近海环境中天然有机质的分离与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近海环境中的天然有机质(包括沉积物有机质、颗粒态有机质和溶解有机质)是全球碳循环中的重要组成部分,对全球生物地球化学循环以及区域生态系统对气候变暖的响应有着重要的作用。在海洋环境中,它们不但可以为海洋中异养型微生物提供营养和能量,促进它们在海洋中的循环,还能对海水的pH值起到调节和缓冲作用,影响海水对光的吸收,从而影响海水的颜色和表层温度。海洋天然有机质还能与海洋环境中的金属离子、有机污染物形成配合物,从而影响它们在海洋中的毒性和生物利用性
     由于海洋天然有机质本身结构组成的复杂性,以及对其有效分离的困难性,人们对它们的性质以及地球化学行为的认知至今仍然有限。本文着重近海环境中沉积物有机质和水体溶解态有机质的分离和表征的研究,分别采用国际腐殖质协会推荐的方法和一种新颖的反渗透耦合电渗析的方法从近岸沉积物和海水中分离出了沉积物腐殖质、溶解态腐殖质以及溶解有机质。采用多种化学和光谱表征手段,包括元素分析、稳定同位素分析、傅里叶变换红外光谱分析、热重分析、固态13C核磁共振分析、傅里叶变换离子回旋共振质谱分析、电位滴定分析等对所分离的近海天然有机质进行了分析和比较。以期能够对所研究天然有机质的来源、组成、反应性和归宿等科学问题进行阐述,并对采用不同方法所分离的海洋溶解有机质的性质做一比较。
     通过对长江口沉积物腐殖质以及海南东部红树林沉积物腐殖质的化学和光谱性质的研究发现:近岸以及河口沉积物腐殖质是沉积物有机质的主要组成部分,其中胡敏素在沉积物有机质中所占的比例最大,然后依次是腐殖酸和富里酸。比较富里酸和腐殖酸的性质发现,腐殖酸中含有更多的含氮化合物及高度支链化的长链脂肪族化合物,而富里酸中则含有更多的含氧官能团,比如羧基和醇类物质等。随着离岸距离的增加或海源物质贡献的增大,腐殖质中H/C原子比、δ13C值以及脂肪族化合物、蛋白质、碳水化合物组分的含量逐渐增大,而C/N原子比、芳香族化合物和酸性官能团的含量则逐渐减少。通过对长江口不同层次腐殖质的研究发现,腐殖质中酸性官能团和芳香族化合物的含量是随着沉积物深度的增加而逐渐增加的,而其中碳水化合物的含量却是随深度的增加而逐渐减少的。选择性的保留木质素等顽固组分而消耗易被微生物所利用的反应性组分(如碳水化合物和蛋白质等)可能是长江口沉积物有机质早期成岩反应的主要过程。本文所研究沉积物腐殖质中质子结合位点的平均浓度大约为22meq gC-1,这一数值也许能为所研究地区沉积物中金属离子的分布形态提供一定的科学依据。
     通过对海南东部红树林间隙水及其下游近岸海水中溶解态腐殖质性质的研究发现:相比较于陆源物质衍生的红树林间隙水溶解腐殖质,近岸海水溶解腐殖质中含有更多的13C同位素,脂肪族化合物,碳水化合物,但芳香族化合物和富含羧基的化合物含量较少。近岸海水溶解腐殖质可能为光降解的红树林溶解腐殖质和海洋溶解腐殖质的混合物。结合红树林沉积物腐殖质的δ13C和C/N比数据可以发现,红树林地区的沉积物有机质和溶解有机质大部分来源于当地红树林碎屑的贡献,并能对周围的环境产生较大的影响。本文通过高分辨率质谱分析发现,所研究溶解腐殖质中各个级分之间的分子组成存在较大的差异,因而它们可能是处于不同腐殖化阶段的产物。富里酸可能较腐殖酸要老一些,而亲水性的酸性组分XAD-4部分可能为最老的部分。木质素降解反应和Maillard缩合反应的共同作用可能是该地区溶解腐殖质生成和转化的主要机理。
     对采用反渗透耦合电渗析(]RO/ED)的方法从Barataria湾和大西洋近岸海水中所分离溶解有机质的性质进行研究发现:采用RO/ED法所分离的海洋溶解有机质中羧基含量约为6.0~6.9meq gC-1,大约只为土壤及河流天然有机质及富里酸中羧基含量的60%左右,且所研究海洋溶解有机质中没有明显的酚羟基存在。表层海水溶解有机质中碳水化合物,蛋白质,以及类脂物质的含量较高,而底层海水溶解有机质中芳香族化合物,以及缩合的碳氢化合物等物质的含量较高。说明多糖、蛋白质等物质是海洋溶解有机质中的活性组分,可能是海洋中异养型微生物获得能量的主要来源。通过与文献中所报道的由XAD树脂法和超滤法所获得的海洋溶解有机质性质的相互比较可以发现,RO/ED法即可获得超滤法容易分离的碳水化合物组分,又可获得固相萃取法容易获得的富含羧基的组分以及脂肪族化合物,从而说明RO/ED法可能能够从海水中分离出具有代表性的海洋溶解有机质。
Natural organic matter (NOM) in the coastal environments, which include the sedimentary organic matters (SOM), particulate organic matters (POM), and dissolved organic matters (DOM), is an important component of global carbon cycle and plays important roles in the response to climate change. The bioavailable fraction of NOM can be consumed by heterotrophic microbes, and is an important component in the marine microbial cycle. The colored fraction of DOM is the principal chromophore in marine waters, influencing the color and temperature of surface waters. Marine NOM also plays key roles in metal and organic pollutants chelation, influencing metal and organic toxicity arid bioavailability.
     Due to the extremely complexity of marine NOM and the difficulty to acquire representative marine NOM samples, our knowledges for their properties and geochemical behaviors are still limited. This dissertation mainly focuses on the isolation and characterization of SOM and DOM in coastal environments. The sedimentary humic substances (SHS), dissolved humic substances (DHS) and DOM were isolated by using the methods established by the International Humic Substances Society and a novel coupled reverse osmosis-electrodialysis (RO/ED) method, respectively. To better understand the origin, composition, reactivity, and fate of the coastal NOM, elemental analysis, stable isotope analysis, Fourier transformed infrared spectroscopy (FTIR), thermogravimetric analysis (TGA),13C nuclear magnetic resonance spectroscopy (13C NMR), Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and potentiometric titrations were used to analyze those isolated samples. The different properties of marine DOM which were isolated by different methods were also compared and analyzed.
     The results of the SHS which were isolated from the estuarine and coastal sediments of the East China Sea as well as the mangrove sediments in the eastern coast of Hainan Island indicated that SHS represented a large fraction of SOM, with humin were the dominant fraction of SHS followed by humic acids and fulvic acids. Humic acids were found contain more nitrogen-containing compounds and highly branched long-chain aliphatic moieties, while fulvic acids contain more oxygen-containing functional groups, such as carboxyl and alcoholic groups. With the increasing distance from the shore and/or the increasing contribution from the marine source, the H/C ratios,δ13C values, as well as the content of aliphatic compounds, proteins, and carbohydrates increased, while the C/N ratios as well as the content of aromatic compounds and acidic functional groups decreased. As for the depth profile of SHS samples in the Changjiang estuary, it is found that the charge densities and aromatic compounds increased with increasing depth; however, the content of carbohydrates decreased with increasing depth. Therefore, it probably can be inferred that loss of labile carbohydrates and proteins and selective preservation of refractory lignin components may dominate the early diagenetic reactions of SHS in the Changjiang estuary. The average concentration of binding sites for the studied SHS is about22meq gC-1, and this value may provide insights for the species of metal cations in the sediments.
     The properties of DHS which were isolated from one mangrove pore-water sample and one near shore seawater sample downstream the mangrove-fringed estuary in the eastern coastal of Hainan Island indicated that the near shore seawater DHS enrich in13C and contain more aliphatic compounds, carbohydrates, but less aromatic structures and carboxyl groups than that of mangrove pore-water DHS. The significant mixing of photo-degraded mangrove DHS and the marine DHS were considered to the mechanism results in the difference for the two DHS samples. Combined with the δ13C values and C/N ratios of mangrove SHS in our previous study, it can be found both SOM and DOM in mangrove area are mainly from autochthonous mangrove detritus and can contribute to ambient environment in a large scale. The results of FTICR-MS indicated that there are big differences among the different fractions of DHS in the studied water samples, which may attribute to the different humification level of the different fractions. Fulvic acids may older than humic acids, while the hydrophilic XAD-4fraction may be the oldest fraction among DHS. The combination of the lignin degradation reaction and the Maillard condensation reactions are probably the formation and transformation mechanism of the studied DHS samples.
     The RO/ED method was used to isolate marine DOM from Barataria Bay and the coastal of Atlantic Ocean. The acid-base properties of the isolated marine DOM indicated that the concentration of carboxyl groups in marine DOM samples is about6.0~6.9meq gC-1, which is only60%of the carboxyl contents for soil and river NOM and fulvic acids. Phenolic hydroxyl groups could not be detected in the studied samples. Marine DOM in surface waters contains more carbohydrates, proteins, and lipids; however, marine DOM in deeper waters contains more aromatic compounds and condensed hydrocarbons. This phenomenon indicated that carbohydrates and proteins are reactive components, perhaps supporting much of the heterotrophic activity in the surface ocean. By comparing the properties of marine DOM isolated by RO/ED with that isolated by ultrafiltration and XAD resins which were reported in literatures, it can be found that the RO/ED method recovers both the carbohydrate-rich fraction of DOM that is isolated preferentially by UF and the fraction of DOM that is enriched in carboxyl groups and aliphatic moieties that is isolated preferentially by SPE methods. So the RO/ED method may recovery representative marine DOM from sea water.
引文
Abbt-Braun, G.,1998. Multi-method characterization of natural organic matter isolated from water: characterization of reverse osmosis-isolates from water of two semi-identical dystrophic lake basins in Norway. Water Research 32,3108-3124.
    Abbt-Braun, G., Lankes, U., Frimmel, F.H.,2004. Structural characterization of aquatic humic substances-The need for a multiple method approach. Aquatic Science 66,151-170.
    Abdulla, H. A. N., Minor, E. C., Dias, R. F., Hatcher, P. G.,2010a. Changes in the compound classes of dissolved organic matter along an estuarine transect:A study using FTIR and 13C NMR. Geochimica et Cosmochimica Acta 74,3815-3838.
    Abdulla, H.A.N., Minor, E.C., Hatcher, P.G.,2010b. Using two-dimensional correlations of 13C NMR and FTIR to investigate changes in the chemical composition of dissolved organic matter along an estuarine transect. Environmental Science & Technology 44,8044-8049.
    Aiken G R.1985. Isolation and concentration techniques for aquatic humic substances. In:Aiken G R, McKnight D M, Wershaw R L, MacCarthy P. (Eds.), Humic Substances in Soil, Sediment, and Water-Geochemistry, Isolation, and Characterization. John Wiley and Sons, New York. pp.7-38.
    Aiken, G. R., McKnight, D. M., Thorn, K. A., Thurman, E. M.,1992. Isolation of hydrophilic organic acids from water using nonionic macroporous resins. Organic Geochemistry 18,567-573.
    Aiken, G.R., Mcknight, D.M., Wershaw, R.L., Maccarthy, P.,1985. An introduction to humic substances in soil, sediment, and water. In:Aiken, G.R., McKnight, D.M., Wershaw, R.L., MacCarthy, P. (Eds.), Humic Substances in Soil, Sediment, and Water-Geochemistry, Isolation, and Characterization. John Wiley and Sons, New York, pp.1-9.
    Almendros, G., Guadalix, M.E., Gonzalez-Vila, F.J., Martin, F.,1996. Preservation of aliphatic macromolecules in soil humans. Organic Geochemistry 24,651-659.
    Amador, J.A., Milne, P.J., Moore, C.A., Zika, R.G.,1990. Extraction of chromophoric substances from seawater. Marine Chemistry 29,1-17.
    Anderson, H.A., Bick, W., Hepburn, A., Stewart, M.,1989. Nitrogen in humic substances. In:Hayes, M.H.B., MacCarthy, P., Malcolm, R.L., Swift, R.S. (Eds.), Humic Substances II In Search of Structure. Wiley-Interscience, Chichester, pp.223-253.
    Anderson, M.A. and Morel, F.M.M.,1982. The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii. Limnology and Oceanography 27,789-813.
    Bao, H., Wu, Y., Unger, D., Du, J., Herbeck, L.S., Zhang, J.,2012. Impact of the conversion of mangroves into aquaculture ponds on the sedimentary organic matter composition in a tidal flat estuary (Hainan Island, China). Continental Shelf Research, http://dx.doi.org/10.1016/i.csr.2012.06.016.
    Barancikova, G., Senesi, N., Brunetti, G.,1997. Chemical and spectroscopic characterization of humic acids isolated from different Slovak soil types. Geoderma 78,251-266.
    Barnum, D. W.1970. Catechol complexes with silicon. Inorganic Chemistry 9,1942-1943.
    Benedetti, M. F., van Riemsdik, W. H., Koopal., L. K.,1996. Humic substances considered as a heterogeneous Donnan gel phase. Environmental Science & Technology 30,1805-1813.
    Benner, R., Biddanda, B., Black, B., McCarthy, M.,1997. Abundance, size distribution, and stable carbon and nitrogen isotopic compositions of marine organic matter isolated by tangential-flow ultrafiltration. Marine Chemistry 57,243-263.
    Benner, R., Fogel, M. L., Sprague, E. K., Hodson, R. E.,1987. Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature 329,708-710.
    Benner, R., Louchouarn, P., Amon, R. M. W.,2005. Terrigenous dissolved organic matter in the Arctic Ocean and its transport to surface and deep waters of the North Atlantic. Global Biogeochemical Cycles 19, GB2025. doi:10.1029/2004GB002398.
    Benner, R., Pakulski, J.D., McCarthy, M., Hedges, J.I., Hatcher, P.G.,1992. Bulk chemical characteristics of dissolved organic matter in the ocean. Science 255,1561-1564.
    Berner, R.A.,1982. Burial of organic carbon and pyrite sulfur in the modern ocean:Its geochemical and environmental significance. American Journal of Science 282,451-473.
    Berner, R,A.,1989. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time. Palaeogeography, Palaeoclimatology, Palaeoecology 73,97-122.
    Bianchi, T.S. and Allison, M.A.,2009. Large-river delta-front estuaries as natural "recorders" of global environmental change. Proceedings of the National Academy of Sciences USA 106,8085-8092.
    Bianchi, T. S., Cook, R. L., Perdue, E. M., Kolic, P. E., Green, N., Zhang, Y., Smith, R. W.,. Kolker, A. S., Ameen, A., King, G., Ojwang, L. M., Schneider, C. L., Normand, A. E., Hetland, R.,2011. Impacts of diverted freshwater on dissolved organic matter and microbial communities in Barataria Bay, Louisiana, U.S.A. Marine Environmental Research 72,248-257.
    Blasco, F., Saenger, P., and Janodet, E.,1996. Mangroves as indicators of coastal change. Catena 27,167-178.
    Bortiatynski, J.M., Hatcher, P.G., Knicker, H.,1996. NMR Techniques (C, N, and H) in Studies of Humic Substances. In:ACS Symposium Series 651 (Humic and Fulvic Acids), American Chemical Society, pp. 57.
    Bowles, E.C., Antweiler, R.C., MacCarthy, P.,1989. Acid-base titrations and hydrolysis of fulvic acid from the Suwannee River, pp.209-229. In:Averett, R.C., Leenheer, J.A., McKnight, D.M., Thorn, K.A. (Eds.), Humic Substances in the Suwannee River, GA:Interaction, Properties, and Proposed Structures. USGS Open File Report 87-557.
    Bronk, D.A.,2002. Dynamics of DON. In:Hansell, D.A. and Carlson, C.A. (Eds.), Biogeochemistry of Marine Dissolved Organic Matter. Academic Press, Boston, pp.153-247.
    Burdige, D.J.,2005. Burial of terrestrial organic matter in marine sediments:A re-assessment. Global Biogeochemistry Cycles 19, GB4011, doi:10.1029/2004GB002368.
    Bussmann, I.,1999. Bacterial utilization of humic substances from the Arctic Ocean. Aquatic Microbial Ecology 19,37-45.
    Calace, N., Cardellicchio, N., Petronio, B.M., Pietrantonio, M., Pietroletti, M.,2006. Sedimentary humic substances in the northern Adriatic sea (Mediterranean sea). Marine environmental research 61,40-58.
    Chai, X., Takayuki, S., Cao, X., Guo, Q., Zhao, Y.,2007. Spectroscopic studies of the progress of humification processes in humic substances extracted from refuse in a landfill. Chemosphere 69,1446-1453.
    Chen, C. and Wang, X.,2007. Influence of pH, soil humic/fulvic acid, ionic strength and foreign ions on sorption of thorium (IV) onto gamma-Al2O3. Applied Geochemistry 22,436-445.
    Chen, J., Li, Y., Yin, K., Jin, H.,2004. Amino acids in the Pearl River Estuary and adjacent waters:origins, transformation and degradation. Continental Shelf Research 24,1877-1894.
    Chen, J., Zhu, H., Dong, Y., Sun, J.,1985. Development of the Changjiang Estuary and its submerged delta. Continental Shelf Research 4,47-56.
    Chmura, G.L., Anisfeld, S.C., Cahoon, D.R., Lynch, J.C.,2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17,1-12.
    Clough, B.,1998. Mangrove forest productivity and biomass accumulation in Hinchinbrook Channel, Australia. Mangroves and Salt Marshes 2,191-198.
    Comisarow, M.B. and Marshall, A.G.,1974. Frequency-sweep Fourier transform ion cyclotron resonance spectroscopy. Chemical Physics Letters 26,489-490.
    Cook, R. L. and Langford, C. H.,1998. Structural characterization of a fulvic acid and a humic Acid using solid-state Ramp-CP-MAS 13C nuclear magnetic resonance. Environmental Science & Technology 32, 719-725.
    Davies, C. W.1962. Ion association. Butterworths.
    Deng, B., Zhang, J., Wu, Y.,2006. Recent sediment accumulation and carbon burial in the East Chna Sea. Global Biogeochemistry Cycles 20, GB3014. doi:10.1029/2005GB002559.
    Dereppe, J., Moreaux, C., Debyser, Y.,1980. Investigation of marine and terrestrial humic substances by 1H and 13C nuclear magnetic resonance and infrared spectroscopy. Organic Geochemistry 2,117-124.
    Dittmar, T., Koch, B., Hertkorn, N., Kattner, G.,2008. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnology and Oceanography: Methods 6,230-235.
    Dittmar, L., Lara, R.J.,2001a. Driving forces behind nutrient and organic matter dynamics in a mangrove tidal creek in north Brazil. Estuarine, Coastal and Shelf Science 52,249-259.
    Dittmar, T., Lara, R.J.,2001b. Do mangroves rather than rivers provide nutrients to coastal environments south of the Amazon River? Evidence from long-term flux measurements. Marine Ecology Progress Series 213, 67-77.
    Dittmar, T., Lara, R. J., Kattner, G.,2001c. River or mangrove? Tracing major organic matter sources in tropical Brazilian coastal waters. Marine Chemistry 73,253-271.
    Dittmar, T., Hertkorn, N., Kattner, G., Lara, R.J.,2006. Mangroves, a major source of dissolved organic carbon to the oceans. Global Biogeochemistry Cycles 20,1-7.
    Druffel, E.R.M., Williams, P.M., Bauer, J.E., Ertel, J.R.,1992. Cycling of dissolved and particulate organic matter in the open ocean. Journal of Geophysical Research-Oceans 97,15639-15659.
    Du, J., Chang, Z., Zhang, Z., Tao, Z., Lu, C.,1994. Acid dissociation constants of functional groups in humic substances:I. Affinity spectrum model analysis of potentiometric data of fulvic and humic acids solutions from weathered coal and dark loessial soil. Pedosphere 4,201-208.
    Du, J., Wu, Y., Huang, D., Zhang, J.,2010. Use of 7Be,210Pb and 137Cs tracers to the transport of surface sediments of the Changjiang Estuary, China. Journal of Marine Systems 82,286-294.
    Dwane, G.C.; Tipping, E.,1998. Testing a humic speciation model by titration of copper amended natural waters. Environment International 24,609-616.
    Eglinton, T.I. and Repeta, D.J.,2004. Organic matter in the comtemporary ocean. In:Holland, H.D. and Turekian, K.K. (Eds.), Treatise on Geochemistry, Vol.6. Elsevier Pergamon, Oxford, UK, pp.145-180.
    El-Sayed, M.A., Naga, W.M.A., Beltagy, A.I., Halim, Y.,1996. Sedimentary humic substances isolated from a coastal lagoon of the Nile Delta:physical and chemical characteristics. Estuarine, Coastal and Shelf Science 43,205-215.
    Emerson, S. and Hedges, J.I.,1988. Processes controlling the organic carbon content of open ocean sediments. Paleoceanography 3,621-634.
    Emerson, S.R. and Hedges J.I.,2008. Chemical oceanography and the marine carbon cycle. Cambridge University Press, UK.
    Engbrodt, R. and Kattner, G.,2005. On the biogeochemistry of dissolved carbohydrates in the Greenland Sea (Arctic). Organic Geochemistry 36,937-948.
    Eong, O.J.,1993. Mangroves-A cabon source and sink. Chemosphere 27,1097-1107.
    Ertel, J.R. and Hedges, J.I.,1983. Bulk chemical and spectroscopic properties of marine and terrestrial humic acids, melanoidins and cathecol-based synthetic polymers. In:Chistman, R.F. and Gjessing, E.T. (Eds), Aquatic and Terrestrial Humic Materials. Ann Arbor Science, Ann Arbor, MA, USA, pp 143-162.
    Esham, E.C., Ye, W., Moran, M.A.,2000. Identification and characterization of humic substances-degrading bacterial isolates from an estuarine environment. FEMS Microbiology Ecology 34,103-111.
    Esteves, V.I. and Duarte, A.C.,1999. Thermogravimetric properties of aquatic humic substances. Marine Chemistry 63,225-233.
    Esteves, V.I., Otero, M., Duarte, A.C.,2009. Comparative characterization of humic substances from the open ocean, estuarine water and fresh water. Organic Geochemistry 40,942-950.
    Esteves, V. I., Otero, M., Santos, E. B. H., Duarte, A. C.,2007. Stable carbon isotope ratios of tandem fractionated humic substances from different water bodies. Organic Geochemistry 38,957-966.
    Feng, X., Hills, K. M., Simpson, A. J., Whalen, J. K., Simpson, M. J.,2011. The role of biodegradation and photo-oxidation in the transformation of terrigenous organic matter. Organic Geochemistry 42,262-274.
    Fenn, J.B., Mann, M., Meng, C.K.,1989. Electrospray ionization for mass spectrometry of large biomolecules. Science 246,64-71.
    Fernandez, J.M., Hockaday, W.C., Plaza, C, Polo, A., Hatcher, P.G.,2008. Effects of long-term soil amendment with sewage sludges on soil humic acid thermal and molecular properties. Chemosphere 73, 1838-1844.
    Ferreira, F.P., Vidal-Torrado, P., Buurman, P., Macias, F., Otero, X.L., Boluda, R.,2009. Pyrolysis-Gas chromatography/mass spectrometry of soil organic matter extracted from a Brazilian mangrove and Spanish salt marshes. Soil Science Society of America Journal 73,841-851.
    Francioso, O., Montecchio, D., Gioacchini, P., Ciavatta, C.,2005. Thermal analysis (TG-DTA) and isotopic characterization (13C-15N) of humic acids from different origins. Applied Geochemistry 20,537-544.
    Fu, P., Wu, F., Liu, C., Wei, Z., Bai, Y., Liao, H.,2006. Spectroscopic characterization and molecular weight distribution of dissolved organic matter in sediment porewaters from Lake Erhai, Southwest China. Biogeochemistry 81,179-189.
    Gattuso, J.P., Frankignoulle, M., Wollast, R.,1998. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annual Review of Ecology and Systematics 29,405-434.
    Giani, M., Rampazzo, F., Berto, D.,2010. Humic acids contribution to sedimentary organic matter on a shallow continental shelf (northern Adriatic Sea). Estuarine, Coastal and Shelf Science 90,103-110.
    Giovanela, M., Parlanti, E., Soriano-Sierra, E.J., Soldi, M.S., Sierra, M.M.D.,2004. Elemental compositions, FT-IR spectra and thermal behavior of sedimentary fulvic and humic acids from aquatic and terrestrial environments. Geochemical Journal 38,255-264.
    Gondar, D., Lopez, R., Fiol, S., Antelo, J.M., Arce, F.,2005a. Effect of soil depth on acid properties of humic substances extracted from an ombrotrophic peat bog in northwest Spain. European Journal of Soil Science 56,793-801.
    Gondar, D., Lopez, R., Fiol, S., Antelo, J.M., Arce, F.,2005b. Characterization and acid-base properties of fulvic and humic acids isolated from two horizons of an ombrotrophic peat bog. Geoderma 126,367-374.
    Gonsior, M., Peake, B. M., Cooper, W. T., Podgorski, D., D'Andrilli, J., Cooper, W. J.,2009. Photochemically induced changes in dissolved organic matter identified by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry. Environmental Science & Technology 43,698-703.
    Guggenheim, E. A.,1930. A study of cells with liquid-liquid junctions. Journal of American Chemistry Society 52,1315-1337.
    Guo, L., Coleman, C.H., Santschi, P.H.1994. The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico. Marine Chemistry 45,105-119.
    Guo, L., Santschi, P.H., Cifuentes, L.A., Trumbore, S.E., Southon, J.,1996. Cycling of high-moleculae-weight dissolved organic matter in the Middle Atlantic Bight as revealed by carbon isotopic (13C and 14C) signatures. Limnology and Oceanography 41,1242-1252.
    Guo, W., Yang, L., Hong, H., Stedmon, C. A., Wang, F., Xu, J., Xie, Y.,2011. Assessing the dynamics of Chromophoric dissolved organic matter in a subtropical estuary using parallel factor analysis. Marine Chemistry 124,125-133.
    Gurtler, B.K., Vetter, T.A., Perdue, E.M., Ingall, E., Koprivnjak, J.F., Pfromm, P.H.,2008. Combining reverse osmosis and pulsed electrical current electrodialysis for improved recovery of dissolved organic matter from seawater. Journal of Membrane Science 323,328-336.
    Haddad, R.I., Martens, C.S., Farrington, J.W.,1992. Quantifying early diagenesis of fatty acids in a rapidly accumulating coastal marine sediment. Organic Geochemistry 19,205-216.
    Hansell, D.A. and Carlson, C.A.,1998. Deep ocean gradients in the concentration of dissolved organic carbon. Narure 395,263-266.
    Harvey, G.R. and Boran, D.A.,1985.Geochemistry of humic substances in seawater. In:Aiken, G.R., McKnight, D.M., Wershaw, R.L., MacCarthy, P. (Eds.), Humic Substances in Soil, Sediment, and Water-Geochemistry, Isolation, and Characterization. John Wiley and Sons, NY, pp.233-247.
    Hatcher, P.G., Breger, I.A., Mattingly, M.A.,1980a. Structual characteristics of fulvic acids from continental shelf sediements. Nature 285,560-562.
    Hatcher, P.G., Rowan, R., Mattingly, M.A.,1980b.1H and 13C NMR of marine humic acids. Organic Geochemistry 2,77-85.
    Hatcher, P. G., Schnitzer, M., Dennis, L. W., Maciel, G. E.,1981. Aromaticity of humic substances in soils. Soil Science Society of America Journal 45,1089-1094.
    Hatcher, P.G., Spiker, E.C., Szeverenyi, N.M., Maciel, G.E.,1983. Selective preservation and origin of petroleum-forming aquatic kerogen. Nature 305,498-501.
    Hedges, J.I.,1992. Global biogeochemical cycles:progress and problems. Marine Chemistry 39,67-93.
    Hedges, J.I.,2002. Why dissolved organics matter. In:Hansell, D.A., Carlson, C.A. (Eds.), Biogeochemistry of Marine Dissolved Organic Matter. Academic Press, Boston, pp.1-34.
    Hedges, J.I., Eglinton, G., Hatcher, P.G., Kirchman, D.L., Arnosti, C., Derenne, S., Evershed, R.P., Kogel-Knabner, I., de Leeuw, J.W., Littke, R., Michaelis, W., Rullkotter, J.,2000. The molecularly-uncharacterized component of nonliving organic matter in natural environments. Organic Geochemistry 31, 945-958.
    Hedges, J.I., Hatcher, P.G., Ertel, J.R., Meyers-Schulte, K.J.,1992. A comparison of dissolved humic substances from seawater with Amazon River counterparts by 13C-NMR spectrometry. Geochimica et Cosmochimica Acta 56,1753-1757.
    Hedges, J.I., Keil, R.G., Benner, R.,1997. What happens to terrestrial organic matter in the ocean? Organic Geochemistry 27,195-212.
    Hedges, J.I. and Oades, J.M.,1997. Comparative organic geochemistries of soils and marine sediments. Organic Geochemistry 27,319-361.
    Henriksen, T., Juhler, R.K., Svensmark, B., Cech, N.B.,2005. The relative influences of acidity and polarity on responsiveness of small organic molecules to analysis with negative ion electrospray ionization mass spectrometry (ESI-MS). Journal of the American Society for Mass Spectrometry 16,446-455.
    Hertkorn, N., Benner, R., Frommberger, M., Schmitt-Kopplin, P., Witt, M., Kaiser, K., Kettrup, A., Hedges, J.I.,2006. Characterization of a major refractory component of marine dissolved organic matter. Geochimica et Cosmochimica Acta 70,2990-3010.
    Hertkorn, N., Frommberger, M., Witt, M., Koch, B.P., Schmitt-Kopplin, Ph., Perdue, E.M.,2008. Natural Organic matter and the event horizon of mass spectrometry. Analytical Chemistry 80,8909-8919.
    Horn, D.M., Zubarev, R.A., McLafferty, F.W.,2000. Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules. Journal of the American Society for Mass Spectrometry 11,320-332.
    Hughey, C.A., Hendrickson, C.L., Rodgers, R.P., Marshall, A.G., Qian, K.,2001. Kendrick mass defect spectrum:a compact visual analysis for ultrahigh-resolution broadband mass spectra. Analytical Chemistry 73,4676-4681.
    Huizenga, D. L. and Kester, D. R.,1979. Protonation equilibria of marine dissolved organic matter. Limnology and Oceanography 24,145-150.
    Hur, J., Lee, D., Shin, H.,2009. Comparsion of structureal, spectroscopic and phenenthrene binding characteristics of humic acids from soils and lake sediments. Organic Geochemistry 40,1091-1099.
    Ingalls, A.E., Lee, C., Wakeham, S.G., Hedges, J.I.,2003. The role of biominerals in the sinking flux and preservation of amino acids in the Southern Ocean along 170° W. Deep-Sea Research Ⅱ 50,709-734.
    Jennerjahn, T.C., Ittekkot, V.,2002. Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 89,23-30.
    Jokic, A., Wang, M.C., Liu, C., Frenkel, A.I., Huang, P.M,2004. Integration of the polyphenol and Maillard reactions into a unified abiotic pathway for humification in nature:the role of δ-MnO2. Organic Geochemistry 35,747-762.
    Jolly, W. L.1991. Modern inorganic chemistry. McGraw-Hill.
    Jung, A., Frochot, C., Parant, S., Lartiges, B.S., Selve, C., Viriot, M.L., Bersillon, J.L.,2005. Synthesis of amino-phenolic humic-like substances and comparison with natural aquatic humic acids:A multi-analytical techniques approach. Organic Geochemistry 36,1252-1271.
    Kang, S. and Xing, B.,2005. Phenanthrene sorption to sequentially extracted soil humic acids and humins. Environmental Science & Technology 39,134-140.
    Katchalsky, A., and Spitnik, P.,1947. Potentiometric titrations of polymethacrylic acid. Journal of Polymer Science 2,432-446.
    Kerr, R.A. and Quinn, J.G.,1975. Chemical studies on the dissolved organic matter in seawater. Isolation and fractionation. Deep-Sea Research 22,107-116.
    Kerr, R.A., and Quinn, J.G.,1980. Chemical comparison of dissolved organic matter isolated from different oceanic environments. Marine Chemistry 8,217-229.
    Kim, S., Kaplan, L.A., Benner, R., Hatcher, P.G.,2004. Hydrogen-deficient molecules in natural riverine water samples-evidence for the existence of black carbon in DOM. Marine Chemistry 92,225-234.
    Kim, S., Kramer, R.W., Hatcher, P.G.,2003.Graphical method for analysis of ultrahigh-resolution broadband mass spectrometry of natural organic matter, the van krevelen diagram. Analytical Chemistry 75,5336-5344.
    Kinniburgh, D. G., Milne, C. J., Benedetti, M. F., Pinheiro, J. P., Filius, J., Koopal, L. K., vanRiemsdijk, W. H.,1996. Metal ion binding by humic acid:Application of the NICA-Donnan model. Environmental Science & Technology 30,1687-1698.
    Koch, B.P., Ludwichowski, K.U., Kattner, G., Dittmar, T., Witt, M.,2008. Advanced characterization of marine dissolved organic matter by combining reversed-phase liquid chromatography and FT-ICR-MS. Marine Chemistry 111,233-241.
    Koch, B.P., Witt, M., Engbrodt, R., Dittmar, T., Kattner, G.,2005. Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Geochimica et Cosmochimica Acta 69,3299-3308.
    Kogel-Knabner, I., DeLeeuw, J.W., Tegelaar, E.W., Hatcher, P.G., Kerp, H.,1994. A lignin-like polymer in the cuticle of spruce needles:implications for the humification of spruce litter. Organic Geochemistry 21, 1219-1228.
    Koprivnjak, J.F., Perdue, E.M., Pfromm, P.H.,2006. Coupling reverse osmosis with electrodialysis to isolate natural organic matter from fresh waters. Water Research 40,3385-3392.
    Koprivnjak, J.F.,2007. Natural Organic Matter:Isolation and Bioavailability. Ph. D. Dissertation. Georgia Institute of Technology.
    Koprivnjak, J.F., Pfromm, P.H., Ingall, E., Vetter, T.A., Schmitt-Kopplin, P., Hertkorn, N., Frommberger, M., Knicker, H., Perdue, E.M.,2009. Chemical and spectroscopic characterization of marine dissolved organic matter isolated using coupled reverse osmosis-electrodialysis. Geochimica et Cosmochimica Acta 73, 4215-4231.
    Kroll, J.H., Donahue, N.M., Jimenez, J.L., Kessler, S.H., Canagaratna, M.R., Wilson, K.R., Altieri, K.E., Mazzoleni, L.R., Wozniak, A.S., Bluhm, H., Mysak, E.R., Smith, J.D., Kolb, C.E., Worsnop, D.R.,2011. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nature Chemistry 3,133-139.
    Kujawinski, E.B. and Behn, M.D.,2006. Automated analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra of natural organic matter. Analytical Chemistry 78,4363-4373.
    Kujawinski, E.B., Freitas, M.A., Zang, X., Hatcher, P.G., Green-Church, K.B., Jones, R.B.,2002a. The application of electrospray ionization mass spectrometry (ESI MS) to the structural characterization of natural organic matter. Organic Geochemistry 33,171-180.
    Kujawinski, E.B., Hatcher, P.G., Freitas, M.A.,2002b. High-resolution fourier transform ion cyclotron resonance mass spectrometry of humic and fulvic acids:improvements and comparisons. Analytical Chemistry 74,413-419.
    Kujawinski, E.B., Longnecker, K., Blough, N.V., Del Vecchio, R., Finlay, L., Kitner, J.B., Giovannoni, S.J., 2009. Identification of possible source markers in marine dissolved organic matter using ultrahigh resolution mass spectrometry. Geochimica et Cosmochimica Acta 73,4384-4399.
    Laglera, L.M. and van den Berg, C.M.G.,2009. Evidence for geochemical control of iron by humic substances in sea water. Limnology and Oceanography 54,610-619.
    Lam, B., Baer, A., Alaee, M., Lefebvre, B., Moser, A., Williams, A., Simpson, A.J.,2007. Major structural components in freshwater dissolved organic matter. Environmental Science & Technology 41,8240-8247.
    Landry, C. and Tremblay, L.,2012. Compositional differences between size classes of dissolved organic matter from freshwater and seawater revealed by an HPLC-FTIR system. Environmental Science & Technology 46,1700-1707.
    Lead, J.R., Balnois, E., Hosse, M., Menghetti, R., Wilkinson, K.J.,1999. Characterisation of Norwegian natural organic matter:size, diffusion coefficients and electrophoretic mobilities. Environment International 25,245-258.
    Lead, J.R., Hamilton-Taylor, J., Hesketh, N., Jones, M.N., Wilkinson, A.E., Tipping, E.,1994. A comparative study of proton and alkaline earth metal binding by humic substances. Analytica Chimica Acta 294,319-327.
    Lee, C, Wakeham, S., Arnosti, C.,2004. Particulate organic matter in the sea:The composition conundrum. Ambio 33,565-575.
    Lee, S. Y.,1995. Mangrove outwelling:a review. Hydrobiologia 295,203-212.
    Leenheer, J.A. and Huffman, E.W.D.,1976. Classification of organic solutes in water by using macroreticular resins. Journal of Research of the U.S. Geological Survey 4,737-751.
    Leenheer, J.A.,1981. Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. Environmental Science & Technology 15,578-587.
    Leenheer, J.A., Wilson, M.A., Malcolm, R.L.,1987. Presence and potential significance of aromatic-ketone groups in aquatic humic substances. Organic Geochemistry 11,273-280.
    Little, B. and Jacobus, J.,1985. A comparison of two techniques for the isolation of adsorbed dissolved organic material from seawater. Organic Geochemistry 8,27-33.
    Liu, S., Li, R., Zhang, G., Wang, D., Du, J., Herbeck, L. S., Zhang, J., Ren, J.,2011. The impact of anthropogenic activities on nutrient dynamics in the tropical Wenchanghe and Wenjiaohe Estuary and Lagoon system in East Hainan, China. Marine Chemistry 125,49-68.
    Lopez, R., Gondar, D., Iglesias, A., Fiol, S., Antelo, J., Arce, F.,2008. Acid properties of fulvic and humic acids isolated from two acid forest soils under different vegetation cover and soil depth. European Journal of Soil Science 59,892-899.
    MacCarthy, P. and Rice, J.A.,1985. Spectroscopic methods (other than NMR) for determining functionality in humic substances. In:Aiken, G.R., McKnight D.M., Wershaw R.L., MacCarthy P.(Editors), Humic Substances in Soil, Sediment, and Water-Geochemistry, Isolation, and Characterization. John Wiley and Sons, NY, pp.527-559.
    Magi, E., Giusto, T., Frache, R.,1995. Humic acids in marine sediments:an extraction procedure for the determination of the complexed metals. Analytical Proceedings 32,267-269.
    Maie, N., Parish, K.J., Watanabe, A., Knicker, H., Benner, R., Abe, T., Kaiser, K., Jaffe, R.,2006. Chemical characteristics of dissolved organic nitrogen in an oligotrophic subtropical coastal ecosystem. Geochimica et Cosmochimica Acta 70,4491-4506.
    Malcolm, R.L.,1989. Applications of solid-state 13C NMR spectroscopy to geochemical studies of humic substances. In:Hayes, M.H.B., MacCarthy, O., Malcolm, R.L., Swift, R.S. (Editors), Humic Substances II: In Search of Structure. John Wiley and Sons, Chichester, pp.340-372.
    Malcolm, R.L.,1990. The uniqueness of humic substances in each of soil, stream and marine environments. Analytica Chimica Acta 232,19-30.
    Mao, J., Kong, X., Schmidt-Rohr, K., Pignatello, J.J., Perdue, E.M.,2012. Advanced solid-state NMR characterization of marine dissolved organic matter isolated using the coupled reverse osmosis/electrodialysis method. Environmental Science & Technology 46,5806-5814.
    Mao, J., Tremblay, L., Gagne, J.,2011. Structural changes of humic acids from sinking organic matter and surface sediments investigated by advanced solid-state NMR:Insights into sources, preservation and molecularly uncharacterized components. Geochimica et Cosmochimica Acta 75,7864-7880.
    Mao, L., Zhang, Y., Bi, H.,2006. Modern Pollen Deposits in Coastal Mangrove Swamps from Northern Hainan Island, China. Journal of Coastal Research 22,1423-1436.
    Marshall, S. J., Young, S. D., Gregson, K.,1995. Humic acid proton equilibria:A comparison of two models and assessment of titration error. European Journal of Soil Science 46,471-480.
    Maurice, P.A., Namjesnik-Dejanovic, K.,1999. Aggregate structures of sorbed humic substances observed in aqueous solution. Environmental Science & Technology 33,1538-1541.
    Mayer, L.M.,1985. Geochemistry of humic substances in estuarine environments. In:Aiken, G.R., McKnight, D.M., Wershaw, R.L., MacCarthy, P. (Editors), Humic Substances in Soil, Sediment, and Water-Geochemistry, Isolation, and Characterization. John Wiley and Sons, NY, pp.211-232.
    Mayer, L.M.,1994. Surface area control of organic carbon accumulation in continental shelf sediments. Geochimica et Cosmochimica Acta 58,1271-1284.
    McCallister, S.L., Bauer, J.E., Ducklow, H.W., Canuel, E.A.,2006. Sources of estuarine dissolved and particulate organic matter:a multi-tracer approach. Organic Geochemistry 37(4),454-468.
    McLafferty, F.W. and Turecek, F.,1993. Interpretation of mass spectra (4th edition). University Science Books Hardcover, pp.37-38.
    Meybeck, M.,1982. Carbon, nitrogen, and phosphorous transport by world rivers. American Journal of science 282,401-450.
    Meyers, P. A.,1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 114,289-302.
    Meyers, P.A.,1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry 27,213-250.
    Meyers-Schulte, K. and Hedges, J.,1986. Molecular evidence for a terrestrial component of organic matter dissolved in ocean water. Nature 321,61-63.
    Miller, W.L. and Zepp, R.G.,1995. Photochemical production of dissolved inorganic carbon from terrestrial organic matter:Significance to the oceanic organic carbon cycle. Geophysical Research Letters 22,417-420.
    Milliman, J.D., Xie, Q., Yang, Z.,1984. Transfer of particulate organic carbon and nitrogen from the Yangtze river to the ocean. American Journal of Science 284,824-834.
    Mills, G.L. and Quinn, J.G.,1981. Isolation of dissolved organic matter and copper-organic complexes from estuarine waters using reverse-phase liquid chromatography. Marine Chemistry 10,93-102.
    Milne, C.J., Kinniburgh, D.G., Tipping, E.,2001. Generic NICA-Donnan model parameters for proton binding by humic substances. Environmental Science & Technology,35:2049-2059.
    Mopper, K. and Kieber, D.J.,2002. Photochemistry and the cycling of carbon, sulfur, nitrogen and phosphorous. In:Hansell, D.A. and Carlson, C.A. (Editors), Biogeochemistry of Marine Dissolved Organic Matter. Academic Press, NY, pp.455-507.
    Mopper, K., Stubbins, A., Ritchie, J. D., Bialk, H. M., Hatcher, P. G.,2007. Advanced instrumental approaches for characterization of marine dissolved organic matter:extraction technique, mass spectrometry, and nuclear magnetic resonance spectroscopy. Chemical Reviews 107,419-442.
    Moreda-Pifleiro, A., Seco-Gesto, E.M., Bermejo-Barrera, A., Bermejo-Barrera, P.,2006. Characterization of surface marine sediments from Ria de Arousa estuary according to extractablehumic matter content. Chemosphere 64,866-873.
    Nelson, N.B., Siegel, D.A., Michaels, A.F.,1998. Seasonal dynamics of colored dissolved organic material in the Sargasso Sea. Deep-Sea research 145,931-957.
    Nissenbaum, A. and Kaplan, I.R.,1972. Chemical and isotopic evidence for the in situ origin of Marine humic substances. Limnology and oceanography 17,570-582.
    Obernosterer, I. and Herndl, G.J.,2000. Differences in the optical and biological reactivity of the humic and nonhumic dissolved organic carbon component in two contrasting coastal marine environments. Limnology and Oceanography 45,1120-1129.
    Odum, E. P.,1968. A research challenge:evaluating the productivity of coastal and estuarine water, In Proceedings of the Second Sea Grant Conference, University of Rhode Island:63-64.
    Odum, W. E. and Heald, E. J.,1972. Trophic analyses of an estuarine mangrove community. Bulletin of Marine Science 22(3),671-738.
    Opsahl, S. and Benner, R.,1997. Distribution and cycling of terrigenous dissolved organic matter in the ocean. Nature 386,480-482.
    Opsahl, S. and Benner, R.,1998. Photochemical reactivity of dissolved lignin in river and ocean waters. Limnology and Oceanography 43 (6),1297-1304.
    Opsahl, S. P. and Zepp, R. G.,2001. Photochemically-induced alteration of stable carbon isotope ratios (δ13C) in terrigenous dissolved organic carbon. Geophysical Research Letter 28,2417-2420.
    Perdue, E.M.,1985.The acidic functional groups of humic substances. In:Aiken, G.R., McKnight, D.M., Wershaw, R.L., MacCarthy, P. (Editors), Humic Substances in Soil, Sediment, and Water-Geochemistry, Isolation, and Characterization. John Wiley and Sons, NY, pp.493-526.
    Perdue, E. M.1990. Modeling the acid-base chemistry of organic acids in laboratory experiments and in freshwaters, p.111-126. In E. M. Perdue and E. T. Gjessing [eds.], Organic Acids in Aquatic Systems. John Wiley and Sons.
    Perdue E. M., Beck K. C., Reuter J. H.,1976. Organic complexes of iron and aluminium in natural waters. Nature,260,418-420.
    Perdue, E.M., Benner, R.,2009. Marine Organic Matter, in:Senesi, N., Xing, B., Huang, P.M. (Eds.), Biophysico-chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems. John Wiley & Sons, Hoboken, New Jersey, pp.407-449.
    Perdue, E.M. and Koprivnjak, J.F.,2007. Using the C/N ratio to estimate terrigenous inputs of organic matter to aquatic environments, Estuarine, Coastal and Shelf Science 73,65-72.
    Perdue, E. M., and Lytle, C. R.,1983. Distribution model for binding of protons and metal-ions by humic substances. Environmental Science & Technology 17,654-660.
    Perdue, E. M., Reuter, J. H., Ghosal, M.,1980. The operational nature of acidic functional group analyses and its impact on mathematical descriptions of acid-base equilibria in humic substances. Geochimica et Cosmochimica Acta 44,1841-1851.
    Perdue, E. M., Reuter, J. H., Parrish, R. S.,1984. A statistical model of proton binding by humus. Geochimica et Cosmochimica Acta 48,1257-1263.
    Perdue, E. M. and Ritchie, J. D.,2004. Dissolved organic matter in fresh waters. In:Drever J I ed. Surface and Ground Water, Weathering, Erosion and Soils. In:Holland H D, Turekian K K eds. Treatise on Geochemistry, vol.5. Elsevier-Pergamon, Oxford, United Kingdom, p.273-318.
    Peuravuori, J., Paaso, N., Pihlaja, K.,1999. Kinetic study of the thermal degradation of lake aquatic humic matter by thermogravimetric analysis. Thermochimica Acta 325,181-193.
    Plummer, L. N., and Mackenzie, F. T.,1974. Predicting mineral solubility from rate data:Application to dissolution of magnesian calcites. American Journal of Science 274,61-83.
    Pompe, S., Bubner, M., Denecke, M.A., Reich, T., Brachmann, A., Geipel, G., Nicolai, R., Heise, K.H., Nitsche, H.,1996. A comparison of natural humic acids with synthetic humic acid model substances: characterization and interaction with uranium (Ⅵ). Radiochimica Acta 74,135-140.
    Preston, C.M. and Newman, R.H.,1995. A long-term effect of N fertilization on the 13C CPMAS NMR of de-ashed soil humin in a second-growth Douglas-fir stand of coastal British Columbia. Geoderma,68:229-241.
    Ranjan, R.K., Routh, J., Ramanathan, A.L.,2010. Bulk organic matter characteristics in the Pichavaram mangrove-estuarine complex, south-eastern India. Applied Geochemistry 25,1176-1186.
    Rashid, M.A. and King, L.H.,1970. Major oxygen-containing functional groups present in humic and fulvic acid fractions isolated from contrasting marine environments. Geochimica et Cosmochimica Acta 34,193-201.
    Rashid, M.A.,1985. Geochemistry of marine humic compounds. Chapter 3 Physico-chemical characteristics of marine humic compounds. Springer-Verlag New York Berlin Heidelberg Tokyo.
    Rasyid, U., Johnson, W.D., Wilson, M.A., Vanna, J.V.,1992. Changes in organic structural group composition of humic and fulvic acids with depth in sediments from similar geographical but different depositional environments. Organic Geochemistry 18,521-529.
    Raymond, P.A. and Bauer, J.E.,2001. Riverine export of aged terrestrial organic matter to the North Atlantic Ocean. Nature 409,497-500.
    Reemtsma, T., These, A., Springer, A., Linscheid, M.,2008a. Differences in the molecular composition of fulvic acid size fractions detected by size-exclusion chromatography-on line Fourier transform ion cyclotron resonance (FTICR-) mass spectrometry. Water Research 42,63-72.
    Reemtsma, T., These, A., Linscheid, M., Leenheer, J., Spitzy, A.,2008b. Molecular and structural characterization of dissolved organic matter from the deep ocean by FTICR-MS, including hydrophilic nitrogenous organic molecules. Environmental Science & Technology 42,1430-1437.
    Repeta, D.J., Quan, T.M., Aluwihare, L.I., Accardi, A.,2002. Chemical characterization of high molecular weight dissolved organic matter in fresh and marine waters. Geochimica et Cosmochimica Acta 66,955-962.
    Ritchie, J.D., Perdue, E.M.,2003. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. Geochimic et Cosmochimica Acta 67,85-96.
    Ritchie, J.D.,2005. The Distribution of Charge and Acidic Functional Groups in Natural Organic Matter:The Dependence on Molecular Weight and pH. Ph. D. Dissertation. Georgia Institute of Technology.
    Ritchie, J.D., Perdue, E.M.,2008. Analytical constraints on acidic functional groups in humic substances. Organic Geochemistry 39,783-799.
    Romankevich, E.A.,1984. Geochemistry of Organic Matter in the Ocean, Springer-Verlag, Berlin,344pp.
    Rose, A.L. and Waite, T.D.,2003. Kinetices of iron complexation by dissolved natural organic matter in coastal waters. Marine Chemistry 84,85-103.
    Sampere, T.P., Bianchi, T.S., Allison, M.A.,2011. Historical changes in terrestrially derived organic carbon inputs to Louisiana continental margin sediments over the past 150 years. Journal of Geophysical Research 116,G01016.
    Sannigrahi, P., Ingall, E. D., Benner. R.,2005. Cycling of dissolved and particulate organic matter at station Aloha:Insights from 13C NMR spectroscopy coupled with elemental, isotopic and molecular analyses. Deep-Sea Research Part I 52,1429-1444.
    Santin, C., Gonzalez-Perez, M., Otero, X.L., Alvarez, M. A., Macias, F.,2009. Humic substances in estuarine soils colonized by Spartina maritime. Estuarine, Coastal and Shelf Science 81,481-490.
    Santin, C., Gonzalez-Perez, M, Otero, X.L., Vidal-Torrado, P., Macias, F., Alvarez, M.A.,2008. Characterization of humic substances in salt marsh soils under sea rush (Juncusmaritimus). Estuarine, Coastal and Shelf Science 79,541-548.
    Santin, C, Yamashita, Y., Otero, X.L., Alvarez, M.A., Jaffe, R.,2009. Characterizing humic substances from estuarine soils and sediments by excitation-emission matrix spectroscopy and parallel factor analysis. Biogeochemistry 96,131-147.
    Sardessai, S., Wahidullah, S.,1998.Structural characteristics of marine sedimentary humic acids by CP/MAS 13C NMR spectroscopy. Oceanologica Acta 21,543-550.
    Schmidt, F., Elvert, M., Koch, B.P., Witt, M., Hinrichs, K.U.,2009. Molecular characterization of dissolved organic matter in pore water of continental shelf sediments. Geochimica et Cosmochimica Acta 73,3337-3358.
    Schmitt-Kopplin, Ph., Hertkorn, N., Garrison, A.W., Freitag, D., Kettrup, A.,1998. Influence of borate buffers on the electrophoretic behavior of humic substances in capillary zone electrophoresis. Analytical Chemistry 70,3798-3808.
    Schnitzer, M., and Chan, Y. K.,1986. Structural characteristics of a fungal melanin and a soil humic acid. Soil Science Society of America Journal 50,67-71.
    Schnitzer, M., and Khan, S.U.,1972. Humic Substances in the Environment. Marcel Dekker, Inc, New York.
    Senesi, N., Miano, T.M., Provenzano, M.R., Brunetti, G.,1989. Spectroscopic and compositional comparative characterization of I.H.S.S. reference and standard fulvic and humic acids of various origin. Science of the Total Environment 81/82,143-156.
    Senior, J.K.,1951. Partitions and their representative graphs. American Journal of Mathematics 73,663-689.
    Sierra, M.M.D., Giovanela, M., Parlanti, E., Esteves, V.I., Duarte, A.C., Fransozo, A., Soriano-Sierra, E.J., 2005. Structural description of humic substances from subtropical coastal environments using Elemental Analysis, FT-IR and 13C-solid state NMR data. Journal of Coastal Research 42,370-382.
    Siegenthaler, U. and Sarmiento, J.L.,1993. Atmospheric carbon dioxide and the ocean. Nature 365,119-125.
    Sihombing, R., Greenwood, P. F., Wilson, M. A., Hanna, J. V.,1996. Composition of size exclusion fractions of swamp water humic and fulvic acids as measured by solid state NMR and pyrolysis-gas chromatography-mass spectrometry. Organic Geochemistry 24,859-873.
    Simjouw, J., Minor, E., Mopper, K.,2005. Isolation and characterization of estuarine dissolved organic matter: Comparison of ultrafiltration and Cis solid-phase extraction techniques. Marine Chemistry 96,219-235.
    Slauenwhite, D.E., Wangersky, P.J.,1996. Extraction of marine organic matter on XAD-2:Effect of sample acidification and development of an in situ pre-acidification technique. Marine Chemistry 54,107-117.
    Sleighter, R.L. and Hatcher, P.G.,2007. The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter. Journal of Mass Spectrometry 42,559-574.
    Sleighter, R.L. and Hatcher, P.G.,2008a. Molecular characterization of dissolved organic matter (DOM) along a river to ocean transect of the lower Chesapeake Bay by ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Marine Chemistry 110,140-152.
    Sleighter, R.L., McKee, G.A., Liu, Z., Hatcher, P.G.,2008b. Naturally present fatty acids as internal calibrants for Fourier transform mass spectra of dissolved organic matter. Limnology and Oceanography:Methods 6, 246-253.
    Sleighter, R.L., McKee, G.A., Hatcher, P.G.,2009. Direct Fourier transform mass spectral analysis of natural waters with low dissolved organic matter. Organic Geochemistry 40,119-125.
    Slowey, J.F., Jeffrey, L.M., Hood, D.W.,1962. The fatty-acid content of ocean water. Geochimica et Cosmochimica Acta 26,607-616.
    Smith, B.N. and Epstein, S.,1971. Two categories of 13C/12C ratios for higher plants. Plant physiology 47, 380-384.
    Stabenau, E.R. and Zika, R.G.,2004. Correlation of the absorption coefficient with a reduction in mean mass for dissolved organic matter in southwest Florida river plumes. Marine Chemistry 89,55-67.
    Stenson, A.C., Landing, W.M., Marshall, A.G., Cooper, W.T.,2002. Ionization and fragmentation of humic substances in electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Analytical Chemistry 74,4397-4409.
    Stenson, A.C., Marshall, A.G., Cooper, W.T.,2003. Exact masses and chemical formulas of individual Suwannee river fulvic acids from ultragigh resolution electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Analytical Chemistry 75,1275-1284.
    Stevenson, F.J.,1994. Humus chemistry:Genesis, Composition, Reactions; John Wiley & Sons:New York.
    Stuermer, D.H., and Harvey, G.R.,1974. Humic substances from seawater. Nature 250,480-481.
    Stuermer, D. H., and Harvey, G. R.,1977. The isolation of humic substances and alcohol-soluble organic matter from seawater. Deep-Sea Research 24,303-309.
    Stuermer, D. H. and Payne, J. R.,1976. Investigation of seawater and terrestrial humic substances with carbon-13 and proton nuclear magnetic resonance. Geochimica et Cosmochimica Acta 40,1109-1114.
    Stuermer, D.H., Peters, K.E., Kaplan, I.R.,1978. Source indicators of humic substances and proto-kerogen. Stable isotope ratios, elemental compositions and electron spin resonance spectra. Geochimica et Cosmochimica Acta 42,989-997.
    Sun, L., Perdue, E.M., McCarthy, J.F.,1995. Using reverse osmosis to obtain organic matter from surface and ground waters. Water Research 29,1471-1477.
    Sun, L., Perdue, E.M., Meyer, J.L., Weis, J.,1997. Use of elemental composition to predict bioavailability of dissolved organic matter in a Georgia river. Limnology and Oceanology 42,714-721.
    Swift, R.S.,1996. Organic matter characterization. In:Sparks, D.L., et al., (Editors), Methods of SoilAnalysis: Part 3. Chemical Methods, Soil Science Society of America Book Series 5, Madison, WI, pp.1018-1020.
    Tao, Z., Liu, S., Zhao, F., Yang, Y.,1997. Studies of thermal transformation of humic and fulvic acids in soils II. Thermogravimetry. Chemistry and Ecology 14,21-30.
    Templier, J., Derenne, S., Croue, J.P., Largeau, C.,2005. Comparative study of two fractions of riverine dissolved organic matter using various analytical pyrolytic methods and a 13C CP/MAS NMR approach. Organic Geochemistry 36,1418-1442.
    Tfaily, M.M., Hodgkins, S., Podgorski, D.C., Chanton, J.P., Cooper, W.T.,2012. Comparison of dialysis and solid-phase extraction for isolation and concentration of dissolved organic matter prior to Fourier transform ion cyclotron resonance mass spectrometry. Analytical and Bioanalytical Chemistry 404,447-457.
    Thurman, E. M.,1985. Organic geochemistry of natural waters. Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht.516p.
    Thurman, E.M. and Malcolm, R.L.,1981. Preparative isolation of aquatic humic substances. Environmental Science & Technology 15(4),463-466.
    Tipping, E.,2002. Cation binding by humic substances. Cambridge University Press, Cambridge.
    Tipping, E., Backes, C. A., Hurley, M. A.,1988. The complexation of protons, aluminum and calcium by aquatic humic substances:a model incorporating binding-site heterogeneity and macroionic effects. Water Research 22,597-611.
    Tipping, E., and Hurley, M. A.,1992. A unifying model of cation binding by humic substances. Geochimica et Cosmochimica Acta 56,3627-3641.
    Tremblay, L., Alaoui, G., Leger, M.N.,2011. Characterization of aquatic particles by direct FTIR analysis of filters and quantification of elemental and molecular compositions. Environmental Science & Technology 45,9671-9679.
    Tremblay, L. B., Dittmar, T., Marshal,1 A. G., Cooper, W. J., Cooper, W. T.,2007. Molecular characterization of dissolved organic matter in a North Brazilian mangrove porewater and mangrove-fringed estuaries by ultrahigh resolution Fourier Transform-Ion Cyclotron Resonance mass spectrometry and excitation/emission spectroscopy. Marine Chemistry 105,15-29.
    Tremblay, L. and Gagne, J.P.,2007. Distribution and biogeochemistry of sedimentary humic substances in the St. Lawrence Estuary and the Saguenay Fjord, Quebec. Organic Geochemistry 38,682-699.
    Tremblay, L. and Gagn6, J.P.,2009. Organic matter distribution and reactivity in the waters of a large estuarine system. Marine Chemistry 116,1-12.
    Ussiri, D.A.N., Johnson, C.E.,2003. Characterization of organic matter in a northern hardwood forest soil by 13C NMR spectroscopy and chemical method. Geoderma 111,123-149.
    Vandenbroucke, M., Pelet, R., Debyser, Y.,1985.Geochemistry of humic substances in marine sediments.In: Aiken, G.R., McKnight, D.M., Wershaw, R.L., MacCarthy, P. (Editors), Humic Substances in Soil, Sediment, and Water-Geochemistry, Isolation, and Characterization. John Wiley and Sons, NY, pp.249-273.
    Van Heemst, J. D. H., Megens, L., Hatcher, P. G., De Leeuw, J. W.,2000. Nature, origin and average age of estuarine ultrafiltered dissolved organic matter as determined by molecular and carbon isotope characterization. Organic Geochemistry 31,847-857.
    Van Krevelen, D.W.,1950. Graphical-statistical method for the study of structure and rection processess of coal. Fuel 29,269-284.
    Vetter, T.A., Perdue, E.M., Ingall, E., Koprivnjak, J.F., Pfromm, P.H.,2007. Combining reverse osmosis and electrodialysis for more complete recovery of dissolved organic matter from seawater. Separation and Purification Technology 56,383-387.
    Wang, X., Lou, T., Xie, H.,2009. Photochemical production of dissolved inorganic carbon from Suwannee river humic acid. Chinnese Journal of Oceanology and Limnology 27(3),570-573.
    Wang, X., Ma, H., Li, R., Song, Z., Wu, J.,2012. Seasonal fluxes and source variation of organic carbon transported by two major Chinese Rivers:The Yellow River and Changjiang (Yangtze) River. Global Biogeochemical Cycles 26, GB2025.
    Wershaw, R.L.,1985. Application of nuclear magnetic resonance spectroscopy for determining functionality in humic substances. In:Aiken, G. R., McKnight D. M., Wershaw R. L., MacCarthy P.(Editors), Humic Substances in Soil, Sediment, and Water-Geochemistry, Isolation, and Characterization. John Wiley and Sons, NY, pp.561-582.
    Willey, J.D., Kieber, R.J., Eyman, M.S., Avery, G.B.,2000. Rainwater dissolved organic carbon: Concentrations and global flux. Global Biofemchemistry Cycles 14,139-148.
    Williams, P.M. and Druffel, E.R.M.,1987. Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature 330,246-248.
    Wilson, D. E., and Kinney, P.,1977. Effects of polymeric charge variations on the proton-metal ion equilibria of humic materials. Limnolology and Oceanography 22,281-289.
    Wilson, M.A., Gillam, A.H., Collin, P.J.,1983. Analysis of the structure of dissolved marine humic substances and their phytoplanktonic precursors by 1H and 13C nuclear magnetic resonance. Chemical Geology 40, 187-201.
    Wu, F.C., Evans, R.D., Dillon, P.J.,2003. Separation and characterization of NOM by high-performance liquid chromatography and on-line three-dimensional excitation emission matrix fluorescence detection. Environmental Science & Technology 37,3687-3693.
    Wu, Y., Zhang, J., Liu, S.M., Zhang, Z.F., Yao, Q.Z., Hong, G.H., Cooper, L.,2007. Sources and distribution of carbon within the Yangtze River system. Estuarine, Coastal and Shelf Science 71,13-25.
    Xing, B., Liu, J., Liu, X., Han, X.,2005. Extraction and characterization of humic acids and humin fractions from a black soil of China. Pedosphere 15,1-8.
    Xu, Y., Mead, R. N., Jaffe, R.,2006. A molecular marker-based assessment of sedimentary organic matter sources and distributions in Florida Bay. Hydrobiologia 569,179-192.
    Yang, S.L., Li, H., Ysebaert, T., Bouma, T.J., Zhang, W.X., Wang, Y.Y., Li, P., Li, M., Ding, P.X.,2008. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta:On the role of physical and biotic controls. Estuarine Coastal and Shelf Science 77,657-671.
    Yang, S.L., Milliman, J.D., Li, P., Xu, K.,2011.50,000 dams later:Erosion of the Yangtze River and its delta. Global and Planetary Change 75,14-20.
    Yang, S., Tang, M., Yim, W.W.S., Zong, Y., Huang, G., Switzer, A.D., Saito, Y.,2011. Burial of organic carbon in Holocene sediments of the Zhujiang (Pearl River) and Changjiang (Yangtze River) estuaries. Marine Chemistry 123,1-10.
    Yu, H., Wu, Y., Zhang, J., Deng, B., Zhu, Z.,2011. Impact of extreme drought and the Three Gorges Dam on transport of particulate terrestrial organic carbon in the Changjiang (Yangtze) River. Journal of Geophysical Research 116, F04029. Doi:10.1029/2011JF002012
    Yermiyaho, U., Keren, R., Chen, Y.,1988. Boron sorption on composted organic-matter. Soil Science Society of America Journal 52,1309-1313.
    Zaccone, C, Casiello, G., Longobardi, F., Bragazza, L., Sacco, A., Miano, T.M.,2011. Evaluating the ‘conservative’behavior of stable isotopic ratios (δ13C,δ15N, and δ18O) in humic acids and their reliability as paleoenvironmental proxies along a peat sequence. Chemical Geology 285,124-132.
    Zepp, R.G.,1988. Environmental photoprocesses involving natural organic matter. In:Frimmel, F.H. and Christman, R.F. (Editors), Humic substances and their role in the environmental. John Wiley and Sons, NY, pp.193-214.
    Zhang, H., Zhang, Y., Shi, Q., Ren, S., Yu, J., Ji, F., Luo, W., Yang, M.,2012. Characterization of low molecular weight dissolved natural organic matter along the treatment trait of a waterworks using Fourier transform ion cyclotron resonance mass spectrometry. Water Research 46,5197-5204.
    Zhang, J.,1999. Heavy metal compositions of suspended sediments in the Changjiang (Yangtze River) estuary: significance of riverine transport to the ocean. Continental Shelf Research 19,1521-1543.
    Zhang, Y., Du, J., Peng, B., Zhang, F., Zhao, X., Zhang, J.,2013. Chemical and spectroscopic characterization of dissolved humic substances in a mangrove-fringed estuary in the eastern coast of Hainan Island, China. Chinese Journal of Oceanology and Limnology 31,454-463.
    Zhang, Y., Du, J., Zhang, F., Yu, Y., Zhang, J.,2011. Chemical characterization of humic substances isolated from mangrove swamp sediments:The Qinglanarea of Hainan Island, China. Estuarine, Coastal and Shelf Science 93,220-227.
    Zhang, Y., Yang, G., Chen, Y.,2009. Chemical characterization and composition of dissolved organic matter in Jiaozhou Bay. Chinnese Journal of Oceanology and Limnology 27(4),851-858.
    Zhou, J., Wu, Y., Zhang, J., Kang, Q., Liu, Z.,2006. Carbon and nitrogen composition and stable isotope as potential indicators of source and fate of organic matter in the salt marsh of the Changjiang Estuary, China. Chemosphere 65,310-317.
    陈敏,郭劳动,黄奕普,高众勇,蔡毅华,蔡明刚,2000.错流超滤技术在海水胶体态铀,钍,镭同位素和有机碳研究中的应用.海洋学报22(5),51-59.
    陈敏,2009.化学海洋学.海洋出版社,北京.
    崔莹,2012.基于稳定同位素和脂肪酸组成的中国近海生态系统物质流动研究.华东师范大学博士学位论文,上海.
    傅平青,2004.水环境中的溶解有机质及其与金属离子的相互作用------荧光光谱学研究.中国科学院广州地球化学研究所博士学位论文,广州.
    郭卫东,陈远月,2008.天然日光辐照下河口区CDOM的光化学降解.环境科学29,1463-1468.
    郭卫东,黄建平,洪华生,许静,邓荀,2010.河口区溶解有机物三维荧光光谱的平行引自分析及其示踪特征.环境科学31,1419-1427.
    郭卫东,夏恩琴,韩宇超,吴芳,李猛,吴易达,2005.九龙江口CDOM的荧光特性研究.海洋与湖沼36,349-357.
    胡建芳,彭平安,麦碧娴,张干,殷克东,2005.珠江口不同沉积有机质的来源及相对含量.热带海洋学报24(1),15-20.
    姜亦飞,杜金洲,张敬,张文祥,张经,2012.长江口崇明东滩不同植被带沉积速率研究.海洋学报34(2),114-121.
    李丽,2003.不同级分腐殖酸的分子结构特征及其对菲的吸附行为的影响.中国科学院广州地球化学研究所博士学位论文,广州.
    林晶,2007.长江口及其毗邻海区溶解有机碳和颗粒有机碳的分布.华东师范大学硕士学位论文,上海.
    林樱,2011.土壤、沉积物以及蓝藻中有机质标准物质的提取与表征.中国环境科学研究院硕士学位论文,北京.
    宋建中,2003.珠江三角洲地区土壤和表层沉积物有机质的非均质性研究.中国科学院广州地球化学研究所博士学位论文,广州.
    孙蕴婕,2011.沉积物中脂类生物标记物的物源示踪及环境演变指示.华东师范大学硕士学位论文,上海.
    田丽欣,吴莹,林晶,朱卓毅,张经,2010.冬季海南省东北部河流及近岸海区有机碳的分布特征.热带海洋学报29(5),136-141.
    王立英,吴丰昌,黎文,王静,张润宇,2008.水体溶解有机质富集分离方法的研究进展.地球与环境36(2),171-178.
    王宝灿,陈沈良,龚文平,林卫青,徐元,2006.海南岛港湾海岸的形成与演变.海洋出 版社,北京,215P.
    文启孝,1984.土壤有机质研究法.农业出版社,北京.
    吴丰昌,王立英,黎文,张润宇,傅平青,廖海清,白英臣,郭建阳,王静,2008.天然有机质及其在地表环境中的重要性.湖泊科学20(1),1-12.
    杨丽阳,吴莹,张经,于灏,张国森,朱卓毅,2008.长江口邻近陆架区表层沉积物的木质素分布和有机物来源分析.海洋学报30(5),35-42.
    杨丽阳,吴莹,黄俊华,张国森,张经,2009.大九湖泥炭柱样的木质素特征.地球化学38(2),133-139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700