ATF3在糖皮质激素与邻苯二甲酸二丁酯联合作用致大鼠尿道下裂发生中的表达变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:利用糖皮质激素与邻苯二甲酸二丁酯(DBP)联合作用致大鼠尿道下裂,验证转录激活因子3(ATF3)在正常大鼠生殖结节(GT)与不同严重程度尿道下裂大鼠生殖结节中的差异表达,以强调组合因素在尿道下裂病因中的重要性,并探讨ATF3在尿道下裂发生中的作用机制。
     方法:SD孕鼠80只,随机分为4组,每组20只,在妊娠14~18天(GD14~18)分别给予:A组:大豆油2ml/d灌胃;B组:地塞米松(DXM)0.1mg/(kg·d)皮下注射;C组:DBP700mg/(kg·d)灌胃;D组:地塞米松0.1mg/(kg·d)皮下注射加DBP700mg/(kg·d)灌胃。于GD19将各组半数孕鼠处死剖腹统计仔鼠数、雄性仔鼠出生体重(BW)及肛门生殖器间距离(AGD),取雄性仔鼠生殖结节,运用免疫印迹法和免疫组织化学方法分析ATF3的表达情况,剩余孕鼠自然分娩后,于出生后第70天(PND70)观察统计尿道下裂和隐睾的发生情况。
     结果:地塞米松单独作用于孕鼠仅表现为后代仔鼠出生体重的下降,但与DBP组合作用却能显著增强DBP的致畸作用,导致后代雄性仔鼠出生体重及肛门生殖器间距离/出生体重(AGD/BW)明显减少,且尿道下裂发生率、严重程度以及隐睾发生率较DBP单因素作用下更为显著,统计显示隐睾在C组和D组的发生率分别为:58%和88%,尿道下裂的在C组和D组的发生率分别为:37%和60%,而尿道下裂严重程度则根据出生后70天(PND70)大鼠外生殖器观察统计。蛋白质组学结果显示,ATF3在A组的蛋白相对表达量为0.351±0.012(n=10),B组为0.336±0.015(n=10),C组为0.603±0.014(n=10),D组为0.851±0.016(n=10),C组或D组与A组,以及C组与D组之间的差异均有统计学意义(P<0.05);免疫组化结果显示ATF3主要定位于生殖结节的尿道上皮和侧翼间质,C组和D组免疫组化染色强度明显强于A组,而D组染色强于C组。
     结论:地塞米松联合DBP进一步增强了DBP的致畸作用,表现为后代雄性仔鼠出生体重及肛门生殖器间距离/出生体重(AGD/BW)明显减少,且尿道下裂发生率、严重程度以及隐睾发生率较DBP单因素作用下更为显著,提示我们尿道下裂的发生是环境中多因素协同作用下的结果;ATF3在对照组与实验组组生殖结节中的表达有明显变化,且随着尿道下裂程度的加重而表达增高,ATF3的高表达影响了生殖结节的发育及尿生殖褶的融合,这可能是尿道下裂发生的机制之一。
Objective To verify the differential expression of ATF3 in the genital tubercle(GT) of hypospadiac rats induced by maternal exposure to DBP or DBP+DXMamethasone (DXM) in order to stress the importance of combination of factors rather than single angents and to further explore the mechanism of hypospadias.
     Methods Eighty pregnant SD rats were randomly divided into four groups which were given: Group A: soybean oil oral gavage 2ml/d; Group B: DXM sc-injection 0.1mg/(kg·d); Group C: DBP oral gavage 700 mg/(kg·d); Group D: DBP(700mg/kg gavage)+DXM(0.1mg/kg sc-injection) during GD14-18. Half of the pregnant rats were killed at GD19, we recorded fetal rats’number, birth weight (BW), anogenital distance (AGD) and harvested GT to verify the expression of ATF3 by Western blotting and immunohistochemistry. The rest spontaneous labor rats were used to record the incidence of hypospadias and cryptorchidism at PND70.
     Results DXM alone had no effect except to reduce BW but can increase the teratogenic effect of DBP when combined with it. The BW and AGD/BW of group D was significantly lower than group C, and the incidence of hypospadias and cryptor- chidism vice versa. The incidence of cryptorchidism in group C was 58%,in group D was 88%. The incidence of hypospadias in group C was 37%,in group D was 60%. And the severity of hypospadias is according to PND70 rats genitals observation statistics. The expression of ATF3 in group A was:0.351±0.012(n=10), in group B was: 0.336±0.015(n=10), in group C was: 0.603±0.014(n=10), in group D was: 0.851±0.016(n=10), it had statistical difference between group C or D with A, as well as C with D (P<0.05). ATF3 was mainly located in the urethral epithelium and mesenchy- me, the result of staining intensity was in common with western blotting.
     Conclusion These results suggests that exposure to common environmental chemicals in combination with environmental endocrine disruptors, may increase the risk of male reproductive abnormalities, such as hypospadias. Up-regulation of ATF3 may affect urethral fold fusion, then lead to the occurrence of hypospadias.
引文
[1] Sun G, Tang D, Liang J, Wu M. Increasing prevalence of hypospadias associated with various perinatal risk factors in chinese newborns. Urology. 2009 Jun;73(6):1241-5.
    [2] Manson JM, Carr MC. Molecular epidemiology of hypospadias: review of genetic and environmental risk factors. Birth Defects Res A Clin Mol Teratol 2003; 67:825-36.
    [3] Erol A, Baskin LS, Li YW, et al. Anatomical studies of the urethral plate: why preservation of the urethral plate is important in hypospadias repair. BJU Int. 2000, 85(6):728-34.
    [4] Baskin LS, Erol A, Jegatheesan P,et al. Urethral seam formation and hypospadias. Cell Tissue Res. 2001, 305(3):379-87.
    [5] Aaronson IA, Cakmak MA, Key LL. Defects of the testosterone biosynthetic pathway in boys with hypospadias. J Urol. 1997, 157(5):1884-8.
    [6]张炜,袁琳,吴婷,等.邻苯二甲酸二丁酯诱导尿道下裂大鼠模型的建立及其作用机制.中华实验外科杂志,2005,22(2):246-248.
    [7]蒋君涛,马隆,吴婷,等.邻苯二甲酸二丁酯致尿道下裂大鼠发育异常和阴茎病理学改变研究.中华实验外科杂志,2006,23(5):576-578.
    [8] Jiang JT, Ma L, Yuan L, et al. Study on developmental abnormalities in hypospadiac male rats induced by matemal exposure to di-n-butyl phthalate(DBP). Toxicol, 2007,232(3): 286-293.
    [9] CIRC(Cosmetic Ingredient Review Committee). Final report on the safety assessment of dibutyl Phthalate, dimethyl Phthalate, and diethyl Phthalate. J Am Coll Toxicol, 1985, 4:267-303.
    [10] Huber WW, Grasl-Kraupp B, Schulte-Hermann R. Hepatocarcinogenic potentialof di (2- eth -ylhexyl) phthalate in rodents and its implications on human risk. Crit Rev Toxicol, 1996; 26: 365-481.
    [11] Térouanne B, Tahiri B, Georget V,et al. A stable prostatic bioluminescent cell line to investigate androgen and antiandrogen effects. Mol Cell Endocrinol. 2000, 160(1-2):39-49.
    [12] Drake AJ, Tang JI, Nyirenda MJ. Mechanisms underlying the role of glucocorticoids in the early life programming of adult disease. Clin Sci, 2007; 113:219-232.
    [13] HAI T,HARTMAN M G.The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors:activating transcription factor proteins and homeostasis[J] 2001 Gene,2001,273(1):1-11
    [14] Liu B, Wang Z, Lin G. et al.Activating transcription factor 3 is up-regulated in patients with hypospadias.Pediatr Res. 2005 Dec;58(6):1280-3.
    [15] Beleza-Meireles A, T?h?nen V, S?derh?ll C, et al. Activating transcription factor 3: a hormone responsive gene in the etiology of hypospadias. Eur J Endocrinol. 2008 May;158(5): 729-39.
    [16] Welsh M, Saunders PT, Fisken M, et al. Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchid- ism. J Clin Invest, 2008; 118:1479-1490.
    [17] Laurence S. Baskin.尿道下裂病因及解剖学研究.中华小儿外科杂志, 2000,21(1):62-63.
    [18]张炜,袁琳,吴婷,等.邻苯二甲酸二丁酷诱导尿道下裂大鼠模型的建立及其作用机制.中华实验外科杂志,2005,22(2):246-248.
    [19] Barlow NJ, Phillips SL, Wallace DG, et al. Quantitative changes in gene expression in fetal rat testes following exposure to di(n-butyl)phthalate. ToxicolSci, 2003, 73(2):431-441.
    [20] Lehmann KP, Phillips S, Sar M, et al. Dose-dependent alterations in gene expression and testosterone synthesis in the fetal testes of male rats exposed to di(n-butyl)phthalate. Toxicol Sci, 2004, 81(1):60-68.
    [21] Gao HB, Tong MH, Hu YQ, et al. Glucocorticoid induced apoptosis in rat leydig cells. Endocrinology, 2002, 143(1): 130-138.
    [22] Pedrana G, Sloboda DM, Pe′rez W, et al. Effects of pre-natal glucocorticoids on testicular development in sheep. Anat Histol Embryol, 2008; 37:352–358.
    [23] Page KC, Sottas CM, Hardy MP. Prenatal exposure to DXMamethasone alters Leydig cell steroidogenic capacity in immature and adult rats. J Androl, 2001; 22:973–980.
    [24] Main KM, Jensen RB, Asklund C, et al. Low birth weight and male reproductive function. Horm Res, 2006; 65:116–122.
    [25] Hai T,Hartman M G. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcript- tion factor proteins and homeostasis. Gene, 2001; 273(1):1-11
    [26] Willingham E, Baskin LS. Candidate genes and their response to environmental agents in the etiology of hypospadias. Nature Clinical Practice Urology, 2007; 4:270–279.
    [27] Francis JS, Dragunow M, During MJ. Over expression of ATF-3 protects rat hippocampal neurons from in vivo injection of kainic acid. Brain Res Mol Brain Res, 2004; 124: 199–203.
    [28] Nobori K, Ito H, Tamamori-Adachi M, et al. ATF3 inhibits doxorubicin-induced apoptosis in cardiac myocytes: a novel cardioprotective role of ATF3. J Mol Cell Cardiol, 2002; 34: 1387- 97.
    [29] van der Werff JF, Nievelstein RA, Brands E, et al. Normal development of the male anterior urethra. Teratology, 2000; 61: 172–83.
    [30] Liu B, Wang Z, Lin G, et al. Activating transcription factor 3 is up-regulated in patients with hypospadias. Pediatr Res, 2005; 58: 1280-3.
    [31] Liu X, Zhang DY, Li YS, et al. Di-(2-ethylhexyl) phthalate upregulates ATF3 expression and suppresses apoptosis in mouse genital tubercle. J Occup Health, 2009; 51(1):57-63.
    [32] Pelzer AE, Bektic J, Haag P, et al. The expression of transcription factor activating transcript- tion factor 3 in the human prostate and its regulation by androgen in prostate cancer. Journal of Urology, 2006; 175: 1517–1522.
    [33] Inoue A, Yoshida N, Omoto Y, et al. Development of cDNA microarray for expression profiling of estrogen-responsive genes. J Mol Endocrinol, 2002; 29(2):175-192.
    [34] Liu B, Agras K, Willingham E, et al. Activating transcription factor 3 is estrogen-responsive in utero and up-regulated during sexual differentiation. Hormone Research, 2006; 65 217- 222.
    [1] Sun G, Tang D, Liang J, Wu M. Increasing prevalence of hypospadias associated with various perinatal risk factors in chinese newborns. Urology. 2009 Jun; 73(6):1241-5.
    [2] Manson JM, Carr MC. Molecular epidemiology of hypospadias: review of genetic and environmental risk factors. Birth Defects Res A Clin Mol Teratol 2003; 67:825-36.
    [3] Wang MH, Baskin LS. Endocrine Disruptors, Genital Development, and Hypospadias. J Androl. 2008 Sep-Oct; 29(5):499-505.
    [4] Wei W, Gao JP, Zhang ZY, Ge JP. Clinical analysis and treatment of hypospadias accompanied by associated anomalies in urogenital system. Zhonghua Nan Ke Xue. 2003 Oct; 9(7):517-9.
    [5] Graves JA. Interactions between SRY and SOX genes in mammalian sex determination. Bioessays. 1998 Mar; 20(3):264-9.
    [6] Waters, P. D., Wallis, M. C. and Graves, J. A. M.Mammalian sex– Origin and evolution of the Y chromosome and SRY.Semin. Cell Dev. Biol.2007,18, 389–400.
    [7] Capel B, Swain A, Nicolis S et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 1993 Jun 4; 73(5):1019-30.
    [8] Dorsey FY, Hsieh MH, Roth DR.46, XX SRY-negative true hermaphrodite siblings.Urology. 2009 Mar; 73(3):529-31.
    [9] López M, Torres L, Méndez JP et al.Clinical traits and molecular findings in 46,XX males.Clin Genet. 1995 Jul; 48(1):29-34.
    [10] Numabe H, Nagafuchi S, et al.DNA analyses of XX and XX-hypospadiac males.Hum Genet. 1992 Nov; 90(3):211-4.
    [11] Dardis A, Saraco N et al.Report of an XX male with hypospadias and pubertal gynecomastia, SRY gene negative in blood leukocytes but SRY gene positive in testicular cells.Horm Res. 1997;47(2):85-8.
    [12] Knower KC, Kelly S, Ludbrook LM, et al. Failure of SOX9 regulation in 46XY disorders of sex development with SRY, SOX9 and SF1 mutations. PLoS One. 2011 Mar 11; 6(3):e17751.
    [13] Morais da Silva S, et al. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds.Nat Genet. 1996 Sep; 14(1):62-8.
    [14] Kojima Y, Hayashi Y et al. Up-regulation of SOX9 in human sex-determining region on the Y chromosome (SRY)-negative XX males. Clin Endocrinol (Oxf). 2008 May; 68(5):791-9.
    [15] Argentaro A, Sim H, Kelly S et al. A SOX9 defect of calmodulin-dependent nuclear import in campomelic dysplasia/autosomal sex reversal.J Biol Chem. 2003 Sep 5; 278(36):33839-47.
    [16] van Heyningen, V., Bickmore, W. A., Seawright, A., Fletcher, J, et al. Role for the wilms tumor gene in genital development?1990 P NATL ACAD SCI USA.87, 5383–5386
    [17] Klein EA, Chen RN, Levin HS et al. Testicular cancer in association with developmental renal anomalies and hypospadias.Urology. 1996 Jan; 47(1):82-7.
    [18] Diller L, Ghahremani M, Morgan J et al.Constitutional WT1 mutations in Wilms' tumor patients.J Clin Oncol. 1998 Nov; 16(11):3634-40.
    [19] Le Caignec C, Delnatte C, Vermeesch JR et al.Complete sex reversal in a WAGR syndrome patient.Am J Med Genet A. 2007 Nov 15;143A(22):2692-5.
    [20] K?hler B, Schumacher V, Schulte-Overberg U, et al.Bilateral Wilms tumor in a boy with severe hypospadias and cryptochidism due to a heterozygous mutationin the WT1 gene. Pediatr Res. 1999 Feb; 45(2):187-90.
    [21] K?hler B, Schumacher V, l'Allemand D, et al.Germline Wilms tumor suppressor gene (WT1) mutation leading to isolated genital malformation without Wilms tumor or nephropathy.J Pediatr. 2001 Mar; 138(3):421-4.
    [22] Laurence S. Baskin. The research of hypospadias etiology and anatomy. Chinese Journal of Pediatric Surgery, 2000, 21(1):62-63.
    [23] Kim KS, Liu W, Cunha GR et al. Expression of the androgen receptor and SRD5A2 in the developing human fetal penis and urethra. 2002 Cell Tissue Res, 307:145-153.
    [24] Wang Y, Li Q, Xu J, et al.Mutation analysis of five candidate genes in Chinese patients with hypospadias.Eur J Hum Genet. 2004 Sep; 12(9):706-12.
    [25] Samtani R, Bajpai M, Vashisht K, et al. Hypospadias Risk and Polymorphism in SRD5A2 and CYP17 Genes: Case-Control Study Among Indian Children. J Urol. 2011 Apr 19. [Epub]
    [26] Xu JJ, Li SK, Li Q, et al.Mutation analysis of SRD5A2 gene in patients with hypospadias. Zhonghua Z.X.W.K. 2006 Mar; 22(2):139-41.
    [27] Zhou L, Mei H, Liu T, et al. Identification of mutations of SRD5A2 gene and SRY gene in patients with hypospadias. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 1999 Oct; 16(5):311-4.
    [28] Sahu R, Boddula R, Sharma P, et al.Genetic analysis of the SRD5A2 gene in Indian patients with 5alpha-reductase deficiency.J Pediatr Endocrinol Metab. 2009 Mar; 22(3):247-54.
    [29] Chang CS, Kokontis J, Liao ST. Molecular cloning of human and rat complementary DNA encoding androgen receptors. Science. 1988 Apr 15;240(4850):324-6.
    [30] Li Q, Li SK, Xu JJ, et al.Study of genic mutations of androgen receptor inhypospadias. Zhonghua Z.X.W.K. 2004 Nov; 20(6):421-4.
    [31] Muroya K, Sasagawa I, Suzuki Y, et al.Hypospadias and the androgen receptor gene: mutation screening and CAG repeat length analysis.Mol Hum Reprod. 2001 May; 7(5):409-13.
    [32] Tadokoro R, Bunch T, Schwabe JW, et al.Comparison of the molecular consequences of different mutations at residue 754 and 690 of the androgen receptor (AR) and androgen insensitivity syndrome (AIS) phenotype.Clin Endocrinol (Oxf). 2009 Aug; 71(2):253-60.
    [33] Fisher JS, Macpherson S, et al.Human 'testicular dysgenesis syndrome': a possible model using in-utero exposure of the rat to dibutyl phthalate.Hum Reprod. 2003 Jul; 18(7):1383-94.
    [34] Zhang L, Mason JI, Naiki Y, et al.Characterization of two novel homozygous missense mutations involving codon 6 and 259 of type II 3beta-hydroxysteroid dehydrogenase (3betaHSD) gene causing, respectively, nonsalt-wasting and salt-wasting 3betaHSD deficiency disorder.J Clin Endocrinol Metab. 2000 Apr; 85(4):1678-85.
    [35] HAI T, HARTMAN M G. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis[J] 2001 Gene,2001,273(1):1-11
    [36] Liu B, Lin G, Willingham E, et al. Estradiol upregulates activating transcription factor 3, a candidate gene in the etiology of hypospadias. Pediatr Dev Pathol. 2007 Nov-Dec; 10(6):446-54.
    [37] Liu B, Wang Z, Lin G, et al. Activating transcription factor 3 is up-regulated in patients with hypospadias. Pediatr Res. 2005 Dec; 58(6):1280-3.
    [38] Liu X, Zhang DY, Li YS, et al. Di-(2-ethylhexyl) phthalate upregulates ATF3expression and suppresses apoptosis in mouse genital tubercle.J Occup Health. 2009; 51(1):57-63. Epub 2008 Dec 19.
    [39] Willingham E, Baskin LS. Candidate genes and their response to environmental agents in the etiology of hypospadias. Nat Clin Pract Urol. 2007 May; 4(5):270-9.
    [40] Laporte J, Guiraud-Chaumeil C, Vincent MC, et al. Mutations in the MTM1 gene implicated in X-linked myotubular myopathy. Human Molecular Genetics 1997 6 1505–1511.
    [41] Laporte J, Kioschis P, Hu LJ, Kretz C, et al. Cloning and characterization of an alternatively spliced gene in proximal Xq28 deleted in two patients with intersexual genitalia and myotubular myopathy. Genomics 1997 41 458–462.
    [42] Hu, L. J., Laporte, J, Kress, W, et al. Deletions in xq28 in two boys with myotubular myopathy and abnormal genital development define a new contiguous gene syndrome in a 430 kb region. Human Molecular Genetics 1996 5, 139–143.
    [43] Bartsch, O., Kress, W., Wagner, A. & Seemanova, E. The novel contiguous gene syndrome of myotubular myopathy (MTM1), male hypogenitalism and deletion in xq28: report of the first familial case. Cytogenetics and Cell Genetics 1999 85, 310–314.
    [44] Biancalana, V., Caron, O., Gallati, S., Baas, F, et al. Characterisation of mutations in 77 patients with x-linked myotubular myopathy, including a family with a very mild phenotype. Human Genetics 2003 112,135–142.
    [45] Fukami, M., Wada, Y., Miyabayashi, K., Nishino, I., Hasegawa, T., Nordenskjold, A, et al. Cxorf6 is a causative gene for hypospadias. Nature Genetics 2006 38, 1369–1371.
    [46] Nicolas Kalfa1, Benchun Liu, Klein Ophir,et al. Mutations of CXorf6 areassociated with a range of severities of hypospadias. European Journal of Endocrinology 2008 159, 453–458.
    [47] Fukami, M., Wada, Y., Okada, M., Kato, F, et al. Mastermind-like domain- containing 1 (mamld1 or cxorf6) transactivates the hes3 promoter, augments testosterone production, and contains the sf1 target sequence. Journal of Biological Chemistry 2008 283, 5525–5532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700