加载磁絮凝技术处理微污染原水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是生命之源,是一切生命赖以生存的物质基础,随着人民生活水平的提高和社会的发展,对供水的水质要求越来越严格。而现实的情况是,近年来随着城市现代化和工业生产活动的不断发展,人类的活动范围不断扩大,大量的生活污水和工业废水不断地被排入湖泊、江河和土壤中,饮用水源水的污染在加剧,严重危害了生态环境,现有水厂的制水难度越来越大,一些自来水水质呈变差的趋势。有效处理微污染原水,制备高质量饮用水已成为我国面临的挑战之一。如今,微污染原水的处理方法有很多种(如化学法、物理化学法、微生物法等等),这些方法在实际应用中也比较广泛,为了探索更有效的处理方法,本文主要就加载磁絮凝技术处理微污染原水中的CODMn和浊度进行了实验研究,为此技术在以后制备饮用水的工程应用中提供技术参考。
     研究的主要内容为:利用静态烧杯实验研究聚合氯化铝和聚合硫酸铁对微污染原水中CODMn和浊度去除效果的影响因素以及其最适宜投加条件,然后经技术经济比选,选出最优絮凝剂,再与磁粉配合使用,研究磁粉的最佳投加条件,得出试验结果后进行正交性实验设计,确定试验因素的主次顺序和最佳搭配水平,以实验数据为依据对自来水厂进行工艺设计,研究磁絮凝技术的运行优点,最后进行工程概算和成本计算,从技术、经济效益方面进行比较,得出磁絮凝技术在自来水厂中应用的现实性。
     研究的结果表明:(1)聚合氯化铝去微污染原水中CODMn和浊度的的最佳实验条件为:投加量为60mg/L,静沉时间为20min,pH值为7-8,取自然水温即可。(2)聚合硫酸铁去微污染原水中CODMn和浊度的最佳实验条件为:投加量为100mg/L,静沉时间为30min,pH值为7-8,取自然水温即可。(3)进行技术经济比选,得出聚合氯化铝为最优混凝剂,聚合氯化铝与磁粉结合,磁粉的最佳实验条件为:投加量为500mg/L,静沉时间为15min,pH值为7-8,取自然水温即可。(4)正交实验设计得出最佳运行条件为:PAC投加量为60mg/L,静沉时间为15min,磁粉投加量为500mg/L,pH值为7-8。(5)对设计的工艺进行工程概算,自来水厂制水量为20000m3/d,总投资为2810.63万元,其中:建设工程费为2175.71万元;其他费用为454.91万元;预备费为157.84万元;铺底资金为22.17万元。(6)最后对该处理技术进行了成本分析,分析结果为:全年供水成本为758万元,经营成本624万元,单位供水成本为1.04元,单位经营成本为0.85元。
Water is the source of life, all life is the material basis for survival. With the improvement of people's living standard and the development of society, the water quality is more and more strict. But the reality is, in recent years as the city modernization and industrial production's unceasing development, the scope of human activities continue to expand, large amounts of sewage and industrial wastewater has been discharged into the lake, rivers and soil, drinking water source pollution in aggravate, serious harm to the ecological environment, the existing water works water difficulty more and more.some tap water was variation trend. Effective treatment of micro polluted raw water, the preparation of high quality drinking water in our country has become one of the challenges facing. Nowadays, the treatment of micro polluted raw water in many ways (such as chemical method, pHysical and chemical, microbiological method etc.). Practical applications of these methods are also quite extensive. In order to explore the more effective treatment methods, this paper mainly loaded magnetic flocculation technology for treatment of micro polluted raw water in COD and turbidity was studied, for this technology in preparation of drinking water project application to provide technical reference.
     The main content of the research are:the use of static beaker experiment of polyaluminium chloride and ferric sulfate from Micropolluted Raw Water by COD and turbidity removal factor as well as its most appropriate dosing conditions, then through the comparison of technology and economy, optimum flocculant, and magnetic particle binding, research the best dosing conditions, then further experiments, according to the orthogonal experimental results and the actual situation of water plant process design, the project budget and cost analysis.
     The results of the study show that:(1) polymerization aluminum chloride to micro polluted raw water in CODMn and turbidity of the optimum experimental conditions:dosage is60mg/L, static settling time is20min, pH7.5, temperature had little effect, and the room temperature.(2) polymerized ferric sulfate to the micro polluted raw water in CODMn and turbidity of the optimum experimental conditions:dosage is100mg/L, static settling time is30min, pH7.5, temperature had little effect, and the room temperature.(3) for technical and economic comparison, the optimal coagulant polyaluminum chloride, PAC and magnetic combined, the optimum experiment conditions:dosage is500mg/L, static settling time is15min, pH7.5, temperature had little effect, and the room temperature.(4) by orthogonal experiments the optimum operating condition PAC dosage is60mg/L, static settling time is15min, magnetic powder dosage is500mg/L, pH7.5.(5) on the design of the process of project budgetary estimate, water plant water for20000m/D, for a total investment of28,106,300yuan, of which:the construction project cost to be21,757,100yuan; other costs454,9100yuan; reserve cost is1578400yuan; start-up funds for221,700yuan.(6) at the end of the processing technology and the cost analysis, the analysis results:annual water cost is7,580,000yuan, operating costs6,240,000yuan, unit water supply cost is1.04yuan, unit operation cost is0.85yuan.
引文
[1]康小红.加载磁絮凝技术处理洗铜废水中铜离子的试验研究[D].太原:太原理工大学,2011.
    [2]卢建国.缺氧—好氧生物滤池处理城市污水试验研究[D].太原:太原理工大学,2008.
    [3]张亚旦.发光细菌法对市售饮用水安全性的研究[D].上海:华东师范大学,2009.
    [4]熊晓丽,张粲.饮水安全与健康[A];河北省环境科学学会环境与健康论坛暨2008年学术年会论文集[C].河北:环境与健康,2008.
    [5]张粲;熊晓丽;张永祥.饮水安全与水质净化[A];2008年全国给水排水技术交流会暨全国水网理事会换届大会论文集[C].给水排水动态,2008.
    [6]王晓宇.山西煤炭开采对水资源的影响分析及对策研究[J].科技情报开发与经济,2003,32(12):51-53.
    [7]赵明慧,周集体.磁化学技术在水处理中的应用[J].环境污染治理技术与设备,2003,18(4):28-31.
    [8]杨一明.战场水资源的处理[J].中国科技信息,2007,12(22):30-32.
    [9]陈莉,范跃华.微污染原水的处理技术发展与探讨[J].重庆环境科学,2002,24(6):68-78.
    [10]杨昌柱,王敏.磁技术在废水处理中的应用[J].化工环保,2004,(6):48-51.
    [11]方送生.天然沸石负载型二氧化钛光催化剂的制备与光催化性能[D].吉林,吉林大学,2004.
    [12]曹学静.超临界水氧化法处理焦化废水中挥发酚的研究[D].太原,太原理工大学,2011.
    [13]汤庆凯.利用废铝箔包装材料生产聚合氯化铝[J].中国资源综合利用,2000,(6):24-26.
    [14]Shen Xiaoming, Yan Chonghuai, Guo Di, etc. Low-level prenatal lead exposure and neurobehavioral development of children in the first year of life:a prospective study in Shanghai [J]. Envimnmental Research,1998,79(1):1-8.
    [15]马培忠,许金木.废弃铝箔生产聚合氯化铝技术[J].河南科技,1998,(4).
    [16]Sharama V K.Potassim ferrate:an environmental friendly oxidant[J].Advances in Environmental Research,2002, (6):143~156.
    [17]O. S. Thironavukkarasu, T. Viraragbavan, K. S. Subramanian, S. Tanjore. Organic arsenic removal fromdrinking water[J]. Urban Water,2002,4:415-421.
    [18]I. Ciabatti, etal.Treatment and reuse of dyeing effluents by potassium ferrate[J].Desalination,2010, (250):222~228.
    [19]薛福连.废弃铝箔生产聚合氯化铝技术[J].再生资源研究,1998,(5):56-58.
    [20]李峰.磁絮凝技术处理微污染水的试验研究[J].教育科学博览,2012,(223):182-184.
    [21]肖锦,周勤,孙伟等.微污染原水强化混凝净化研究[J].给水排水,1999,25(12):14-15.
    [22]于军.铝灰制取聚合氯化铝工艺探讨[J].青海师专学报,2003,(3):56-58.
    [23]高超.胶东某市污水厂处理工艺的试验研究[D].青岛,青岛理工大学,2008.
    [24]曹勇锋,荣宏伟,张可方等.微絮凝-大梯度磁滤工艺去除水中浊度及有机物[J].环境科学与技术,2011,34(06):164-184.
    [25]张聪慧.纳滤膜处理大宝山铁泥拦泥坝尾矿库废水的研究[D].江西,江西理工大学,2008.
    [26]张朝升,宋金璞,李德强.大梯度磁过滤处理微污染麓湖水的研究[J].中国给水排水,2000,16(8):59-60.
    [27]张朝升,张可方,李德强.大梯度磁滤法处理微污染水的试验研究[J].工业用水与废水,2003,34(6):26-28.
    [28]邓再芳.膨化稻壳基重金属吸附新材料动力学及机理研究[D].绵阳,西南科技大学,2011.
    [29]王娟.高分子重金属絮凝剂ISXA的制备及性能研究[D].兰州,兰州交通大学,2006.
    [30]刘有才,淀粉黄原酸酯的制备及其在重金属废水处理中的应用[D].昆明,昆明理工大学,2002.
    [31]Hu ban CM,etal. Bioaugmentationputmicrobesto work[J]. Chemical Engi- neering, 1997, 104(3):74-84.
    [32]孙迎雪,田媛.微污染水源饮用水处理理论及工程应用[M].北京:化学工业出版社,2005.
    [33]郑必胜,郭祀远,李琳,等.应用高梯度磁分离技术处理糖蜜酒精废水[J].环境科学学报,1999,19(3):252-255.
    [34]Gareth P Hatch, Richard E. Magnetic design considerations for devices and particles used for biological high gradient magnetic separation (HGMS) systems[J]. Journal of Magnetism and Magnetic Materials,2001,225:262-276.
    [35]Klaus Hempel, Werner Deubel, Reinhard Lorenz, et al. High gradient magnetic cell sorting and internal standardization substantially improve the assay for somatic mutations at the glycopho
    [36]黄达卿.壳聚糖吸附处理重金属废水的研究[D].上海,东华大学,1985.
    [37]E. BARRADO, F. PRIETO, J. RIBAS et. al. MAGNETIC SEPARATION OF FERRITE SLUDGE FROM A WASTEWATER PURIFICATION PRoCEsS[J]. Water, Air, and Soil Pollution,1999,1 15:385-394.
    [38]Ucurum M. A study of removal of Pb heavy metal ions from aqueous solution using lign-ite and a new cheap adsorbent (lignite washing plant tailings)[J], Fuel,2009,88(8): 1460-1465.
    [39]P.C.Chui,etal. Nitrogen removal in a submerged filter with no effluent recircu- lation [J]. Wat.Sci.Tech.,2000,42(3-4):51-57.
    [40]张林生.水的深度处理与回用技术[M].北京:化学工业出版社,2008.
    [41]宋金璞,杨镇国,郑学玉等.大梯度磁滤器对饮用水中有害物质的去除[J].中国给水排水,1997,13(2):4-6.
    [42]李光芝,武智,史冬等.磁场对聚合氯化铝混凝效果的影响[J].化工技术与开发,2010,39(11):53-55.
    [43]阎春荣,全燮,陈硕.磁化对聚合氯化铝形态分布影响的研究[J].工业水处理,2004,24(5):50-52.
    [44]刘卫国,章凤萍,赵陈龙,秦文明.磁在混凝处理废水中的应用研究[J].石油化工 环境保护,2005,28(4):10-12.
    [45]牛永红,张雪峰,苍大强.高梯度磁处理对炼铁厂冷却水浊度的影响研究[J].环境科学与管理,2005,30(4):38-39.
    [46]Arvidson B R. New inexpensive high gradient magnetic separatiors[C]. Proceedings of XV Int Min Proc Congress,1985:317-329.
    [47]王克宁,杨兴中.磁化技术在水处理方面的应用[J].北方环境,2000,73(1):42-43.
    [48]Zezulke V. Continous HGMS for kaolin eatment[C]. Proceedings of XV Int Min PrOc Congress,1988:214-226.
    [49]Nakajima H, Kaneko H, Oizumi M, etc. Separation characteristics of open gradient magnetic separation using hjgh temperature superconducting magnet[J]. Physica C:Sup-er conductivity,2003(392-396):1214-1218.
    [50]Cafer T. Yavuz, J,. T. Mayo, William, etc. Low-Field Magnetic Separation of Monod i sperse Fe304 Nanocrystals[J]. Science,2006,314:964-967.
    [51]Van Loosdrecht M C M. Biological phosphate removal processes[J]. Appl Microbial Bioteehnol,1997, (48):289~296.
    [52]姚美莲,等.TBP萃取处理含铬废水的研究[J].环境科学,1980,1(2):55-60.
    [53]孔彦.我国城市污水处理现状与展望[J].内蒙古科技与经济,2007,5(10):9-11.
    [54]G Kyuchoukov, etc. Oleic acid and inferior oleiccid[J]. Chem Commun,1982,17:219-223.
    [55]蒋志元.铁盐改性石英砂的制备及其去除重金属性能研究[D].杭州,浙江工业大学微生物学通报,2009.
    [56]刁静茹.高分子重金属絮凝剂SSXA的制备与性能研究[D].兰州,兰州交通大学,2006.
    [57]王庆伟.铅锌冶炼烟气洗涤含汞污酸生物制剂法处理新工艺研究[D].长沙,中南大学,2011.
    [58]郭帅.微生物絮凝剂的研制及其对染料和重金属废水的处理研究[D].长沙,湖南大学,2008.
    [59]Hoppe M L, etc.Structure of Dipotassjum Ferrat(VI)[J].Acta Crystallogr,1982, B(38): 2237~2239.
    [60]Joanna,etal.Nitrogen removal from wastewater with high ammonia nitrogen entration via shorter nitrification and denitrification[J].Wat.Sci.Tech.,1997,36(10):73-78.
    [61]马国正,刘聪,南俊民.Al-MCM-41介孔分子筛对镉离子吸附性能的研究[J].华南师范大学学报:自然科学版,2008,3:77-81.
    [62]周理程.龙须眼子菜的改性及其吸附重金属的特性研究[D].长沙,中南大学化,2009.
    [63]郑伟.碳羟磷灰石的制备及对重金属离子的吸附研究[D].长沙,湖南大学,2007.
    [64]陈凤冈,等.高梯度磁分离在给水处理中应用研究[J].给水排水,1991,17(2):2-7.
    [65]张昱.碳羟磷灰石对重金属离子的吸附研究[D].长沙,湖南大学,2008.
    [66]熊大和.新型工业立环脉动高梯度磁选机的研制[D].长沙:中南工业大学,1988.
    [67]冯宁川.橘子皮化学改性及其对重金属离子吸附行为的研究[D].长沙,中南大学,2009.
    [68]马静.天然植物材料作为吸附剂处理低浓度重金属废水的研究[D].长沙,湖南大学,2007.
    [69]沈彬彬.三相萃取法处理重金属废水的研究[D].西安,西安建筑科技大学,2008.
    [70]何义超.棘孢曲霉(Aspergillus aculeatus)对Pb-(2+)和Cd-(2+)的吸附过程的特征[D].长沙,湖南大学,2009.
    [71]徐雪芹.丝瓜瓤固定简青霉吸附重金属的研究[D].长沙,湖南大学,2007.
    [72]翟羽佳.纳米KDF去除水中余氯及重金属的试验研究[D].北京,北京交通大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700