生物制剂法处理含锰废水新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电解二氧化锰是资源、能源消耗高,污染物产生量大的行业。其产生的含锰废水中含有大量的锰,直接排入水体,将会对水体、土壤等生态系统造成严重污染,带来一系列环境问题。目前普遍使用石灰中和水解法处理,但出水难以稳定达到排放标准。含锰废水的高效治理仍是重金属废水处理中关注的焦点。
     本研究在热力学研究及含锰废水特性分析的基础上,开发了生物制剂配合-水解法直接深度处理含锰废水新技术。
     在全面考虑锰离子在水中存在的各种羟合配离子的基础上,引入配位化学和水化学的有关理论,对Mn2+-H20体系中羟合配离子的热力学平衡进行详细全面的分析研究,并利用Pitzer理论计算了体系中不同离子强度下的活度系数,绘制不同离子强度下锰的各类配合离子浓度pc-pH图。根据配位化学热力学原理及Pitzer理论,绘制了298.15K下-lnγ±MnSO4 -I关系图及pc-pH图。-lnγ±MnSO4 -I图表明I从0.00到0.09时,-lnγ±MnSO4从0.00迅速增大到1.21;当0.00≤I≤1.69时,-lnγ±MnSO4变化很缓慢;I≥2.25时,-lnγ±MnSO4基本不变。pc-pH图表明Mn(OH)2(s)的最小溶解度随离子强度的增加而增加,当I由0.00增加到4.00时,pc由6.5减小到5.5;最小溶解度的pH也随离子强度增加而增加,离子强度由0.00增加到2.89时,pH由11.80增至12.76,I(I≤4.00)再增加,pH保持不变;不同离子强度下Mn(OH)2(s)的最小溶解度与相应的pH存在单值函数关系。
     在含锰废水特性分析的基础上,开发了生物制剂配合-水解法直接深度处理含锰废水新技术。含锰废水生物制剂配合体系中存在两个缓冲区,分别为pH值8.80-11.18和12.28-13.08。废水从pH值2.04升高至10.00左右,氢氧化钠的理论加入量为2.67-4.00g/L。生物制剂配合-水解法直接深度处理含锰废水优化工艺条件:生物制剂加入量控制生物制剂与废水中锰的质量比为0.2,配合时间5 min,水解时间5 min,温度25℃,pH值10.0,PAM加入量2 mg/L,可将废水中锰浓度从994 mg/L去除到0.127 mg/L,扩大实验结果出水中锰浓度为0.0651 mg/L,达到了《生活饮用水卫生标准》(GB5749-2006)的限值0.1 mg/L。
     正交试验的极差分析表明,影响生物制剂去除锰离子的各因素的主次顺序为:pH值>配位时间>生物制剂加入量>温度>PAM加入量>水解时间。沉渣SEM、EDS、XRD、IR分析结果表明:含锰沉渣呈无定型及棒状,主要物相为CaSO4,渣中锰含量达14.16%,可返回生产系统回收锰。生物制剂通过其中的-OH、-COOH、-NH、-C=O、-S03、-C-O(H)、C-Cl等基团与废水中的含锰离子配合,在水解的过程中形成难溶物质沉淀分离。
     现场工业试验结果确定了工业生产最优条件:生物制剂的投加量控制生物制剂与废水中锰的质量比为0.6,配位时间为40 min,水解时间60min、pH 10。最优化条件下的工业试验,净化水中锰离子的浓度为0.05 mg/L,远低于国家的一级排放标准2 mg/L,达到了《生活饮用水卫生标准》(GB5749-2006)的限值0.1 mg/L。处理成本与原水中锰离子的浓度成正比关系,但目前湘潭电化废水中Mn2+的平均浓度低于600 mg/L,生物制剂的药剂成本低于3元/吨。
Electrolytic manganese dioxide (EMD) industry, with high resource and energy consumption, produces large quantities of industrial waste, such as manganese-containing wastewater. It contains large amounts of manganese and will destroy the food chain to risk human health as the wastewater is discharged directly into water body. The most commonly used method for treating the wastewater is lime neutralization-hydrolysis that involves adding alkali into acidic manganese-containing wastewater for the hydrolysis with manganese causing the generation of insoluble precipitate. However, it has difficulty in treating Mn2+ to achieve the Standard of National Discharge.
     In this study, the theory of coordination chemistry and the water chemistry were introduced to get a comprehensive analysis on thermodynamics balance of hydroxyl complex ions in the Mn2+-H2O system, and Pitzer theory was used to calculate activity coefficients in different ion intensity in the system. The pc-pH diagrams for all Mn2+ complex species with different ion intensity were obtained.
     Then "Direct and Deep Treatment of Manganese-containing Wastewater by Biologics Complexing-Hydrolyzation" was developed.
     Diagram of pc-pH representing the relationship between the concentration of Mn2+ complex ions and pH was plotted, also including the diagram of -ln/γ±MnSOt-I that shows the relationship between activity coefficient and ion intensity based on the thermodynamic principle of coordination chemistry and Pitzer theory at 298.15K. The diagram of -lnγ±MnSO4-I indicated that -lnγ±MnSO4 increased significantly from 0.00 up to 1.21 when I changed from 0.00 to 0.09;-lnγ±MnSO4 tended to increase slowly when I was between 1.00 and 1.69;-lnγ±MnSO4 nearly remained constant when I was ranged from 2.25 to 4.00.Diagrams of pc-pH illustrated that the minimum solubility of Mn(OH)2(s) increased with the increase of I, the pc increased from 6.5 to 5.5 when I increased from 0.00 to 4.00;The pH of the minimum solubility of Mn(OH)2(s) increased with the increase of I, the pH increased from 11.80 to 12.76 when Iincreased from 0.00 to 2.89,no change in pH was observed when I(I≤4.00) increased.It is possible there is uniform function relation between the minimum solubility of Mn(OH)2(s) and relevant pH in different ion indensity.
     A novel technology for the treatment of manganese-containing wastewater by biologics has been proposed based on the properties analysis of manganese-containing wastewater. There are two pH buffer zones (pH 8.80-11.18 and pH 12.28-13.08)in the complex system of manganese-containing wastewater and biologics.Theoretically, the required amount of sodium hydroxide for increasing pH value from 2.04 to 10.00 was 2.67-4.00 g/L. The optimum condition was 0.2 of mass ratio of biologics to manganese,5 min of cooperation time,5 min of hydrolysis time,25℃of temperature, pH 10.0,2 mg/L of PAM. Under the above optimum conditions,manganese concentration decreased from 994 mg/L to 0.127 mg/L in laboratory experiment.However, only 0.0651 mg/L of manganese remained in effluent in the large-scale experiment, which is lower than the maximum concentration level of Standard for drinking water quality (GB5749-2006)(0.1 mg/L).
     From the range analysis of orthogonal test, the order of importance of different parameters is shown as follows:pH>cooperation time>the dosage of biologics>temperature>dosage of PAM>hydrolysis time.
     The sludge properties were analyzed by SEM, EDS,XRD and IR. The results showed that the surface morphology of manganese-containing sludge was amorphous and rod and the main phase was CaSO4.The proportion of manganese in the sludge reached up to 14.16%, indicating that the sludge could be reused for manganese recovery. In the hydrolyzation process, manganese ions was complexed with the functional groups including-OH,-COOH,-NH,-C=O,-SO3,-CO (H) and C-Cl in biologics, and then formed precipitation.
     The optimum condition of the treatment of manganese-containing wastewater by biologics in pilot scale was 0.6 of mass ratio of biologics to manganese,40 min of cooperation time,60 min of hydrolysis time, 25℃of temperature, pH 10.0.Under the above optimum condition, manganese concentration decreased from 333 mg/L to 0.05 mg/L, which is lower than the maximum concentration level of Standard for drinking water quality (GB5749-2006) (0.1 mg/L). Processing cost is proportional to the manganese ion concentration in the wastewater. As the average concentrations of manganese ion in the wastewater of Xiangtan electrochemical technology Co.,LTD are blew 600 mg/L, the cost of biologics reagent is below 3.00 RMB/m3.
引文
[1]孙家富.我国锰矿资源现状及其成矿条件分析[J].中国锰业,1995,13(6):7-11
    [2]刘腾飞.我国锰矿资源开发利用现状及勘查对策[J].中国锰业,1997,15(1):50-56.
    [3]张去非.国内外锰矿选矿工艺概述[J].中国矿山工程,2004,33(6):3-5.
    [4]潘其经,周永生.我国锰矿选矿的回顾与展望[J].中国锰业,2000,18(4):1-10
    [5]姚敬劬.我国优质富锰矿资源短缺的应对策略[J].中国矿业,2005,14(5):20-25
    [6]宋雄.2002年底全国锰矿产查明资源储量统计[J].中国锰业,2004,22(4):5
    [7]中国矿床编委会编著.中国矿床(中册)[M].北京:地质出版社,1994:480
    [8]张惠棠.锰系铁合金的现状和发展趋势[J].中国锰业,1996,14(4):12-16
    [9]陈仁义,柏琴.中国锰矿资源现状及锰矿勘查设想[J].中国锰业,2004,22(2):1-4
    [10]王运敏.中国的锰矿资源和电解金属锰的发展[J].中国锰业,2004,22(3):26-30
    [11]无机化学丛书编写组.无机化学丛书(第九卷)[M].北京:科学出版社,1998:13-15
    [12]姜焕伟.电解金属锰生产中的废水排放与区域水质污染[J].中国锰业,2004,22(1):5-9
    [13]罗开林.政府的迟疑百姓的痛[N].中国环境报,2004,10(22):3
    [14]污染企业为啥多是利税大户[N].中国经济时报,2001,5(29):5
    [15]谭柱中,梅光贵,李维健,等.锰冶金学[M].长沙:中南大学出版社,2004:322-324
    [16]许定胜.提银含锰废液生产电解二氧化锰(EMD)的工艺研究[D].长沙:中南大学,2004:
    [17]何英.电池用二氧化锰的制造方法及其进展[J].电池工业,1999,4(6):230-233.
    [18]Fleischman M. Thirsk H. R. The mechanism of processing for electrolytic manganese dioxide [J].J.Electroche. Soc. Japan,1960,28(2):170~175
    [19]杉森正敏,关根太郎.电解二氧化锰的电极过程[J].电气化学,1969,37(2)63-69.
    [20]钟琼.电解锰生产废水处理技术的研究[D].长沙:湖南大学,2006:
    [21]孟君.含锰废水控制与治理研究进展[J].安徽农业科学,2008,36(32):14273-14274
    [22]姚俊,田宗平,姚祖风,等.电解金属锰废水处理的研究[J].中国锰业,2000,18(3):25-27
    [23]樊玉川.含锰废水处理研究[J].湖南有色金属,1995,14(3):36-38
    [24]姜兴华,刘勇健.铁碳微电解法在废水处理中的研究进展及应用现状[J].工业安全与环保,2009,35(1):26-27
    [25]张子间.微电解法在废水处理中的研究及应用[J].工业安全与环保,2004,30(4):8-10
    [26]王永广,杨剑锋.微电解技术在工业废水处理中的研究与应用[J].环境污染治理技术与设备,2002,3(4):6-73
    [27]周培国,傅大放.微电解工艺研究进展[J].环境污染治理技术与设备,2001,2(4):18-24
    [28]喻旗,沈杨,张光辉.铁/炭微电解床处理电解锰生产钝化废水[J].中国锰业,2002,20(1):25-27
    [29]欧阳玉祝,沈扬,李清平.铁屑微电解法处理电解锰生产废水[J].吉首大学学报,2002,23(2):35-37
    [30]汪大翬,徐新华,宋爽.工业废水中专项污染物处理手册[M].北京:化学工业出版社,2001:264-265
    [31]何强,王韧超,柴宏祥,等.化学沉淀/混凝沉淀工艺序批式处理电解锰废水[J].中国给水排水,2007,5,23(10):62-64
    [32]梅允福.过氧化钙的制造和应用[J].福建化工,2000,5(2):3-5
    [33]张嫦,吴莉莉.过氧化钙的制备及其在废水处理中的应用[J].化工环保,2004,24(1):62-65
    [34]Stuck S,Kots R,et al.Electrochemical waste water treatment using highovervoltage nodes.Part Ⅱ:Anode performance and application[J]. AppliedElecrrochemistry,1991,2(1):99~104
    [35]潘琼,郭正,李欢.三维电解法深度处理电解锰废水技术研究[J].江苏环境科技,2007,20(6):32-34
    [36]王学松.膜分离技术及其应用[M].北京:北京科学出版社,1994:22-25
    [37]宋世谟,王正烈,李文斌.物理化学(第二版)下册[M].北京:高等教育出版社,2000:15-52
    [38]钟琼,高栗,杨婵,等.用离子交换膜-电解法处理电解金属锰生产废水的究[J].中国锰业,2007,2,25(1):27-29
    [39]阎存仙.粉煤灰对染料废水的脱色研究[J].环境污染与防治,2000,22(5):3-5.
    [40]韩丽,段致辉.利用粉煤灰治理工业废水的研究[J].环境科学动态,2000,7(4):25-26
    [41]阎存仙,周红.粉煤灰处理含磷废水的研究[J].上海环境科学,2000,19(1):33-34
    [42]席永慧,赵红.粉燥灰及膨润土对Ni2+,Zn2+,Cd2+,Pb2+的吸附研究术[J].粉煤 灰综合利用,2004,12(3):3-6
    [43]江辉,崔敏,路捷,等.含锰废水的粉煤灰处理[J].农业资源与环境科学,2007,23(3):402-405
    [44]李东,杨宏,张杰.生物滤层同时去除地下水铁锰离子研究[J].中国给水排水,2001,17(8):125-127
    [45]郝火凡.利用流动滤床装置除锰的试验研究[J].甘肃科学学报,2003,3(2):99-101
    [46]郝火凡,张翠玲.锰砂与活性炭处理含锰废水的对比试验研究[J].兰州交通大学学报,2008,27(1):46-48
    [47]于天仁,季国亮,丁昌璞,等.可变电荷土壤的电化学[M].北京:科学出版社,1996:56-74
    [48]金相灿.沉积物污染化学[M].北京:中国环境科学出版社,1992:35-52
    [49]格里姆R E(许翼泉译).粘土矿物学[M].北京:地质出版社,1960:84-93
    [50]詹旭,罗泽娇,马腾.高岭土吸附剂去除含锰废水中锰离子的实验研究[J].地质科技情报,2005,24(1):95-98
    [51]吴金山,王祥.用含锰废水生产高纯碳酸锰[J].化工环保,1998,18(6):359-361
    [52]汤兵.铁氧体化法在重金属污染物解毒处理中的应用[J].环境导报,2001,25(2):26-29
    [53]魏振枢.铁氧体法处理含铬废水工艺条件探讨[J].化工环保,1998,18(1):33-36
    [54]罗超,陈小红.运用铁氧体沉淀法处理含锰废水[J].江西科学,2006,24(5):370-373
    [55]许宁,胡伟光.环境管理[M].北京:化学工业出版社,2003:90-95
    [56]国家环境保护局.清洁生产在中国[M].北京:清洁生产中心,1995:4-10
    [57]张祥麟,康衡.配位化学[M].湖南:中南工业大学出版社,1986:150-200
    [58]W.斯塔姆,[美]J.J.摩尔根.水化学天然水体化学平衡导论[M].汤鸿霄.北京:科学出版社,1987:67-203
    [59]牛自得,程芳琴.水盐体系相图及其应用[M].天津:天津大学出版社,2002:183-213
    [60]Marek Trojanowicz,Peter W.Alexander,D.Brynn Hibbert.Flow-injection potentiometric determination of free cadmium ions with a cadmium ion-selective electrode [J].Analytica Chimica Acta,1998,3(7):267~278
    [61]Dingwang Chen, Ajay K. Ray. Removal of toxic metal ions from wastewater by semiconductor photocatalysis[J].Chemical Engineering Science,2002,5(6): 1561~1570
    [62]姚允斌,解涛,高英敏.物理化学手册[M].上海:上海科学技术出版社,1985:762
    [63]陈绍炎.水化学[M].北京:水利电力出版社,1989:52-208
    [64]李荻.电化学原理[M].北京:北京航天大学出版社,2003:23-56
    [65]大连理工大学无机化学.无机化学[M].北京:北京高等教育出版社,2002:58-71
    [66]李同庆.现代电解二氧化锰工业发展动向[[J].电池,2001,31(2):82-84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700