基于流固耦合的手指触觉生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自上世纪九十年代,虚拟现实技术得到蓬勃发展,当前已经成为一个热门的研究领域。在虚拟现实系统中,触觉的模拟和再现是增强系统真实感,营造沉浸效果的重要手段。但是目前虚拟现实系统中触觉信息的引入尚存在不足,这使得系统的沉浸程度和交互程度大打折扣。
     触觉的研究主要集中在两方面:触觉生物力学的研究和触觉接口设备的研究。前者主要是触觉机理的研究,后者主要是触觉再现的研究。触觉生物力学的研究可以增强对触觉感知机理的理解,分析触觉感知的影响因素,有助于触觉再现接口设备的设计。
     本文主要是从数值模拟和实验来对触觉生物力学进行研究,主要包括研究单喷嘴下以静态载荷及动态载荷方式作用时手指的力学响应,从而为触觉接口的设计提供依据以及为纹理再现打下基础。
     首先,在当前触觉生物力学研究的基础上,从手指的几何结构以及材料属性出发建立手指三维线性和非线性有限元模型,以及建立喷嘴的流体有限元模型。并根据实际的气动触觉接口工作情况,采用流固耦合研究算法,对所建的模型进行流固耦合计算,并建立触觉表征参数。
     其次,从数值模拟角度进行触觉生物力学研究,分析在不同形式载荷下手指的力学响应。静态载荷下,采用触觉表征参数分析喷嘴入口压力、喷嘴直径以及接触高度对手指内部力学响应的影响,从而指导触觉接口的设计;动态载荷则分析了在阶跃载荷下手指蠕变特性和应力松弛特性,以及正弦变化载荷下频率和振幅对手指力学响应的影响,为纹理再现打下基础。
     最后,从实验角度进行触觉生物力学研究,包括建立试验系统并与数值模拟结果进行对比。主要从手指受到的力以及手指的变形两个方面进行对比,手指的变形又包括变形轮廓、最大变形以及手指变形的时程响应。实验结果证明在触觉生物力学研究中非线性模型更为合理,以及流固耦合数值模拟的正确性。
Virtual reality technology has flourished since 1990s, and it is a research hotspot at present. In virtual reality system, tactile sense simulation and display is an important tool to strengthen the realistic sensation and construct the immersion. But the introduction of tactile information in virtual system is not enough now, which greatly decreasing the immersion and interaction.
     The tactile research focuses on two aspects:tactile biomechanics research and tactile interface research. The former mainly researches tactile mechanism, and the latter mainly researches tactile display. The research of tactile biomechanics is helpful for enhancing the understanding of tactile mechanism and analyzing the factors how to influence tactile sense, which is greatly useful to the design of tactile interface.
     This paper researches tactile biomechanics by numerical simulations and experiments, mainly including the response of fingertip under static stimulus and dynamic stimulus by single nozzle, which aimed to supply basis for the design of tactile interface and lay foundations for displaying surface texture.
     Firstly, based on current research status of tactile biomechanics, three-dimensional linear and nonlinear finite element models of fingertip are built from geometry and material properties, and fluid finite element model of nozzle is built. Meanwhile, based on the actual working conditions of pneumatic tactile interface, fluid-structure coupling algorithm is applied. Numerical simulation of fluid-structure interaction is performed based on former models, and the characteristic parameters of tactile are established.
     Secondly, tactile biomechanics is researched by numerical simulations, and the mechanical responses are analyzed under different loads. The influence of inlet pressure, diameter of nozzle, contact height on the response of fingertip under static stimulus are analyzed relying on characteristic parameters of tactile, which is helpful for the design of tactile interface; the response of fingertip under dynamic stimulus is analyzed, including the features of creep and stress relaxation under step load as well as the response under the load changing as sine wave with time, which is helpful for displaying surface texture.
     At the last, tactile biomechanics are researched by experiments, which are including building experiment system and the comparison between numerical simulations and the experiments results. The comparison is conducted from two aspects:the force applied to fingertip by nozzle and the deformation of fingertip under pressure. The aspect of deformation includes the deformation profile of fingertip, the maximum deformations under different conditions and the time history response of deformation. The results of experiments prove the nonlinear model is more reasonable in tactile biomechanics research, and the correctness of fluid-structure coupling numerical simulation.
引文
[1]汪成为,高文,王行仁.灵境(虚拟现实)技术的理论,实现及应用[J].北京:清华大学出版杜,1996.
    [2]Burdea G, Coiffet P. Virtual reality technology[J]. Presence:Teleoperators & Virtual Environments,2003,12(6):663-664.
    [3]Hollerbach J M. Some current issues in haptics research[J]. IEEE International conference on robotics and automation,2000,757-762.
    [4]Fabiani L, Burdea G, Langrana N, et al. Human interface using the Rutgers Master Ⅱ force feedback interface[J]. Virtual Reality Annual International Symposium, 1996:54-59.
    [5]胡海鹰,李家炜,王滨等.虚拟现实技术在机器人臂/灵巧手遥操作中的应用[J].系统仿真学报,2004,16(010):2305-2308.
    [6]李焱,吴涛,贺汉根.应用虚拟现实的遥操作机器人技术[J].国防科技大学学报,2001,23(5):108-111.
    [7]杨胜华.气动喷嘴式触觉再现装置的仿真与试验研究[D].大连海事大学,2008.
    [8]张燕燕.基于振动的触觉再现实验装置的开发[D].上海大学,2008.
    [9]宋爱国,Morris D., Edward Colgate J等.遥操作和虚拟操作的实时柔性触觉再现装置研究[J].仪器仪表学报,2006,27(002):141-144.
    [10]Gerling G J, Thomas G W. The effect of fingertip microstructures on tactile edge perception[J]. Eurohaptics Conference,2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems,2005. World Haptics 2005. First Joint, 2005:63-72.
    [11]Srinivasan M A. Surface deflection of primate fingertip under line load[J]. Journal of Biomechanics,1989,22(4):343-349.
    [12]Maeno T, Otokawa K, Konyo M. Tactile display of surface texture by use of amplitude modulation of ultrasonic vibration[J]. Ultrasonics Symposium,2006:62-65.
    [13]K. Amemiya, Y. Tanaka. Portable Tactile Feedback Interface Using Air Jet[J]. The 9th International Conference on Artificial Reality and Telexistence,1999,115-122.
    [14]Wan A W A. Biaxial tension test of human skin in vivo[J]. Bio-medical materials and engineering,1994,4(7):473-486.
    [15]Zheng Y P, Mak A F T. An ultrasound indentation system for biomechanical properties assessment of soft tissues in-vivo[J]. Biomedical Engineering, IEEE Transactions on, 1996,43(9):912-918.
    [16]Rubin M B, Bodner S R, Binur N S. An elastic-viscoplastic model for excised facial tissues[J]. Journal of biomechanical engineering,1998,120:686-689.
    [17]Johnson K O, Yoshioka T, Vega-Bermudez F. Tactile functions of mechanoreceptive afferents innervating the hand[J]. Journal of Clinical Neurophysiology, 2000,17(6):539-585
    [18]包钢,孙中圣,李军等.气动触觉再现装置的研究现状及喷嘴气流的有限元分析[J].第三届全国流体传动及控制学术会议,2004:24-30.
    [19]Phillips J R, Johnson K O. Tactile spatial resolution. Ⅲ. A continuum mechanics model of skin predicting mechanoreceptor responses to bars, edges, and gratings [J]. Journal of Neurophysiology,1981,46(6):1204-1225.
    [20]Serina E R, Mockensturm E, Mote Jr C D, et al. A structural model of the forced compression of the fingertip pulp[J]. Journal of biomechanics,1998,31(7):639-646.
    [21]Serina E R, Mote C D. Force response of the fingertip pulp to repeated compression--Effects of loading rate, loading angle and anthropometry [J]. Journal of biomechanics,1997,30(10):1035-1040.
    [22]Srinivasan M A, Dandekar K. An investigation of the mechanics of tactile sense using two-dimensional models of the primate fingertip[J]. Tansactions-american Society of Mechanical Engineers Journal of Biomechanical Engineering,1996,118:48-55.
    [23]Maeno T, Kobayashi K, Yamazaki N. Relationship between the structure of human finger tissue and the location of tactile receptors[J]. JSME International Journal-Series C-Dynamics Control Robotics Design and Manufacturing,1998,41(1):94-100.
    [24]Maeno T, Kobayashi K. FE analysis of the dynamic characteristics of the human finger pad in contact with objects with/without surface roughness[J]. Proceedings of the ASME dynamic systems and Control division,1998,64:279-286.
    [25]Gerling G J. The sampling position within, not the undulating geometry of fingertip skin microstructure may amplify the sensation of edges[J]. Haptic Interfaces for Virtual Environment and Teleoperator Systems,2006:141-145.
    [26]Dandekar K, Raju B I, Srinivasan M A.3-D finite-element models of human and monkey fingertips to investigate the mechanics of tactile sense[J]. Journal of biomechanical engineering,2003,125:682-691.
    [27]Mandayam L Z B I, Srinivasan A. Relevant Stimuli and their Relationships to Primate SA-I Mechanoreceptive Responses under Static Sinusoidal Indentation[J]. The 2006 International Conference on Modeling, Simulation & Visualization Methods, CSREA Press, USA (2006),67-73.
    [28]孙中圣.具有力觉和触觉的气动数据手套关键技术的研究[D].哈尔滨工业大学,2007.
    [29]孙中圣,包钢,王祖温.气动力觉再现装置研究现状[J].机床与液压,2006,11(11):1-3.
    [30]Pawluk D, Howe R D. Dynamic contact of the human fingerpad against a flat surface[J]. Journal of biomechanical engineering,1999,121:605-611.
    [31]Pawluk D T V, Howe R D. Dynamic lumped element response of the human fingerpad[J]. Journal of biomechanical engineering,1999,121:178-183.
    [32]Wu J Z, Dong R G, Smutz W P, et al. Modeling of time-dependent force response of fingertip to dynamic loading[J]. Journal of biomechanics,2003,36(3):383-392.
    [33]Wu J Z, Dong R G, Schopper A W, et al. Analysis of skin deformation profiles during sinusoidal vibration of fingerpad[J]. Annals of biomedical Engineering, 2003,31(7):867-878.
    [34]Wu J Z, Dong R G, Rakheja S, et al. A structural fingertip model for simulating of the biomechanics of tactile sensation[J]. Medical engineering & physics, 2004,26(2):165-175.
    [35]胡吉永.基于触觉认知的织物质感的形成机理研究[D].东华大学,2008.
    [36]Hu J, Xin D, Wang R. Dependence of tactile sensation on deformations within soft tissues of fingertip[J]. World Journal of Modelling and Simulation,2007,3(1):73-78.
    [37]Wu J Z, Krajnak K, Welcome D E, et al. Three-Dimensional Finite Element Simulations of the Dynamic Response of a Fingertip to Vibration[J]. Journal of Biomechanical Engineering,2008,130:054501-1-054501-8.
    [38]Wu J Z, Welcome D E, Dong R G. Three-dimensional finite element simulations of the mechanical response of the fingertip to static and dynamic compressions[J]. Computer methods in biomechanics and biomedical engineering,2006,9(1):55-63.
    [39]Wu J Z, Krajnak K, Welcome D E, et al. Analysis of the dynamic strains in a fingertip exposed to vibrations:Correlation to the mechanical stimuli on mechanoreceptors[J]. Journal of biomechanics,2006,39(13):2445-2456.
    [40]Wu J Z, Dong R G, Schopper A W, et al. Analysis of skin deformation profiles during sinusoidal vibration of fingerpad[J]. Annals of biomedical Engineering, 2003,31(7):867-878.
    [41]K. Amemiya, Y. Tanaka. Portable Tactile Display Using Air Jet[J]. Proceeding of The 4th VRSJ Annual Conference.1999,4:41-44.
    [42]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [43]朱红钧,林元华,谢龙汉.FLUENT流体分析及仿真实用教程[M].北京:人民邮电出版社,2010.
    [44]江帆,黄鹏.Fluent高级应用与实例分析[M].北京:清华大学出版社,2008.
    [45]刑景棠,周盛,崔尔杰.流固耦合力学概[J].力学进展,1997,27(1):19-38.
    [46]王彬.流固耦合作用的弱耦合算法及风与薄膜结构的耦合分析[D].北京交通大学,2008.
    [47]Caldwell D G, Tsagarakis N, Giesler C. An integrated tactile/shear feedback array for stimulation of finger mechanoreceptor[J]. Robotics and Automation, Proceedings 1999 IEEE International Conference on,1999,1:287-292.
    [48]苟文选.材料力学(Ⅰ)[M].西安:西北工业大学出版社,2000.
    [49]Makino Y, Shinoda H. Selective stimulation to skin receptors by suction pressure control[J]. SICE 2004 Annual Conference,2004,3:2103-2108.
    [50]张琳娜.精度设计与质量控制基础[M].北京:中国计量出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700