及细胞相容性材料研究:[湖南大学硕士学位论文].长沙:湖南大学,2007:1-45
    [114]负旭斌.碳纳米管的细胞相容性及在生物材料和细胞传感中的应用:[湖南 大学硕士学位论文].长沙:湖南大学,2008:1-51
    [115]樊春海.纳米生物传感器.世界科学,2008,9(11):21-22
    [116]扎热木·萨迪克,都颖,徐静娟,等.纳米材料在电化学生物传感器中的应用.分析科学学报,2009,25(2):217-222
    [117]王英泽,黄奔,吕娟,等.纳米技术在生物医学领域的研究现状.生物物理学报,2009,25(3):168-174
    [118]吴子刚,林鸿波,封伟.碳纳米管/壳聚糖复合材料.化学进展,2006,18(9):1200-1207
    [119]Davis J, Vaughan D H, Cardosi M F. Elements of biosensor construction. Enzyme and Microbial Technology,1995,17(12):1030-1035
    [120]Tess M E, CoxJ A. Chemical and biochemical sensors based on advances in materials chemistry. Journal of Pharmaceutical and Biomedical Analysis,1999, 19(1-2):55-68
    [121]Li J, Tan S N, Ge H. Silica sol-gel immobilized amperometric biosensor for hydrogen peroxide. Analytica Chimica Acta,1996,335(1-2):137-145
    [122]Raj C R, Bikash K J. Efficient electrocatalytic oxidation of NADH at gold nanoparticles self-assembled on three-dimensional sol-gel network. Chemical Communications,2005,15(1):2005-2007
    [123]Welch C M, Banks C E, Simm A O, et al. Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. Analytical and Bioanalytical Chemistry,2005,382(1): 12-21
    [124]Cui K, Song Y H, Yao Y, et al. A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on DNA-networks modified glassy carbon electrode. Electrochemistry Communications,2008,10(4):663-667
    [125]Karam P, Halaoui L. Sensing of H2O2 at low surface density assemblies of Pt nanoparticles in polyelectrolyte. Analytical Chemistry,2008,80(14): 5441-5448
    [126]Wu S, Zhao H T, Ju H X, et al. Electrodeposition of silver-DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose. Electrochemistry Communications,2006,8(8):1197-1203
    [127]Karam P, Xin Y, Jaber S, et al. Active Pt nanoparticles stabilized with glucose oxidase. Journal of physical chemistry C,2008,112(36):13846-13850
    [128]Luo X L, Xu J J, Wang J L, et al. Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chemical Communications,2005,16:2169-2171
    [129]Song Z, Huang J D, Wu B Y, et al. Amperometric aqueous sol-gel biosensor for low-potential stable choline detection at multi-wall carbon nanotube modified platinum electrode. Sensors and Actuators B:Chemical,2006, 115(2):626-633
    [130]Qu F L, Yang M H, Jiang J H, et al. Amperometric biosensor for choline based on layer-by-layer assembled functionalized carbon nanotube and polyaniline multilayer film. Analytical Biochemistry,2005,344(1):108-114
    [131]Tsai Y C, Huang J D, Chiu C C. Amperometric ethanol biosensor based on poly(vinyl alcohol)-multiwalled carbon nanotube-alcohol dehydrogenase biocomposite. Biosensors and Bioelectronics,2007,22(12):3051-3056
    [132]Deng C Y, Chen J H, Chen X L, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode. Biosensors and Bioelectronics,2008,23(8):1272-1277
    [133]Shi H B, Yang Y, Huang J D, et al. Amperometric choline biosensors prepared by layer-by-layer deposition of choline oxidase on the prussian blue-modified platinum electrode. Talanta,2006,70(4):852-858
    [134]Bai Y H, Du Y, Xu J J, et al. Choline biosensors based on a bi-electrocatalytic property of MnO2 nanoparticles modified electrodes to H2O2. Electrochemistry Communications,2007,9(10):2611-2616
    [135]杨海朋,陈仕国,李春辉,等.纳米电化学生物传感器.化学进展,2009,21(1):200-216
    [136]Pan Z W, Xie S S, Chang B H, et al. Very long carbon nanotubes. Nature,1998, 394(6694):631-632
    [137]Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354(6348): 56-58
    [138]Kroto H W, Heath J R, O'Brien S C, et al. C60:Buckminsterfullerene. Nature, 1985,318(6042):162-163
    [139]Ajayan P M. Nanotubes from carbon. Chemical Reviews,1999,99(7): 1787-1799
    [140]郭慢丽.碳纳米管基化学生物传感研究及细胞传感界面的构建:[湖南大学博士学位论文].长沙:湖南大学,2007:1-100
    [141]Yu M F, Yakobson B I, Ruoff R S. Controlled sliding and pullout of nested shells in individual multi-walled carbon nanotubes. Journal of Physical Chemistry B,2000,104(37):8764-8767
    [142]张立德,牟季美.纳米材料和纳米结构.第一版.北京:科学出版社,2001:420-476
    [143]Huang W J, Lin Y, Taylor S, et al. Sonication-assisted functionalization and solubilization of carbon nanotubes. Nano Letters,2002,2(3):231-234
    [144]麦智彬,谭学才,邹小勇.基于碳纳米管的化学修饰电极及电化学生物传感器的研究进展.分析测试学报,2006,25(3):120-125
    [145]Yun Y H, Dong Z Y, Shanov V, et al. Nanotube electrodes and biosensors. Nano Today,2007,2(6):30-37
    [146]Nugent J M, Santhanam K S V, Rubio, et al. Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Letters,2001, 1(2):87-91
    [147]Wang J, Li M, Shi Z, et al. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Analytical Chemistry,2002,74(9):1993-1997
    [148]Cai C, Chen J. Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode. Analytical Biochemistry,2004,325(2): 285-292
    [149]Zhao Y D, Bi Y H, Zhang W D, et al. The interface behavior of hemoglobin at carbon nanotube and the detection for H2O2. Talanta,2005,65(2):489-494
    [150]Zhao Y D, Zhang W D, Chen H, et al. Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode. Sensors and Actuators B:Chemical,2002,87(1):168-172
    [151]Cai C, Chen J. Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Analytical Biochemistry,2004,332(1):75-83
    [152]Luo X, Killard A J, Smyth M R. Reagentless glucose biosensor based on the direct electrochemistry of glucose oxidase on carbon nanotube-modified electrodes. Electroanalysis,2006,18(11):1131-1134
    [153]Wang M, Shen Y, Liu Y, et al. Direct electrochemistry of microperoxidase using carbon nanotube modified electrodes. Journal of Electroanalytical Chemistry,2005,578(1):121-127
    [154]Wang J, Musameh M, Lin Y. Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors. Journal of the American Chemical Society,2003,125(9):2408-2409
    [155]Shi Q, Peng T, Zhu Y, et al. An electrochemical biosensor with cholesterol oxidase/sol-gel film on a nanoplatinum/carbon nanotube electrode. Electroanalysis,2005,17(10):857-861
    [156]Li G, Liao J M, Hu G Q, et al. Study of carbon nanotube modified biosensor for monitoring total cholesterol in blood. Biosensors and Bioelectronics, 2005,20(10):2140-2144
    [157]Wang J, Musameh M. Carbon nanotube/teflon composite electrochemical sensors and biosensor. Analytical Chemistry,2003,75(9):2075-2079
    [158]Hrapovic S, Liu Y, Male K B, et al. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Analytical Chemistry, 2004,76(4):1083-1088
    [159]Zhang M, Smith A, Gorski W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Analytical Chemistry,2004,76(17):5045-5050
    [160]Wang Z, Liu J, Liang Q, et al. Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid. Analyst,2002, 127(5):653-658
    [161]Valentini F, Amine A, Orlanducci S, et al. Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes. Analytical Chemistry,2003,75(20):5413-5421
    [162]Chen R S, Huang W H, Tong H, et al. Carbon fiber nanoelectrodes modified by single-walled carbon nanotubes. Analytical Chemistry,2003,75(22): 6341-6345
    [163]Boo H, Jeong R A, Park S, et al. Electrochemical nanoneedle biosensor based on multiwall carbon nanotube. Analytical Chemistry,2006,78(2):617-620
    [164]Andreescu S, Sadik O A, McGee D W. Autonomous multielectrode system for monitoring the interactions of isoflavonoids with lung cancer cells. Analytical Chemistry,2004,76(8):2321-2330
    [165]Krtolica A, Solorzano C O, Lockett S, et al. Quantification of epithelial cells in coculture with fibroblasts by fluorescence image analysis. Cytometry,2002, 49(2):73-82
    [166]Canovas M, Garcia V, Bernal V, et al. Analysis of Escherichia coli cell state by flow cytometry during whole cell catalyzed biotransformation for 1-carnitine production. Process Biochemistry,2007,42(1):25-33
    [167]Marx K A, Zhou T, Montrone A, et al. A comparative study of the cytoskeleton binding drugs nocodazole and taxol with a mammalian cell quartz crystal microbalance biosensor:different dynamic responses and energy dissipation effects. Analytical Biochemistry,2007,361(1):77-92
    [168]Fredriksson C, Kihlman S, Rodahl M, et al. The piezoelectric mass and dissipation sensor:a means of studying quartz crystal cell adhesion. Langmuir, 1998,14(2):248-251
    [169]Zeng K F, Tep K C, Grimes C A. Nonlinear effects in magnetoelastic sensors. Sensor Letters,2005,3(3):222-224
    [170]Zeng K F, Ong K G, Yang X P, et al. Board level integrated microsystem design and associated technique for impedance analysis of resonator sensors. Sensor Letters,2006,4(4):388-397
    [171]Zeng K F, Ong K G, Mungle C, et al. Time domain characterization of oscillating sensors:application of frequency counting to resonance frequency determination. Review of Scientific Instruments,2002,73(12):4375-4380
    [172]Johnson M L, Wan J H, Huang S C, et al. A wireless biosensor using microfabricated phage-interfaced magnetoelastic particles. Sensors and Actuators A:Physical,2008,144(1):38-47
    [173]Pang P F, Huang S J, Cai Q Y, et al. Detection of Pseudomonas aeruginosa using a wireless magnetoelastic sensing device. Biosensors and Bioelectronics, 2007,23(2):295-299
    [174]Puckett L G, Barrett G, Kouzoudis D, et al. Monitoring blood coagulation with magnetoelastic sensors. Biosensors and Bioelectronics,2003,18(5-6): 675-681
    [175]Grimes C A, Cai Q Y, Ong K G, et al. Environmental monitoring using magnetoelastic sensors. In:Proceedings of SPIE. San Diego,2000,4097(1): 123-133
    [176]Fujimoto S. Schedule-dependent antitumor activity and toxicity of combinations of 5-fluorouracil and cisplatin/carboplatin against L1210 leukemia-bearing mice. Biological& Pharmaceutical Bulletin,2006,29(11): 2260-2266
    [177]Albay A, Kisa O, Baylan O, et al. The evaluation of FASTPlaqueTBTM test for the rapid diagnosis of tuberculosis. Diagnostic Microbiology and Infectious Disease,2003,46(3):211-215
    [178]Esteban J, Fernandez-Roblas R, Cabria F, et al. Usefulness of the BACTEC MYCO/F lytic system for detection of mycobacteremia in a clinical microbiology laboratory. Journal of Microbiological Methods,2000,40(1): 63-66
    [179]Martinez-Sanchez L, Ruiz-Serrano J, Bouza E, et al. Utility of the BACTEC Myco/F lytic medium for the detection of mycobacteria in blood. Diagnostic Microbiology and Infectious Disease,2000,38(4):223-226
    [180]Hollick G E, Edinger R, Martin B. Clinical comparison of the BACTEC 9000 standard anaerobic/F and lytic/F blood culture media. Diagnostic Microbiology and Infectious Disease,1996,24(4):191-196
    [181]Sharp S E, Lemes M, Erlich S S, et al. A comparison of the Bactec 9000MB system and the Septi-Chek AFB system for the detection of mycobacteria. Diagnostic Microbiology and Infectious Disease,1997,28(2):69-74
    [182]Daxboeck F, Dornbusch H J, Krause R, et al. Verification of false-positive blood culture results generated by the BACTEC 9000 series by eubacterial 16S rDNA and panfungal 18S rDNA directed polymerase chain reaction (PCR). Diagnostic Microbiology and Infectious Disease,2004,48(1):1-3
    [183]Laverdiere M, Poirier L, Weiss K, et al. Comparative evaluation of the MB/BacT and BACTEC 460 TB systems for the detection of mycobacteria from clinical specimens:clinical relevance of higher recovery rates from broth-based detection systems. Diagnostic Microbiology and Infectious Disease,2000,36(1):1-5
    [184]Yan J J, Huang A H, Tsai S H, et al. Comparison of the MB/BacT and BACTEC MGIT 960 system for recovery of mycobacteria from clinical specimens. Diagnostic Microbiology and Infectious Disease,2000,37(1): 25-30
    [185]Scarparo C, Piccoli P, Rigon A, et al. Evaluation of the BACTEC MGIT 960 in comparison with BACTEC 460 TB for detection and recovery of mycobacteria from clinical specimens. Diagnostic Microbiology and Infectious Disease,2002,44(2):157-161
    [186]Norden M A, Kurzynski T A, Bownds S E, et al. Rapid susceptibility testing of Mycobacterium tuberculosis (H37Ra) by flow cytometry. Journal of Clinical Microbiology,1995,33(5):1231-1237
    [187]Vigano E F, Vasconi E, Agrappi C, et al. Use of simulated blood cultures for time to detection comparison between BacT/ALERTTM and BACTECTM 9240 blood culture systems. Diagnostic Microbiology and Infectious Disease,2002, 44(3):235-240
    [188]Akan O A, Yildiz E. Comparison of the effect of delayed entry into 2 different blood culture systems (BACTEC 9240 and BacT/ALERT 3D) on culture positivity. Diagnostic Microbiology and Infectious Disease,2006,54(3): 193-196
    [189]Guney C, Suel A, Karagoz T, et al. P1642 Evaluation of the BACT/ALERT 3D system for testing susceptibility of Mycobacterium tuberculosis tofirst-line antituberculosis agents:comparison with BacTec MGIT 960 and Lowenstein-Jensen proportion method. International Journal of Antimicrobial Agents,2007,29(2):S463
    [190]Kharazmi K, Kratzer C, Tucek T, et al. P939 Effectiveness of the lysis centrifugation method isolator 10 system compared to BacT/Alert 3D in detecting bacteraemia. International Journal of Antimicrobial Agents,2007, 29(2):S246
    [191]Johnson A S, Touchie C, Haldane D J M, et al. Four-day incubation for detection of bacteremia using the BACTEC 9240. Diagnostic Microbiology and Infectious Disease,2000,38(4):195-199
    [192]Hernandez A, Bergmann J S, Woods G L. AMPLICORTM MTB polymerase chain reaction test for identification of Mycobacterium tuberculosis in positive difco ESP Ⅱ broth cultures. Diagnostic Microbiology and Infectious Disease,1997,27(1-2):17-20
    [193]陆德源.医学微生物学.北京:人民卫生出版社,1996:88-89
    [194]马文漪,杨柳燕.环境微生物工程.南京:南京大学出版社,1998:45
    [195]Ren J L, He F J, Yi S L, et al. A new MSPQC for rapid growth and detection of Mycobacterium tuberculosis, Biosensors and Bioelectronics,2008,24(3): 403-409
    [196]Adlfinger K H, Pechel G. Viscosity anomalies in liquid surface zones. Part Ⅱ, Deut. Bunsenges. Physical Chemistry,1970,74(1):347-350
    [197]Adlfinger K H, Pechel G. Viscosity anomalies in liquid surface zones. Part Ⅲ, Deut. Bunsenges. Physical Chemistry,1970,74(1):351-357
    [198]Jain M K, Grimes C A. Effect of surface roughness on liquid property measurements using mechanically oscillating sensors. Sensors and Actuators A:Physical,2002,100(1):63-69
    [199]Ong K G, Wang J, Singh R S, et al. Monitoring of bacteria growth using a wireless, remote query resonant-circuit sensor:application to environmental sensing. Biosensors and Bioelectronics,2001,16(4-5):305-312
    [200]He F J, Zhao J W, Zhang L D, et al. A rapid method for determining Mycobacterium tuberculosis based on a bulk acoustic wave impedance biosensor. Talanta,2003,59(5):935-941
    [201]Wang M J, Hu C Q, Jin S H. A new HPLC method for determination of gentamicin c components with evaporative light-scattering detector. Chinese Journal of Pharmaceutical Analysis,2002,22(6):461-464
    [202]Razin S, Yogev D, Naot Y. Molecular biology and pathogenicity of Mycoplasmas. Microbiology and Molecular Biology Reviews,1998,62 (4): 1094-1156
    [203]Juliy J G. Current status of the mollicute flora of humans. Clinical Infectious Diseases,1993,17(Supplement 1):S2-S9
    [204]Waites K B, Talkington D F. Mycoplasma pneumoniae and its role as a human pathogen. Clinical Microbiology Reviews,2004,17 (4):697-728
    [205]Simms I, Eastick K, Mallinson H, et al. Associations between Mycoplasma genitalium, chlamydia trachomatis, and pelvic inflammatory disease. Sexually Transmitted Infection,2003,79(2):154-156
    [206]Tayor-Robinson D. Mycoplasma genitalium-an up-date. International Journal of STD and AIDS,2002,13(3):1452-1511
    [207]Svenstrup H F, Fedder J, Abraham P J, et al. Mycoplasma genitalium attaches to human spermatozoa. Human Reproduction,2003,18(10):2103-2109
    [208]Cassell G H, Waits K B, Watson H L, et al. Ureaplasma urealyticum:role in prematurity and disease in newborns. Clinical Microbiology Reviews,1993,6 (1):69-87
    [209]Hayes M M, Foo H H, Timenetsky J, et al. In vitro antibiotic susceptibility testing of clinical isolates of Mycoplasma penetrans from patients with AIDS. Antimicroblal agents and chemotherapy,1995,39 (6):1386-1387
    [210]Martinelli F, Garrafa E, Turano A, et al. Increased frequency of detection of ureaplasma urealyticum and mycoplasma genitalium in AIDS patients without urethral symptoms. Journal of Clinical Microbiology,1999,37(6):2042-2044
    [211]Arai S, Furukawa M, Munakata T, et al. Enhancement of cytotoxicity of active macrophages by mycoplasma:role of mycoplasma-associated induction of tumor necrosis factor-a (TNF-a) in macrophages. Microbiology and Immunology,1990,34 (3):231-243
    [212]Assun(?)ao P, Diaz R, Comas J, et al. Evaluation of Mycoplasma hyopneumoniae growth by flow cytometry. Journal of Applied Microbiology, 2005,98(5):1047-1054
    [213]Nivens D E, Chambers J Q, Anderson T R, et al. Long-term, on-line monitoring of microbial biofilms using a quartz crystal microbalance. Analytical Chemistry,1993,65 (1):65-69
    [214]Zhou T, Marx K A, Warren M, et al. The quartz crystal microbalance as a continuous monitoring tool for the study of endothelial cell surface attachment and growth. Biotechnology Progress,2000,16 (2):268-277
    [215]Reipa V, Almeida J, Cole K D. Long-term monitoring of biofilm growth and disinfection using a quartz crystal microbalance and reflectance measurements. Journal of Microbiological Methods,2006,66 (3):449-459
    [216]Chang K S, Chang C K, Chen C Y. A surface acoustic wave sensor modified from a wireless transmitter for the monitoring of the growth of bacteria. Sensors and Actuators B:Chemical,2007,125 (1):207-213
    [217]Berrettoni M, Carpani I, Corradini N, et al. Coupling chemometrics and electrochemical-based sensor for detection of bacterial population. Analytica Chimica Acta,2004,509 (1):95-101
    [218]Putman M, Burton R, Nahm M H. Simplified method to automatically count bacterial colony forming unit. Journal of Immunological Methods,2005,302 (1-2):99-102
    [219]Stemke G W, Robertson J A. Comparison of two methods for enumeration of Mycoplasmas. Journal of Clinical Microbiology,1982,16(5):959-961
    [220]Svenstrup H F, Nielsen P K, Drasbek M, et al. Adhesion and inhibition assay of Mycoplasma genitalium and M. pneumoniae by immunofluorescence microscopy. Journal of Medical Microbiology,2002,51 (5):361-373
    [221]Clausen H F, Fedder J, Draskek M, et al. Serological investigation of Mycoplasma genitalium in infertile women. Human Reproduction,2001,16 (9):1866-1874
    [222]Yoshida T, Deguchi T, Ito M, et al. Quantitative detection of Mycoplasma genitalium from first-pass urine of men with urethritis and asymptomatic men by real-time PCR. Journal of Clinical Microbiology,2002,40 (4):1451-145
    [223]Jurstrand M, Jensen J S, Fredlund H, et al. Detection of Mycoplasma genitalium in urogenital specimens by real-time PCR and by conventional PCR assay. Journal of Medical Microbiology,2005,54(1):23-29
    [224]Kokotovic B, Friis N F, Jensen J S, et al. Amplified-fragment length polymorphism fingerprinting of Mycoplasma species. Journal of Clinical Microbiology,1999,37 (10):3300-3307
    [225]Zeng K F, Grimes C A. Threshold-crossing counting technique for damping factor determination of resonator sensors. Review of Scientific Instruments, 2004,75(2):5257-5261
    [226]Bernet C, Garret M, de Barbeyrac B, et al. Detection of Mycoplasma pneumoniae by using the polymerase chain reaction. Journal of Clinical Microbiology,1989,27(11):2492-2496
    [227]Maalouf R, Fournier-Wirth C, Coste J, et al. Label-free detection of bacteria by electrochemical impedance spectroscopy:comparison to surface plasmon resonance. Analytical Chemistry,2007,79(13):4879-4886
    [228]Torisawa Y, Kaya T, Takii Y, et al. Scanning electrochemical microscopy-based drug sensitivity test for a cell culture integrated in silicon microstructures. Analytical Chemistry,2003,75(9):2154-2158
    [229]Thielecke H, Mack A, Robitzki A, et al. A multicellular spheroid-based sensor for anti-cancer therapeutics. Biosensors and Bioelectronics,2001,16(4-5): 261-269
    [230]Arndt S, Seebach J, Psathaki K, et al. Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosensors and Bioelectronics, 2004,19(6):583-594
    [231]Xiao C, Luong J T. Assessment of cytotoxicity by emerging impedance spectroscopy. Toxicology and Applied Pharmacology,2005,206(2):102-112
    [232]Xiao C, Luong J T. On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS). Biotechnology Progress, 2003,19(3):1000-1005
    [233]Xiao C D, Lachance B, Sunahara G, et al. Assessment of cytotoxicity using electric cell-substrate impedance sensing:concentration and time response function approach. Analytical Chemistry,2002,74(22):5748-5753
    [234]Nishizawa M, Takoh K, Matsue T. Micropatterning of hela cells on glass substrates and evaluation of respiratory activity using microelectrodes. Langmuir,2002,18(9):3645-3649
    [235]Karasinski J, Andreescu S, Sadik O A, et al. Multiarray sensors with pattern recognition for the detection, classification, and differentiation of bacteria at subspecies and strain levels. Analytical Chemistry,2005,77(24):7941-7949
    [236]Li H N, Ci Y X, Feng J, et al. The voltammetric behavior of bone marrow of leukaemia and its clinical application. Bioelectrochemistry and Bioenergetics, 1999,48(1):171-175
    [237]Feng J, Ci Y X, Lou J L, et al. Voltammetric behavior of mammalian tumor cells and bioanalytical applications in cell metabolism. Bioelectrochemistry and Bioenergetics,1999,48(1):217-222
    [238]Feng J, Luo G A, Jian H Y, et al. Voltammetric behavior of tumor cells U937 and its usefulness in evaluating the effect of caffeic acid. Electroanalysis, 2000,12(7):513-516
    [239]Li J, Liu X M, Guo M L, et al. Electrochemical study of breast cancer cells MCF-7 and its apllication in evaluating the effect diosgenin. Analytical Science,2005,21(5):561-564
    [240]Moore R R, Banks C E, Compton R G. Basal plane pyrolytic graphite modified electrodes:comparison of carbon nanotubes and graphite powder as electrocatalysts. Analytical Chemistry,2004,76(10):2677-2682
    [241]Wang C, Waje M, Wang X, et al. Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Letters,2004,4(2):345-348
    [242]Bozic R G, West A C, Levicky R. Square wave voltammetric detection of 2,4,6-trinitrotoluene and 2,4-dinitrotoluene on a gold electrode modified with self-assembled monolayers. Sensors and Actuators B:Chemical,2008,133(2): 509-515
    [243]Sucheta A, Ackrell B A, Cochran B, et al. Diode-like behaviour of a mitochondrial electron-transport enzyme. Nature,1992,356(6367):361-362
    [244]Chen J, Du D, Yan F, et al. Electrochemical antitumor drug sensitivity test for leukemia K562 cells at a carbon nanotubes modified electrode. Chemistry-A European Journal,2005,11(5):1467-1472
    [245]Okochi M, Matsunaga T. Electrochemical sterilization of bacteria using a graphite electrode modified with adsorbed ferrocene. Electrochemistry Acta, 1997,42(20-22):3247-3250
    [246]Geng P, Zheng J H, Zhang X, et al. Rapid detection of Escherichia coli by flow injection analysis coupled with amperometric method using an IrO2-Pd chemically modified electrode. Electrochemistry Communications,2007,9(9): 2157-2162
    [247]Zhang X N, Geng P, Liu H J, et al. Development of an electrochemical immunoassay for rapid detection of E. coli using anodic stripping voltammetry based on Cu@Au nanoparticles as antibody labels. Biosensors and Bioelectronics,2009,24(7):2155-2159
    [248]Lu Q Z, Lin H L, Ge S T, et al. Wireless, remote-query, and high sensitivity Escherichia coli 0157:H7 biosensor based on the recognition action of concanavalin A. Analytical chemisty,2009,81(14):5846-5840
    [249]Luscher T F, Steffel J, Eberli F R, et al. Drugeluting stent and coronary thrombosis-biological mechanisms and clinical implications. Circulation, 2007,115(8):1051-1058
    [250]Simmons A, Padsalgikar A D, Ferris L M, et al. Biostability and biological performance of a PDMS-based polyurethane for controlled drug release. Biomaterials,2008,29(20):2987-2995
    [251]Pohler O. Unalloyed titanium for implants in bone surgery. Injury,2000, 31 (Supplement 4):7-13
    [252]Dunn G A, Brown A F. Alignment of fibroblasts on grooved surfaces described by a simple geometric transformation. Journal of Cell Science,1986,83(1): 313-340
    [253]Chou L S, Firth J D, Uitto V J, et al. Effects of titanium substratum and grooved surface topography on metalloproteinase-2 expression in human fibroblasts. Journal of Biomedical Materials Research,1998,39(3):437-445
    [254]Matsuzaka K, Walboomers X F, Ruijter J E, et al. The effect of poly-L-lactic acid with parallel surface micro-groove on osteoblast-like cells in vitro. Biomaterials,1999,20(14):1293-1301
    [255]Grimes C A, Mor G K. TiO2 NT Arrays synthesis, properties, and applications. Springer:Norwell, MA,2009:1-358
    [256]Shankar K, Basham J I, Allam N K, et al. Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. Journal of Physical Chemistry C,2009,113(16):6327-6359
    [257]Cai Q, Paulose M, Varghese O K, et al. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. Journal of Materials Research,2005,20(1):230-236
    [258]Santiago F F, Barea E M, Bisquert J, et al. High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping. Journal of the American Chemical Society,2008,130 (34):11312-11316
    [259]Allam N K, Grimes C A. Room temperature one-step polyol synthesis of anatase TiO2 nanotube arrays:photoelectrochemical properties. Langmuir, 2009,25 (13):7234-7240
    [260]Berger S, Ghicov A, Nah Y C, et al. Transparent TiO2 nanotube electrodes via thin layer anodization:fabrication and use in electrochromic devices. Langmuir,2009,25 (9):4841-4844
    [261]Mor G K, Shankar K, Paulose M, et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Letters,2006,6(2):215-218
    [262]Liu S Q, Chen A C. Coadsorption of horseradish peroxidase with thionine on TiO2 nanotubes for biosensing. Langmuir,2005,21(18):8409-8413
    [263]Pang X Y, He D M, Luo S L, et al. An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite. Sensors and Actuators B:Chemical,2009,137(1):134-138
    [264]Yang L X, Yang W Y, Cai Q Y. Well-dispersed PtAu nanoparticles loaded into anodic titania nanotubes:a high antipoison and stable catalyst system for methanol oxidation in alkaline media. The Journal of Physical Chemistry C, 2007,111(44):16613-16617
    [265]Yang L X, He D M, Cai Q Y. Fabrication and catalytic properties of Co-Ag-Pt nanoparticle-decorated titania nanotube arrays. The Journal of Physical Chemistry C,2007,111(23):8214-8217
    [266]He D M, Yang L X, Kuang S Y, et al. Fabrication and catalytic properties of Pt and Ru decorated TiO2/CNTs catalyst for methanol electrooxidation. Electrochemistry Communications,2007,9(10):2467-2472
    [267]Peng L L, Mendelsohn A D, LaTempa T J, et al. Long-term small molecule and protein elution from TiO nanotubes. Nano letters,2009,9(5):1932-1936
    [268]Naruse T, Nishida Y, Ishiguro N. Synergistic effects of meloxicam and conventional cytotoxic drugs in human MG-63 osteosarcoma cells. Biomedicine and Pharmacotherapy,2007,61(6):338-346
    [269]Choy J H, Kwak S Y, Jeong Y J, et al. Inorganic layered double hydroxides as nonviral vectors. Angewandte Chemie International Edition,2000,39(22): 4041-4045
    [270]Bosch M E, Sanchez A J, Rojas F S, et al. Analytical methodologies for the determination of cisplation. Journal of Pharmaceutical and Biomedical Analysis,2008,47(3):451-459
    [271]Yang L X, Cai Q Y. Size-controllable fabrication of noble metal nanonets using a TiO2 template. Inorganic Chemistry,2006,45(24):9616-9618
    [272]Chung T W, Liu D Z, Wang S Y, et al. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials,2003, 24(25):4655-4661
    [273]Dalby M J, Childs S, Riehle M O, et al. Fibroblast reaction to island topography:changes in cytoskeleton and morphology with time. Biomaterials, 2003,24(6):927-935
    [274]Andrew L H, Daniel G A, Robert L, et al. High throughput methods applied in biomaterial development and discovery. Biomaterials,2010,31(2):187-198
    [275]Bai Y, Ruan X Y, Mo J Y, et al. Potentiometric stripping analysis of copper using cysteine modifed mercury film electrode. Analytica Chimica Acta,1998, 373(1-2):39-46
    [276]Zen J M, Wang W M, Ilangovan G. Adsorptive potentiometric stripping analysis of dopamine on clay-modified electrode. Analytica Chimica Acta, 1998,372(3):315-321
    [277]Wang J, Rincon O, Polsky R, et al. Electrochemical detection of DNA hybridization based on DNA-templated assembly of silver cluster. Electrochemistry Communications,2003,5(1):83-86
    [278]Cai X H, Farias P A M, Shiraishi H, et al. Potentiometric stripping analysis of bioactive peptides at carbon electrodes down to subnamomolar concentration. Analytica Chimica Acta,1996,332 (1):49-57
    [279]Bard A J, Faulkner L R. Electrochemical methods:fundamentals and application. New York:Wiley,1980:213-248
    [280]Nishihara T, Furuya Y, Yamamoto K, et al. Title aggregation patterns of argyrophilic nucleolar organizer regions induced by 5-fluorouracil in the nuclei of MCF-7 human breast cancer cells. Cancer Letters,1996,100(1-2): 95-98
    [281]Yuksel C, Bullerman L B. Evaluation of reduced toxicity of zearalenone by extrusion processing as measured by the MTT cell proliferation assay. Journal of Agricultural and Food Chemistry,2005,53(16):6558-6563
    [282]Dalby M J, McCloy D, Robertson M, et al. Osteoprogenitor response to semiordered and random nanotopographies. Biomaterials,2006,27(15): 2980-2987
    [283]Dalby M J, McCloy D, Robertson M, et al. Osteoprogenitor response to defined topographies with nanoscale depths. Biomaterials,2006,27(8): 1306-1315
    [284]Popat K C, Daniels R H, Dubrow R S, et al. Nanostructured surfaces for bone biotemplating applications. Journal of Orthopaedic Research,2006,24(4): 619-627
    [285]Khang D, Lu J, Yao C, et al. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials,2008, 29(8):970-983
    [286]Somnath C R, Paulosec M, Grimes C A. The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. Biomaterials, 2007,28 (31):4667-4672

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700