Wnt/β-catenin与NFκB信号通路在邻苯二甲酸二丁酯诱导雄性大鼠发生尿道下裂中的表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:利用邻苯二甲酸二丁酯(DBP)孕晚期暴露诱导子代SD大鼠发生尿道下裂,验证Wnt/β-catenin及NFκB信号通路中关键蛋白在胎鼠生殖结节中的差异表达,探讨该通路在DBP致大鼠生殖系统发育异常过程中的作用机制。
     方法:孕SD大鼠20只,随机分为两组,在妊娠(GD)14~18天,每天分别通过灌胃给予DBP和大豆油800mg/kg,同时予GD19提取尿道下裂组与对照组胎鼠生殖结节组织,用Western blot检测β-连环蛋白(β-catenin),糖原合成酶-3β(GSK-3β)和NFκB的表达情况。用免疫组化验证Wnt通路重要调节因子GSK-3β的定位情况。
     结果:DBP染毒后雄性胎鼠出生数量及体重较对照组明显下降,肛门生殖器距离(AGD)明显缩短,尿道下裂发生率为46.7%,同时尿道下裂组与对照组中β-catenin相对表达量的比值为0.505±0.014(n=10,P<0.05),GSK-3β与NFκB相对表达量的比值分别为1.903±0.018 (n=10,P<0.05)和3.661±0.021(n=10,P<0.05)。GSK-3β定位于尿道上皮细胞的胞质中。
     结论:Wnt/β-catenin信号通路作为调节生长发育重要的因子之一,在DBP诱导的尿道下裂仔鼠及对照组中存在差异性表达,DBP可能通过干预这些调节胚胎发育相关信号通路的正常表达,从而引起GT生长发育发生异常,最终导致尿道下裂的发生。DBP导致雄性仔鼠阴茎组织中调节生殖发育相关通路表达异常,有助于深入探讨DBP影响雄性大鼠生殖系统发育及尿道下裂发生的作用机制,同时也为干预DBP的生殖发育毒性提供了重要信息。
Objective: To evaluate the expression of Wnt/β-catenin and NFκB pathway in hypopspadiac male rats treated by utero exposure to DBP.
     Methods: Twenty pregnant rats were randomly divided into two groups and given DBP by gastric intubation at a dose of 0,800 mg/kg from gestation day(GD)14 to GD18.On GD19,Western blot analysis was used to quantify expression ofβ-catenin,GSK-3βand NFκB in GT of hypospadiac male rats.
     Results: The body weight and the AGD of hypospadiac male rats significantly decreased. Moreover, the expression ofβ-catenin was significantly decreased and an increased expression of GSK-3βand NFκB in GT was observed(n=10,P<0.05). GSK-3βwas located in the urethral plate epithelium (UPE) by immunohistochemistry.
     Conclusion: DBP could possibly affect the development of GT by regulating Wnt/β-catenin and NFκB pathway in fetal male rats. These results could provide us a possibility to interfere the reproductive toxicity of DBP by regulating specific pathway in GT tissues.
引文
[1] Boisen KA, Chellakooty M, Schmidt IM,et al Hypospadias in a cohort of 1072 Danish newborn boys:prevalence and relationship to placental weight, anthropometrical measurements at birth,and reproductive hormone levels at three months of age. J Clin Endocrinol Metab, 2005, 90:4041-4046.
    [2] Gallentine ML, Morey AF, Thompson IM, et al Hypospadias: a contemporary epidemiologic assessment. Urology, 2001, 57: 788–790.
    [3]李森恺.尿道下裂学.北京:科学出版社,2008. 3-8.
    [4]朱英坚,蒋君涛,马隆,等.邻苯二甲酸二丁酯干预Fgfs信号通路致雄性仔鼠尿道下裂发生的分子机制研究.南京医科大学学报(自然科学版),2009,29(7):949-952.
    [5] Norgil Damagaard I, Main KM, Toppari J, et al. Impact of exposure to endocrine disrupters in utero and in childhood on adultreproduction. Best Pract ResClin Endocrinol Metab, 2002, 16(2):289-309.
    [6] Iguchi T. Environmental endocrine disruptors. Nippon rinsho, 1998,56:2953-2962.
    [7]竹内纯一资源环境对策. 35(2),19(1999).
    [8] Baskin LS, Erol A, Jegatheesan P, et al.Urethral seam formation and hypospadias. Cell-Tissue-Res, 2001, 305:379-387.
    [9] Miyagawa S, Buchanan DL, Sato T et al. Characterization of diethylstilbestrol induced hypospadias in female mice. The Anatomical record, 2002, 266:43-50.
    [10] Blount BC, Silva MJ, Caudill SP, et al. Levels of seven urinary phthalate metabolites in a human rcference population. Environ Health Perspect. 2000, 108:979-982.
    [11] Jones, Tammy, U.S.EPA, Las Vegas, NV, Private Communication, December 12, 1996.
    [12] Needham, Larry, National Center for EnvironmentaI Health, Centers for Disease Control & Prevention, Public Health Service, DHHS Atlanta. GA, Private Communication, August 25, 1996.
    [13] Baskin LS, Himes K, et al. Hypospadias and endocrine disruption: is there a connection? Environ Health Perspect, 2001 Nov;109(11):1175-1183.
    [14] Semenza JC, Tolbert PE, Rubin CH, et al. Reproductive toxins and alligator abnomalities at Lake Apopka. Florida. Environ Health Perspect. 1997, 105:1030.
    [15] Baskin LS, Ebbers MB Hypospadias: anatomy, etiology, and technique. J Pediatr Surg, 2006, 41: 463-472.
    [16] Klonisch T,Fowler PA,Hombach-Klonisch S.Molecular and genetic regulation of testis descent and external genitalia development. Dev Biol, 2004,270(1):1-18.
    [17] Jiang JT, Ma L, Yuan L, et al. Study on developmental abnormalities in hypospadiac male rats induced by maternal exposure to di-n-butyl phthalate (DBP).Toxicology, 2007,232(3):286-293.
    [18] Zhang W,Shen H,Ma L, et al. Differential expression of peroxiredoxin 6 in fetal rat testis following in utero exposure to di(n-butyl) phthalate. Toxicology, 2007,240(1-2):86-95.
    [19]蒋君涛,马隆,吴婷,等.邻苯二甲酸二丁酯致大鼠隐睾睾丸和附睾病理组织学改变研究.南京医科大学学报(自然科学版),2006,26(5):360-363.
    [20]蒋荣江,沈华,沈百欣,等.尿道下裂大鼠与正常大鼠睾丸蛋白质二维电泳图谱分析.南京医科大学学报(自然科学版),2007,27(12):1363-1365.
    [21]张炜,袁琳,吴婷,等.邻苯二甲酸二丁酯诱导尿道下裂大鼠模型的建立及其作用机制.中华实验外科杂志, 2005, 22(2):246-248.
    [22]徐子程,沈百欣,马隆,等.泛素碳端水解酶L1在邻苯二甲酸二丁酯诱导大鼠睾丸发育异常中的表达变化.中华男科学杂志,2008,14(8):680-684.
    [23]居小兵,沈百欣,徐子程,等.邻苯二甲酸二丁酯孕期暴露致仔鼠睾丸膜联蛋白A5的表达差异.中国组织工程研究与临床康复, 2008,12(50):9903-9908.
    [24] Lin C, Yin Y, Long F, et al. Tissue-specific Requirements of beta-Catenin in External Genitalia Development. Development, 2008, 135(16):2815-2825.
    [25] Satoh Y, Haraguchi R, Wright TJ, et al. Regulation of external genitalia development by concerted actions of FGF ligands and FGF receptors. Anat Embryol(Berl), 2004, 208(6): 479-486.
    [26] Hains D, Sims-Lucas S, Kish K, et al. Role of fibroblast growth factor receptor 2 in kidney mesenchyme. Pediatr Res, 2008, 64(6):592-598.
    [27] Haraguchi R, Suzuki K, Murakami R, et al Molecular analysis of external genitalia formation: the role of fibroblast growth factor (Fgf) genes during genital tubercle formation. Development, 2000, 127(11):2471-2479.
    [28] Zhu YJ, Jiang JT, Ma L, et al Molecular and toxicologic research in newborn hypospadiac male rats following in utero exposure to di-n-butyl phthalate (DBP). Toxicology, 2009, 260(1-3):120-125.
    [29] Miyagawa S, Satoh Y, Haraguchi R, et al. Genetic interactions of the androgen and Wnt/beta-catenin pathways for the masculinization of external genitalia. Mol Endocrinol, 2009,23(6):871-880.
    [30] Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development.Genes Dev, 1997,11(24):3286-3305.
    [31] Zhang Y, Tomann P, Andl T, et al. Reciprocal requirements for EDA/EDAR/NF-kappaB and Wnt/beta-catenin signaling pathways in hair follicle induction. Dev Cell, 2009,17(1):49-61.
    [32] Kim B, Byun SJ, Kim YA, et al. Cell cycle regulators, APC/beta-catenin, NF-kappaB and Epstein-Barr virus in gastric carcinomas. Pathology, 2010,42(1):58-65.
    [33] Hoeflich KP, Luo J, Ruhie EA, et a1. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature, 2000, 406(6791):86-90.
    [34] Gotschel F, Kern C, Lang S,et al. Inhibition of GSK3 differentially modulates NF-kappaB, CREB, AP-1 and beta-catenin signaling in hepatocytes, but fails to promote TNF-alpha-induced apoptosis. Exp Cell Res, 2008,314(6):1351-1366.
    [35] Du Q, Zhang X, Cardinal J, et al. Wnt/beta-catenin signaling regulates cytokine-induced human inducible nitric oxide synthase expression by inhibiting nuclear factor-kappaB activation in cancer cells. Cancer Res, 2009, 69(9):3764-3771.
    Beleza-Meireles, A., Lundberg, F., Lagerstedt, K., Zhou, X., Omrani, D., Frisén, L. and Nordenskj?ld, A. (2007) FGFR2, FGF8, FGF10 and BMP7 as candidate genes for hypospadias. Eur.J.Hum.Genet. 15:405-410.
    Boisen, K.A, Chellakooty, M., Schmidt, I.M, Kai, C.M., Damgaard, I.N., Suomi, A.M., Toppari, J., Skakkebaek, N.E. and Main, K.M. (2005) Hypospadias in a cohort of 1072 Danish newborn boys: prevalence and relationship to placental weight, anthropometrical measurements at birth, and reproductive hormone levels at three months of age. J.Clin.Endocrinol.Metab. 90:4041-4046.
    Bours, V., Bentires-Alj, M., Hellin, A.C., Viatour, P., Robe, P., Delhalle, S., Benoit, V., and Merville, M.P. (2000). Nuclear factor-kappaB, cancer, and apoptosis.Biochem. Pharmacol. 60:1085-1089.
    Cadigan, K.M. and Nusse, R. (1997) Wnt signaling: a common theme in animal development. Genes Dev. 11:3286-3305.
    Choi, H., Gwak, J., Cho, M., Ryu, M.J., Lee, J.H., Kim, S.K., Kim, Y.H., Lee, G.W., Yun, M.Y., Cuong, N.M., Shin, J.G., Song, G.Y. and Oh, S. (2010) Murrayafoline A attenuates the Wnt/beta-catenin pathway by promoting the degradation of intracellular beta-catenin proteins. Biochem.Biophys.Res.Commun. 391:915-920.
    Dale, T.C., (1998). Signal transduction by the Wnt family of ligands. Biochem.J. 329: 209-223.
    de la Taille, A., Rubin, M.A., Chen, M.W., Vacherot, F., de Medina, S.G., Burchardt, M., Buttyan, R. and Chopin, D. (2003) Beta-catenin-related anomalies in apoptosis-resistant and hormone-refractory prostate cancer cells. Clin Cancer Res. 9:1801-1807.
    Deng, J., Miller, S.A., Wang, H.Y., Xia, W., Wen, Y., Zhou, B.P., Li, Y., Lin, S.Y. and Hung, M.C. (2002) beta-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer. Cancer Cell 2:323-334.
    Duty, S.M., Calafat, A.M., Silva, M.J., Brock, J.W., Ryan, L., Chen, Z., Overstreet, J. and Hauser, R. (2004) The relationship between environmental exposure to phthalates and computer-aided sperm analysis motion parameters. J.Androl. 25: 293-302.
    Duty, S.M, Silva, M.J, Barr, D.B, Brock, J.W., Ryan, L., Chen, Z., Herrick, R.F., Christiani, D.C. and Hauser, R. (2003) Phthalate exposure and human semen parameters. Epidemiology 14:269–277.
    Fisher, J.S., Macpherson, S., Marchetti, N. and Sharpe, R.M. (2003). Human'testicular dysgenesis syndrome': a possible model using in-uteroexposure of the rat to dibutyl phthalate. Hum.Reprod. 18:1383-1394.
    Foster, P.M. (2006) Disruption of reproductive development in male rat offspring following in utero exposure to phthalate esters. Int.J.Androl. 29:181-185.
    Gallentine, M.L., Morey, A.F. and Thompson, I.M. (2001) Hypospadias: a contemporary epidemiologic assessment. Urology 57:788-790.
    Haraguchi, R., Suzuki, K., Murakami, R., Sakai, M., Kamikawa, M., Kengaku, M., Sekine, K., Kawano, H., Kato, S., Ueno, N., Yamada, G.. (2000) Molecular analysis of external genitalia formation: the role of fibroblast growth factor (Fgf) genes during genital tubercle formation. Development 127:2471-2479.
    Haraguchi, R., Mo, R., Hui, C., Motoyama, J., Makino, S., Shiroishi, T., Gaffield, W., Yamada, G. (2001) Unique functions of Sonic hedgehog signaling during external genitalia development. Development 128:4241-4250.
    Hauser, R., Meeker, J.D., Duty, S., Silva, M.J. and Calafat, A.M. (2006) Altered semen quality in relation to urinary concentrations of phthalate monoester and oxidative metabolites. Epidemiology 17:682-691.
    Hoeflich, K.P., Luo, J., Rubie, E.A., Tsao, M.S., Jin, O. and Woodgett, J.R. (2000) Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406:86-90.
    Huang, P.C., Kuo, P.L., Chou, Y.Y., Lin, S.J. and Lee, C.C. (2009) Association between prenatal exposure to phthalates and the health of newborns. Environ.Int. 35:14-20.
    Jiang, J., Ma, L., Yuan, L., Wang, X. and Zhang, W. (2007) Study on developmental abnormalities in hypospadiac male rats induced by maternal exposure to di-n-butyl phthalate(DBP). Toxicology 232:286-293.
    Kalfa, N., Philibert, P. and Sultan, C. (2009) Is hypospadias a genetic, endocrine or environmental disease, or still an unexplained malformation? Int.J.Androl. 32:187-197.
    Karin, M. (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431-436.
    Kojima, Y., Kohri, K. and Hayashi, Y. (2010) Genetic pathway of external genitalia formation and molecular etiology of hypospadias. J.Pediatr.Urol. 6:346-354
    Lin, C., Yin, Y., Long, F. and Ma, L. (2008) Tissue-specific requirements of beta-catenin in external genitalia development. Development 135:2815-2825.
    Liu, X., Rubin, J.S. and Kimmel, A.R. (2005) Rapid, Wnt-induced changes in GSK3beta associations that regulate beta-catenin stabilization are mediated by Galpha proteins. Curr.Biol. 15:1989-1997.
    Manson, J.M. and Carr, M.C. (2003) Molecular epidemiology of hypospadias: review of genetic and environmental risk factors. Birth Defects Res. A 67:825-836.
    Martino-Andrade, A.J. and Chahoud, I. (2010) Reproductive toxicity of phthalate esters. Mol.Nutr.Food Res. 54:148-157.
    Miyagawa, S., Moon, A. and Haraguchi, R. (2009) Dosage-dependent hedgehog signals integrated with Wnt/beta-catenin signaling regulate external genitalia formation as an appendicular program. Development 136:3969-3978.
    Miyagawa, S., Satoh, Y., Haraguchi, R., Suzuki, K., Iguchi, T., Taketo, M.M., Nakagata, N., Matsumoto, T., Takeyama, K., Kato, S. and Yamada, G. (2009) Genetic interactions of the androgen and Wnt/beta-catenin pathways for the masculinization of external genitalia. Mol.Endocrinol. 23:871-880.
    Najafi, S.M. (2009) Activators of G proteins inhibit GSK-3beta and stabilize beta-Catenin in Xenopus oocytes. Biochem.Biophys.Res.Commun. 382: 365-369.
    Pan, G., Hanaoka, T. and Yoshimura, M. (2006) Decreased serum free testosteronein workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a crosssectional study in China. Environ.Health Perspect. 114: 1643-1648.
    Rozati, R., Reddy, P.P., Reddanna, P. and Mujtaba, R. (2000) Xenoesterogens and male infertility: myth or reality? Asian J. Androl. 2:263-269.
    Santos, A., Bakker, A.D., Zandieh-Doulabi, B., de Blieck-Hogervorst, J.M. and Klein-Nulend, J. (2010) Early activation of the beta-catenin pathway in osteocytes is mediated by nitric oxide, phosphatidyl inositol-3 kinase/Akt, and focal adhesion kinase. Biochem.Biophys.Res.Commun. 391:364-369.
    Scarano, W.R, Toledo, F.C, Guerra, M.T, de Campos, S.G., Júnior, L.A., Felisbino, S.L., Anselmo-Franci, J.A., Taboga, S.R. and Kempinas, Wde, G. (2009) Long-term effects of developmental exposure to di-n-butyl-phthalate (DBP) on rat prostate: proliferative and inflammatory disorders and a possible role of androgens. Toxicology 262:215-223.
    Seifert, A.W., Bouldin, C.M., Choi, K.S., Harfe, B.D. and Cohn, M.J. (2009) Multiphasic and tissue-specific roles of sonic hedgehog in cloacal septation and external genitalia development. Development 136:3949-3957.
    Shakoori, A., Ougolkov, A., Yu, Z.W., Zhang, B., Modarressi, M.H., Billadeau, D.D., Mai, M., Takahashi, Y. and Minamoto, T. (2005) Deregulated GSK3beta activity in colorectal cancer: its association with tumor cell survival and proliferation. Biochem.Biophys.Res.Commun. 334:1365-1373.
    Swan, S.H., Main, K.M., Liu, F., Stewart, S.L., Kruse, R.L., Calafat, A.M., Mao, C.S., Redmon, J.B., Ternand, C.L., Sullivan, S., Teague, J.L. and Study for Future Families Research Team. (2005) Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ.Health Perspect. 113: 1056-1061.
    Teng, Y., Wang, X., Wang, Y., and Ma, D. (2010) Wnt/beta-catenin signaling regulates cancer stem cells in lung cancer A549 cells. Biochem.Biophys.Res.Commun. 392:373-379.
    Wang, M.H. and Baskin, L.S. (2008) Endocrine disruptors, genital development, and hypospadias. J.Androl. 29:499-505.
    Wang, Y., Kreisberg, J.I. and Ghosh, P.M. (2007) Cross-talk between the androgen receptor and the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer. Curr. Cancer Drug Targets 7:591-604.
    Wang, Y., Krivtsov, A.V., Sinha, A.U., North, T.E., Goessling, W., Feng, Z., Zon, L.I. and Armstrong, S.A. (2010) The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 327:1650-1653.
    Yang, F., Li, X., Sharma, M. Sasaki, C.Y., Longo, D.L., Lim, B. and Sun, Z. (2002) Linking beta-catenin to androgen-signaling pathway. J. Biol. Chem. 277:11336-11344.
    Yang, W., Carmichael, S.L. and Shaw, G.M. (2007) Congenital malformations co-occurring with hypospadias in California, 1983–1997. Am.J.Med.Genet.A 143A:2627-2634.
    Zhang, W., Shen, H., Ma, L., Shen, B., Xu, Z. and Wang, X. (2007) Differential expression of peroxiredoxin 6 in fetal rat testis following in utero exposure to di(nbutyl) phthalate. Toxicology 240:86-95.
    Zhu, Y.J., Jiang, J.T., Ma, L., Zhang, J., Hong, Y., Liao, K., Liu, Q. and Liu, G.H. (2009) Molecular and toxicologic research in newborn hypospadiac male rats following in utero exposure to di-n-butyl phthalate (DBP). Toxicology 260: 120-125.
    [1] Gallentine ML, Morey AF, Thompson IM, et al. Hypospadias: a contemporary epidemiologic assessment. Urology, 2001, 57: 788–790.
    [2] Boisen KA, Chellakooty M, Schmidt IM, et al. Hypospadias in a cohort of 1072 Danish newborn boys: prevalence and relationship to placental weight, anthropometrical measurements at birth,and reproductive hormone levels at three months of age. J Clin Endocrinol Metab, 2005, 90:4041-4046.
    [3]李森恺.尿道下裂学.北京:科学出版社,2008.
    [4] Main KM, Jensen RB, Asklund C, et al. Low birth weight and male reproductive function. Horm Res, 2006,65 Suppl 3:116-22.
    [5] Baskin LS, Ebbers MB Hypospadias: anatomy, etiology, and technique. J Pediatr Surg, 2006, 41: 463-472.
    [6] Bellinger MF. Embryology of the male external genitalia. Urol Clin North Am, 1981, 8: 375–382.
    [7] Lin C, Yin Y, Long F, et al. Tissue-specific Requirements of beta-Catenin in External Genitalia Development. Development, 2008, 135(16):2815-2825.
    [8] Satoh Y, Haraguchi R, Wright TJ, et al. Regulation of external genitalia development by concerted actions of FGF ligands and FGF receptors. Anat Embryol(Berl), 2004, 208(6): 479-486.
    [9] Hains D, Sims-Lucas S, Kish K, et al. Role of fibroblast growth factor receptor2 in kidney mesenchyme. Pediatr Res, 2008, 64(6):592-598.
    [10] Haraguchi R, Suzuki K, Murakami R, et al. Molecular analysis of external genitalia formation: the role of fibroblast growth factor (Fgf) genes during genital tubercle formation. Development, 2000, 127(11):2471-2479.
    [11] Zhu YJ, Jiang JT, Ma L, et al. Molecular and toxicologic research in newborn hypospadiac male rats following in utero exposure to di-n-butyl phthalate (DBP). Toxicology, 2009, 260(1-3):120-125.
    [12] Jiang JT, Ma L, Yuan L, et al. Study on developmental abnormalities in hypospadiac male rats induced by maternal exposure to di-n-butyl phthalate (DBP). Toxicology, 2007, 232(3):286-293.
    [13] Seifert AW, Yamaguchi T, Cohn MJ. Functional and phylogenetic analysis shows that Fgf8 is a marker of genital induction in mammals but is not required for external genital development. Development, 2009, 136(15):2643-2651.
    [14] Itman C, Mendis S, Barakat B, et al. All in the family: TGF-beta family action in testis development. Reproduction, 2006, 132(2):233-246.
    [15] Liu X, He DW, Zhang DY, et al. Di(2-ethylhexyl) phthalate (DEHP) increases transforming growth factor-beta1 expression in fetal mouse genital tubercles. J Toxicol Environ Health A, 2008, 71(19):1289-1294.
    [16] Lai EC. Notch signaling: control of cell communication and cell fate. Development, 2004, 131(5):965-973.
    [17] Niimi H, Pardali K, Vanlandewijck M, et al. Notch signaling is necessary for epithelial growth arrest by TGF-beta. J Cell Biol, 2007, 176(5):695-707.
    [18] Timmerman LA, Grego-Bessa J, Raya A, et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev, 2004, 18(1):99-115.
    [19] Bitgood MJ, McMahon AP. Hedgehog and Bmp genes are coexpressed at manydiverse sites of cell-cell interaction in the mouse embryo. Dev Biol, 1995, 172(1):126-138.
    [20] Perriton CL, Powles N, Chiang C, et al. Sonic hedgehog signaling from the urethral epithelium controls external genital development. Dev Biol, 2002, 247(1):26-46.
    [21] Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development.Genes Dev,1997,11(24):3286-3305
    [22] Miller JR. The Wnts. Genome Biol, 2002, 3(1):1-15
    [23] Vainio S, Heikkila M, Kispert A, et al. Female development in mammals is regulated by Wnt-4 signalling. Nature, 1999, 397(6718):405-409.
    [24] Miyagawa S, Satoh Y, Haraguchi R, et al. Genetic interactions of the androgen and Wnt/beta-catenin pathways for the masculinization of external genitalia. Mol Endocrinol, 2009, 23(6):871-880.
    [25] Lin C, Yin Y, Long F, et al. Tissue-specific requirements of beta-catenin in external genitalia development. Development, 2008, 135(16):2815-2825.
    [26] Deng J, Miller SA, Wang HY, et al. beta-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer. Cancer Cell, 2002, 2(4):323-334.
    [27] Hoeflich KP, Luo J, Ruhie EA, et al. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature, 2000, 406(6791):86-90.
    [28] Deng J, Xia W, Miller SA, et al. Crossregulatiou of NF-kappaB by the APC/GSK-3beta/beta-catenin pathway. Mol Carcinog, 2004, 39(3):139-146.
    [29] Schwabe RF, Brenner DA. Role of glycogen synthase kinase-3 in TNF-alpha-induced NF-kappaB activation and apoptosis in hepatocytes. Am J Physiol Gastrointest Liver Physiol, 2002, 283(1):G204-211.
    [30]陈康杰,黄建. Wnt和核因子-κB信号通路在肿瘤发生中的“对话".国外医学肿瘤学分册, 2005, 32(11):817-819.
    [31]贺厚光,张炜,吴天麟,等.苯甲酸雌二醇诱导小鼠尿道下裂动物模型的建立.中华男科学, 2007, 13(1):4-7
    [32]贺厚光,张炜,朱佳庚.小鼠尿道下裂动物模型的建立.中华男科学, 2004, 10(3):172-174.
    [33]张炜,袁琳,吴婷,等.邻苯二甲酸二丁酯诱导尿道下裂大鼠模型的建立及其作用机制.中华实验外科杂志, 2005, 22(2):246-248.
    [34] Zhang W, Shen H, Ma L, et al. Differential expression of peroxiredoxin 6 in fetal rat testis following in utero exposure to di(n-butyl) phthalate. Toxicology, 2007, 240(1-2):86-95.
    [35] Ge R, Chen G, Sottas CM, et al. Effects of prenatal exposures to phthalate on fetal Leydig cell numbers and distribution in the testis of the Long Evans rat. Boston, MA, The Endocrine Society's 88 th AnnualMeeting: P1-171: 2006.
    [36] Ema M, Miyawaki E, Kawashima K. Further evaluation of developmental toxicity of di-n-butyl phthalate following administration during late pregnancy in rats. Toxicol Lett, 1998, 98 (1-2): 87-93.
    [37] Wilson VS, Lambright C, Furr J, et al. Phthalate ester-induced gubernacular lesions are associated with reduced insl3 gene expression in the fetal rat testis. Toxicol Lett, 2004, 146 (3) :207-215.
    [38] Rider CV, Wilson VS, Howdeshell KL, et al. Cumulative effects of in utero administration of mixtures of "antiandrogens" on male rat reproductive development. Toxicol Pathol, 2009, 37(1):100-113.
    [39] Fisher JS, Macpherson S, Marchetti N, et al. Human 'testicular dysgenesis syndrome': a possible model using in-utero exposure of the rat to dibutyl phthalate. Hum Reprod, 2003, 18 (7) :1383-1394.
    [40] Bay K, Hartung S, Ivell R, et al. Insulin-like factor 3 serum levels in 135normal men and 85 men with testicular disorders: relationship to the luteinizing hormone-testosterone axis. J Clin Endocrinol Metab, 2005, 90(6):3410-3418.
    [41] Ogata T, Laporte J, Fukami M. MAMLD1 (CXorf6): a new gene involved in hypospadias. Horm Res, 2009, 71(5):245-252.
    [42] Hai T, Hartman MG. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene, 2001, 273:1–11.
    [43] Kalfa N, Liu B, Klein O, et al. Genomic variants of ATF3 in patients with hypospadias. J Urol, 2008, 180(5):2183-2188.
    [44] Liu B, Wang Z, Lin G, et al. Activating transcription factor3 is up-regulated in patients with hypospadias. Pediatr Res, 2005, 58(6):1280-1283.
    [45] Beleza-Meireles A, Tohonen V, Soderhall C, et al. Activating transcription factor 3: a hormone responsive gene in the etiology of hypospadias. Eur J Endocrinol, 2008, 158(5):729-739.
    [46] Janz M, Hummel M, Truss M, et al. Classical Hodgkin lymphoma is characterized by high constitutive expression of activating transcription factor 3 (ATF3) , which promotes viability of Hodgkin/ Reed-Sternberg cells. Blood, 2006, 107(6):2536-2539.
    [47] Nawa T, Nawa MT, Cai Y, et al. Repression of TNF-alpha-induced E-selectin expression by PPAR activators: involvement of transcriptional repressor LRF-1/ATF3. Biochem Biophys Res Commun, 2000, 275(2):406-411.
    [48] Lu D, Chen J, Hai T. The regulation of ATF3 gene expression by mitogen-activated protein kinases. Biochem J, 2007, 401(2):559-567.
    [49] Kang Y, Chen CR, Massague J. A Self-Enabling TGFbeta Response Coupled to Stress Signaling: Smad Engages Stress Response Factor ATF3 for Id1 Repression in Epithelial Cells. Mol Cell, 2003, 11(4):915-926.
    [50] Brown CJ, Goss SJ, Lubahn DB, et al. Androgen receptor locus on the human X chromosome: regional localization to Xql1-12 and description of a DNA polymorphism. Am J Hum Genet, 1989, 44:264-269.
    [51] van Laar JH, Bolt-de Vries J, Voorhorst-Ogink MM, et al. The human androgen receptor is a 110 kDa protein. Mol Cell Endocrinol, 1989,63:39-44.
    [52]段志文.雄激素受体在环境内分泌干扰物致雄性生殖损伤中的作用的研究进展.沈阳医学院学报, 2009, 11(4):197-202
    [53] Sajjad Y, Quenby S, Nickson P, et al. Immunohistochemical localization of androgen receptors in the urogenital tracts of human embryos. Reproduction, 2004, 128(3):331-339.
    [54] Kim S, Liu W, Cunha GR, et al. Expression of the androgen receptor and 5alpha-reductase type 2 in the developing human fetal penis and urethra. Cell Tissue Res, 2002, 307(4):145-153.
    [55] Chawnshang Chang, Yen-Ta Chen, Shauh-Der Yeh, et al. Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells. PNAS, 2004, 101(18):68-76.
    [56] Merlet J, Moreau E, Habert R, et al. Development of fetal testieular cells in androgen receptor deficient mice. Cell Cycle, 2007, 6(18):2258-2262.
    [57] Kelce WR, Stone CR, Laws SC, et al. Persistent DDT metabolite p,p'-DDE is a potent androgen receptor antagonist. Nature, 1995, 375(6532):58l-585.
    [58] Wong C, Kelce WR, Sar M, et al. Androgen receptor antagonist versus agonist activities of the fungicide vinclozolin relative to hydroxynutamide. J Biol Chem, 1995, 270(34):19998-20003.
    [59] Langley E, Zhou ZX, Wilson EM. Evidence for an anti-parallel orientation of the ligand-activated human androgen receptor dimer. J Biol Chem, 1995, 270(50):29983-29990.
    [60] Kuil CW, Berrmrnets CA, Mulder E. Ligand-induced conformational alterations of the androgen receptor analyzed by limited trypsinization. Studies on the mechanism of antiandrogen action. J Biol Chem, 1995, 270(46):27569-27576.
    [61] Kemppainen JA, Lane MV, Sar M, et al. Androgen receptor phosphorylation, turnover, nuclear transport and transcriptional activation. Specificity for steroids and antihormones. J Biol Chem, 1992, 267(2):968-974.
    [62] Gottlieb B, Trifiro M, Lumbroso R, et al. The androgen receptor gene mutations database. Nucleic Acids Research, 1997, 25(1):158-162.
    [63] Li W, Cavasotto CN, Cardozo T, et al. Androgen recep tor mutations identified in prostate cancer and androgen insensitivity syndrome display aberrant ART-27 coactivator function. Mol Endocrinol, 2005, 19(9):2273-2282.
    [64] Elhaji YA, Stoica I, Dennis S, et al. Impaired helix 12 dynamics due to proline 892 substitutions in the androgen receptor are associated with complete androgen insensitivity. Hum Mol Genet, 2006, 15(6):921-931.
    [65] Georget V, Bourguet W, Lumbroso S, et al. Glutamic acid 709 substitutions highlight the importance of the interaction between androgen receptor helices H3 and H12 for androgen and antiandrogen actions. Mol Endocrinol, 2006, 20(4):724-734.
    [66] Kantoff P, Giovannucci E, Brown M. The androgen receptor CAG repeat polymorphism and its relationship to prostate cancer. Biochim Biophys Acta, 1998, 1378:C1-C5.
    [67] Irvine RA, Yu MC, Ross RK, et al. The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res, 1995, 55:1937-1940.
    [68] Gupta C, Siegel S, Ellis D. The role of EGF in testosterone-induced reproductive tract differentiation. Dev Biol, 1991, 146(1):106-116.
    [69] l-Galley RE, Smith E, Cohen C, et al. Epidermal growth factor (EGF) and EGF receptor in hypospadias. Br J Urol, 1997, 79(1):116-119.
    [70] Kalfa N, Philibert P, Sultan C. Is hypospadias a genetic, endocrine or environmental disease, or still an unexplained malformation?. Int J Androl, 2009, 32(3):187-197.
    [71] Hu GX, Lian QQ, Ge RS, et al. Phthalate-induced testicular dysgenesis syndrome: Leydig cell influence. Trends Endocrinol Metab, 2009, 20(3):139-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700