活性水淬渣强化废水除磷性能及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首次将水淬渣应用于废水的化学除磷中,为开发一种新型的污水化学除磷技术奠定基础。水淬渣除磷技术是在化学除磷的基础上发展起来的一种新型的废水除磷方法。本文着眼于我国磷污染现状,针对低浓含磷废水处理时难以达标的现状而提出采用水淬渣作为滤料和除磷药剂进行化学过滤除磷的方法。
     本实验以炼钢过程中产生的固体废弃物—水淬渣作为研究对象,研究水淬渣的除磷性能及除磷效果。在测定水淬渣的基本性质的基础上,通过实验考察了影响除磷效果的主要因素及其影响规律,进而进行水淬渣滤柱连续除磷实验,测定其相关的工艺参数,并对水淬渣的除磷机理作了探讨。
     本文研究了进水TP浓度,pH,水淬渣粒度,反应时间等因素对于除磷效率的影响,同时还在连续性实验中考察了滤柱对于SS、CODcr、NH_3—N的去除规律。结果表明,水淬渣在进水高浓磷条件下有较大的除磷量,在进水低浓磷的条件下有高的去除率。水淬渣对于进水pH的波动有较好的承受能力,当进水pH在6~8之间变动时,出水pH保持稳定,且除磷率保持在一个较为稳定的范围内,水淬渣粒度越小,则磷的去除率越高,小于40目的水淬渣的除磷量可达144mg/g。废水与水淬渣的最佳反应时间的为15~25分钟之间。
     为了进一步提高水淬渣的除磷容量,对水淬渣进行改性,首先对其进行表面处理,然后在水淬渣中添加激活剂,使水淬渣的潜在除磷能力得到充分发挥。在实验中主要考虑了不同的激活剂、不同的焙烧温度对除磷效果的影响。发现以三氯化铁作为激活剂、焙烧温度为450℃时的除磷效率最好。此种改性水淬渣的除磷容量为220.4mg/g。
     为了实现其实际应用目的,以改性水淬渣作为滤料进行连续滤柱实验,得到一些极为有用的工艺运行参数,实验指出:在水淬渣滤柱中,流速为10m/h、水淬渣粒度为20~30目较好。除磷效率在85%以上,浓度降为0.5毫克以下。
In this paper we bring forward that Fast Water Cooling Steel Waste Sediment(FWCSS) was applied to remove phosphor from wastewater, which is a new technology and was firstly used in practice. The theory of technology is based on the chemical-dephosphorization. Using FWCSS as filter-material and chemical-medicament to remove phosphor in chemical-filter-cylinder to treat the low concentration effluence which can not reach the standard of discharge with a view of the seriously phosphor polluting status in quo in our country.
    Using FWCSS which is one of byproducts (castoffs) from steel-making as studying objects in the experiment. First of all, we determined the essence of FWCSS, and then we studied the mostly factors and influence orderliness which affect the rates of dephosphorization by experiment; finally we made the dephosphorization mechanism study and discussion.
    Firstly we did experiment to study the TP concentration, pH, diameter FWCSS in influence and the reaction-time have effect on the rate of dephosphorization. Secondly we studied the removal orderliness of SS, CODcr, NH3-N in the filter cylinder in continuous experiment. The results show that: FWCSS has larger dephosphorization capacity in higher concentration of effluence, but larger rate of dephosphorization in lower concentration. FWCSS can keep steady dephosphorization rates when pH changing in effluence and keeping pH steadily in influence which ranged between 6 and 8. The diameter of FWCSS is smaller; the FWCSS dephosphorization capacity is larger. The best diameter's capacity is 0.71mg/g and best reaction-time is 15~25 minutes .
    Then we added activation medicament into FWCSS in order to heighten the dephosphorization capacity. The activation medicament can inducted the latent dephosphorization capacity of FWCSS. We studied different activation medicaments, different temperature in incinerator, which has effect on the rate of dephosphorization. The results show that the best temperature is 450 C,the best activation medicament is FeCl3. At this condition the AFWCSS dephosphorization capacity is 1.025mg/g.
    
    
    
    In order to use it hi practice, we used the AFWCSS as filter-material to do the filter-cylinder experiment. And then we got some precious useful technique's running parameter, the results show that velocity of flow is 1.4~ 1.5L/h, the diameter of FWCSS is 20~30M, the dephosphorization rate is above 85%
引文
[1]Rusell D F, Woodcock C PN. Journal AWWA. 1992. 84(g):68~72.
    [2]国家环境保护局.石油石化工业废水治理.北京:中国环境科学出版社,1992
    [3]新华通讯社.参考消息.北京:参考消息报社,1998,3,24:7
    [4]马荣骏.工业废水的治理.长沙:中南工业大学出版社,1991
    [5]金瑞林.环境法学.北京:北京大学出版社,2002
    [6]许保玖.论水工业.工业水处理.1997,17(1):1~5
    [7]吴燕等.废水除磷方法的现状与展望.天津工业大学学报,2001,20(1):74~78.
    [8]唐云梯.实用环境保护数据大会.武汉:湖北人民出版社,1993.50~55
    [9]邱慎初.化学强化一级处理(CEPT)技术.中国给水排水.2000,16(1):26~29
    [10]唐建国,林洁梅.化学除磷的设计计算.给水排水.2000,26(9):17~21
    [11]王家玲等.环境微生物.北京:高等教育出版社,1998,170~171
    [12]王桂芹等.水体富营养化的原因、危害及防治对策.吉林农业大学学报,2002,22(专辑):116—118,122
    [13]郝晓地.欧洲水环境控磷策略与污水除磷技术(上)[J].给水排水.1998,24(8):69~73
    [14]徐乐中.PH值碱度对脱氮除磷效果的影响及其控制方法.给水排水.1996,22(1):10~13
    [15]计石祥.含磷洗涤剂仍是我国近期洗涤剂的主要品种[J].日用化学品科学.1998,98(1):32-34.
    [16]许景文.污水氮磷的去除技术.上海环境科学.1991,10(12):34~36.
    [17]郑兴灿,李亚新.污水除磷脱氮技术.北京:中国建筑工业出版社,1998.116-119
    [18]朱利中.酸性膨润土处理含重金属废水初探.环境污染与防治.1993,15(1):21-24
    [19]胡勇有等.镀铬废水治理、资源回用技术及进展.电镀与环保.1999,19(3):28-32
    [20]彭跃莲.膜生物反应器在废水中的应用[J]水处理技术.1999,25(2):63-69.
    [21]陈汉辉.应用水网藻净化水源水质的初步试验[J].重庆环境科学.1998,20(4):19-21
    [22]陈汉辉.利用藻类净化水源水质的实践与探讨[J].水资源保护.1999,(1):18-23.
    [23]王朝辉.应用水网藻在不同环境条件下对氮磷的吸收能力[J].中国环境科学.1999,19(3):257-261.
    [24]宋祥甫.浮床水稻对富营养水体中氮磷的去除效果及规律研究[J].环境科学学报.1998,18(5):489-494.
    [25]相崎守私.富营养化湖水净化水耕生物过滤法用人工湿地开发[J].水环境学会志(日),1997,20(9):622-628.
    [26]大森美香子.3种类水生植物生活排水处理水荣养盐除去特性[J].
    
    环境技术(日),1998,27(8):20~24.
    [27]Donald W.Biotreatment System, Boca Raton Florida,CRC Press, 1988,3:113
    [28]陈华.化学沉淀法除磷和生物法除磷的比较.上海环境科学.1997,16(6):33~35
    [29]邱维,张智.城市污水化学除磷的探讨.重庆环境科学.2002,24(2):81~84
    [30]Fytianos K, Voudrias E, Raikos N. Modelling of phosphorus removal from aqueous and wastewater samples using ferriciron. Environmental Pollution, 1998,101:123~130.
    [31]MORSE G K, BRETTSW, GUYJA, LESTERYN. Review: Phosphorus removal and recovery technologies [J]. The Science of the Total Environment, 1988, 212:69-81
    [32]邓雁希,许虹.非金属矿物及工业废弃物在含磷废水处理中的应用.中国非会属矿工业导刊.2002,27(3):30~33
    [33]ClarkT.Phosphate removal in anaero bicli quors by struvite crystallization addition of chemicals : preliminary results[J].WaterRes, 1997,31(11):2925-2929.
    [34]神代和幸.海水利用MAP法除去[J].下水道协会志(日),1997,34(420):60-64.
    [35]苏威.无机絮凝剂发展及建议.工业水处理.1993,13(1):3~7
    [36]阮复昌,莫炳禄,徐国想等.铁系净水剂混凝过程的计算机模拟.化学反应工程与工艺.1997,13(4):413~418
    [37]徐乐中.生活污水化学除磷投药量的计算.苏州城建环保学院学报.2001,7(2):60~76
    [38]徐国想,阮复昌.铁系和铝系无机混凝剂的性能分析.重庆环境科学.2001,23(3):52~55
    [39]蒋伟锋.水淬矿渣综合利用及发展前景.中国资源综合利用.2002,(9):16~19
    [40]孙树杉.钢铁渣作水泥和高性能混凝土掺合料废钢铁,2001,(2):12
    [41]何水清,钢铁厂固体废物处理与利用.中国资源综合利用,2001,(4):16~18
    [42]李云兰等,高炉矿渣对工业废水处理的实验研究.工业水处理,1999,(2):12
    [43]王华,冯启言.环境矿物材料在微污染水处理中的应用前景,能源环境保护,2003,17(4):48~51
    [44]彭人勇,周萍华等.BET法氮气吸附法测粉体比表面积误差探讨,非金属矿,Vol.24.No.1.2001:7~8
    [45]Grajek H,Neffe S,Witkiexicz Z.J.Chromatog, 1992,600:67~77
    [46]Uno Maecorg, Lilli Peama, Heino Kolk.J.Chromatog, 1994,659:213~216
    [47]复旦大学编,蔡显鄂,项一非等修订,物理化学实验(第二版),北京:北京大学出版社,1985:225~228.
    [48]刘振宇,郑经堂等,PAN基ACF的孔结构表征材料研究学报.1999,13(5):477~482
    [49]黄晟,吴慧英等.城市污水除磷中的有关问题.重庆环境科学.2001,23(5):39~42
    [50]徐亚同,史家梁,张大鹏.废水处理.上海化工.2000,23(22):39~41
    [51]徐乐中.PH值碱度对脱氮除磷效果的影响及其控制方法.给水排水.1996,
    
    22(1):10~13
    [52]Hahn. Waster technologie. Springer-Vedag Berlin, 1987,125~130
    [53]刘明芳 郝存江 冯青琴.改性矿渣处理焦化废水试验研究.河南冶金.200146(5):17~19
    [54]Roger L P, Roger J A. The mechanism of phosphate fixation by iron oxides. Soil Sci. Soc. Amer. Proc. 1975, 39:837~841
    [55]Lena Jonson, Elzbieta Plaza.Experiences of nitrogen and phosphorus removal in deep bed filters in the stockholma area. Wat.Sci.Tech, 1997,36(1): 193~190
    [56]钱军民等,国内絮凝剂的制备与应用.精细石油化工科展.2001,7(2):46~53
    [57]柒兆坤,聚硅酸金属盐絮凝剂的制备和絮凝性能[J].环境化学,1997,f6(6):535~541.
    [58]Cheng Wenpo. Hydrolys is characteristic of polyferric sulfate coagulant and its optimal condition of preparation. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2001,182:57~63
    [59]Stephen J Duffy.Characterization of amorphpous Alum Hydroxide by the Ferron method. [J].Environs Technol, 1994,28:1950~1958

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700