量子点荧光探针的制备及其在细胞和活体成像中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子点(quantum dots, QDs)是能够激发出荧光的纳米晶体,它们具有独特的光学特性:荧光波长可通过改变粒径大小和组成进行调节,荧光强,光稳定性好,激发光谱广和发射荧光光谱窄等。自从1998年量子点在生物学上的应用首次报道以来,量子点已在生物分子、细胞及活体荧光成像,生物传感,肿瘤标志物检测等生物医学研究领域广泛应用。
     本文研究了Au掺杂可见-近红外量子点的光学性质及细胞毒性,量子点荧光探针在细胞及活体成像中的应用。利用量子点荧光探针进行肿瘤靶向多光谱成像,成功地进行了多光谱信号分离,实现了多重肿瘤标志物同时进行活体检测。本文主要研究内容如下:
     首次将Au掺杂到半导体荧光量子点。采用谷胱甘肽和半胱氨酸作稳定剂,水相法合成Au:CdTe量子点。用所合成的量子点作探针对活细胞进行荧光成像,它们被细胞摄取进入细胞质,并长期非损伤性标记活细胞。所合成的Au:CdTe量子点具有较好的光稳定性、细胞亲和性,细胞毒性较小,适合活细胞长期无损伤标记和荧光成像。
     制备了生物发光能量共振转移量子点偶联物,成功应用于小动物活体成像。在大肠杆菌表达和纯化了海肾荧光素酶(RLuc8),获得较好的酶活性。将纯化的RLuc8与RGD肽修饰的水溶性CdTe量子点连接,制备了自发光RGD-QD-RLuc8偶联物,并成功地应用于小鼠活体肿瘤靶向成像。证明所制备的生物发光RGD-QD-RLuc8偶联物适合用作肿瘤标记与活体成像的生物探针。
     建立了“一步合成”量子点-生物靶向分子偶联物的方法,并将制备的偶联物成功地应用于活体肿瘤靶向成像。采用Cys-RGD肽和半胱氨酸做稳定剂,在水相中直接合成具有RGD肽连接的近红外水溶性CdHgTe量子点(RGD-CdHgTe),用PEG修饰RGD-CdHgTe量子点,并将近红外PEG-QD-RGD (770nm)成功地应用于活体肿瘤靶向成像。表明这种“一步合成”的量子点-RGD肽偶联物具有较好的肿瘤靶向性,并且在活体内具有较好的信号强度,适合活体成像,在活体成像及肿瘤检测方面具有应用潜力。
     首次合成近红外Au:CdHgTe量子点,并成功地用于活体肿瘤靶向多光谱荧光成像。对所合成的量子点进行了表征,并测定了光稳定性、组织穿透度及细胞毒性等,结果表明所合成的量子点具有增强的荧光,较好的光漂白抗性,较低的细胞毒性,生物组织穿透能力强等优点。用所合成的量子点分别与RGD肽、抗CEACAM1抗体、抗EGFR抗体连接,制备了Au:CdHgTe量子点-生物分子偶联物荧光探针,进一步,同时利用三种荧光探针(QD800-RGD, QD820-anti-CEACAM1, QD840-anti-EGFR)进行活体肿瘤靶向多光谱荧光成像,对标记肿瘤标志物的荧光信号进行了光谱分离,实现了多重肿瘤标志物同时检测。结果表明所合成的Au:CdHgTe量子点适合作为活体多光谱荧光成像的荧光探针,有望成为肿瘤标志物的联合检测的有力工具,促进肿瘤早期诊断的准确性。
Quantum dots (QDs) are fluorescent nanocrystals which characterized unique optical properties such as size-and composition-dependent tunable emission spectra, high levels of brightness and photostability, broad excitation spectra and narrow emission bands. Since the first reports on the biological application of quantum dots in1998, they have been extensively applied to molecular, cellular, in vivo imaging, bio-analytical assays, and biosensing.
     In this paper, the optical properties and cytotoxicity of Au-doped visible-near-infrared quantum dots, noninvasive living cell imaging and in vivo imaging using QDs fluorescent probes, were researched. The tumor targeting multispectral fluorescence imaging was performed using QDs fluorescent probes, the fluorescent signals were successfully unmixed, and the in vivo simultinously detection of multiple tumor markers was achieved. The detail content is as follows:
     Gold was firstly doped into semiconductor fluorescent quantum dots. The gold-doped cadmium telluride (Au:CdTe) quantum dots were synthesized by aqueous solution route using L-glutathione and L-cysteine as stabilizers. As-prepared Au:CdTe NCs were used as probes for living cells fluorescence imaging. They were endocytic uptaken by cells and long-term noninvasive labeled the cells. The Au:CdTe quantum dots exhibited improved photostability, higher cellular affinity, and lower cytotoxicity, and were suitable for long-term noninvasive labeling and fluorescence imaging living cells.
     Bioluminescence resonance energy transfer quantum dot conjugates were synthesized and used for small animal in vivo imaging. The Renilla reniformis luciferase (RLuc8) protein was expressed in BL21bacterial cytoplasm. The purified RLuc8was congjugated to RGD (arginine-glycine-aspartic acid containing) peptides capped CdTe quantum dots, and the RGD-QD-Rluc8self-illuminating quantum dots successfully used for mice in vivo tumor-targeted imaging, indicating that as prepared RGD-QD-Rluc8self-illuminating quantum dots could used as bioprobes for in vivo tumor labeling and fluorescence imaging.
     The "one step synthesis" of quantum dots bioconjugates was developed. The RGD peptides capped, water-soluble near infrared gold-doped CdHgTe quantum dots were directly synthesized by aqueous solution route using Cys-RGD peptides and L-cysteine as stabilizers. The polyethylene glycol (PEG) was congjugated to the RGD-CdHgTe QDs. The tumor-targeting fluorescence imaging using PEG-QD-RGD congjugates as probes obtained idea efficiency, indicating that as prepared near infrared PEG-QD-RGD congjugates, which with good fluorescent signal in vivo, had great potential in tumor detection an in vivo imaging applications.
     Near infrared gold-doped CdHgTe quantum dots were firstly synthesized and used for in vivo tumor-targeted multispectral fluorescence imagin. As prepared Au:CdHgTe QDs were characterized, and their photostability, cytotoxicity, and tissue penetration were tested. The results indicated that Au:CdHgTe QDs have improved photoluminescence, enhanced photostability againsting photobleaching, lower cytotoxicity, and deeper tissue penetration. Three Au:CdHgTe quantum dots were conjugated to RGD peptides, anti-epidermal growth factor receptor (EGFR) monoclonal antibody (MAb), and anti-carcinoembryonic antigen-related cell adhesion molecule1(CEACAM1) MAb respectively. Three bioconjugates (QD800-RGD, QD820-anti-CEACAM1and QD840-anti-EGFR) were successfully used as probes for in vivo tumor targeted multispectral fluorescence imaging; the fluorescent signals labeling tumor markers were spectrally unmixed, and the in vivo simultinously detection of multiple tumor markers was achieved. The results indicated that Au:CdHgTe QDs bioconjugates could be used as fluorescence probes for tumor targeted multispectral fluorescence imaging, and could potentially serve as a powerful tool for in vivo conjoined detection of multiple tumor markers, leading to improved accuracy of diagnosis of early stage cancer.
引文
1. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science,1998,281:2013-2016.
    2. Chan WCW, Nie S. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science,1998,281:2016-2018.
    3. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science,2005,307:538-544.
    4. Gao X, Yang L, Petros JA, Marshall FF, Simons J W, Nie S. In vivo molecular and cellular imaging with quantum dots. Current Opinion in Biotechnology,2005,16:63-72.
    5. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing.2005,4:435-446.
    6. Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Current Opinion in Biotechnology,2002, 13:40-46.
    7. Gao J, Chen K, Xie R, Xie J, Lee S, Cheng Z, Peng X, Chen X. Ultrasmall Near-Infrared Non-cadmium Quantum Dots for in vivo Tumor Imaging. Small,2010,6:256-261.
    8. Clarke S, Pinaud F, Beutel O, You C, Piehler J, Dahan M. Covalent Monofunctionalization of Peptide-Coated Quantum Dots for Single-Molecule Assays. Nano Letters,2010,10:2147-2154.
    9. Xing Y, Rao J. Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging. Cancer Biomarkers,2008,4:307-319.
    10. Tavares A, Chong L, Petryayeva E, Algar W, Krull U. Quantum dots as contrast agents for in vivo tumor imaging:progress and issues. Analytical and Bioanalytical Chemistry, 2011,399:2331-2342.
    11. Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society,1993,115:8706-8715.
    12. Alivisatos AP. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals. The Journal of Physical Chemistry,1996,100:13226-13239.
    13. Hines MA, Guyot-Sionnest P. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. The Journal of Physical Chemistry,1996,100:468-471.
    14. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots.2003,21:41-46.
    15. Han M, Gao X, Su JZ, Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature biotechnology,2001,19:631-635.
    16. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW. Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo. Science, 2003,300:1434-1436.
    17. Reiss P, Protiere M, Li L. Core/Shell Semiconductor Nanocrystals. Small,2009, 5:154-168.
    18. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG. (CdSe)ZnS Core-Shell Quantum Dots:Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. The Journal of Physical Chemistry B,1997,101:9463-9475.
    19. Mews A, Eychmueller A, Giersig M, Schooss D, Weller H. Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. The Journal of Physical Chemistry,1994,98:934-941.
    20. Battaglia D, Li JJ, Wang Y, Peng X. Colloidal Two-Dimensional Systems:CdSe Quantum Shells and Wells. Angewandte Chemie International Edition,2003,42:5035-5039.
    21. Zhong X, Xie R, Zhang Y, Basche T, Knoll W. High-Quality Violet-to Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals. Chemistry of Materials,2005,17:4038-4042.
    22. Jia-Yaw CEA. Synthesis and characterization of CdTe/CdS and CdTe/CdSe core/shell type-Ⅱ quantum dots in a noncoordinating solvent. Nanotechnology,2007,18:345602.
    23. Kim S, Fisher B, Eisler H, Bawendi M. Type-II Quantum Dots:CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures. Journal of the American Chemical Society, 2003,125:11466-11467.
    24. Erwin SC, Zu L, Haftel MI, Efros AL, Kennedy TA, Norris DJ. Doping semiconductor nanocrystals. Nature.2005.436:91-94.
    25. Cao YC. Impurities Enhance Semiconductor Nanocrystal Performance. Science,2011, 332:48-49.
    26. Srivastava BB, Jana S, Karan NS, Paria S, Jana NR, Sarma DD, Pradhan N. Highly Luminescent Mn-Doped ZnS Nanocrystals:Gram-Scale Synthesis. The Journal of Physical Chemistry Letters,2010,1:1454-1458.
    27. Zheng J, Ji W, Wang X, Ikezawa M, Jing P, Liu X, Li H, Zhao J, Masumoto Y. Improved Photoluminescence of MnS/ZnS Core/Shell Nanocrystals by Controlling Diffusion of Mn Ions into the ZnS Shell. The Journal of Physical Chemistry C,2010,114:15331-15336.
    28. Zeng R, Rutherford M, Xie R, Zou B, Peng X. Synthesis of Highly Emissive Mn-Doped ZnSe Nanocrystals without Pyrophoric Reagents. Chemistry of Materials,2010, 22:2107-2113.
    29. Xufeng LEA. A novel route to photoluminescent, water-soluble Mn-doped ZnS quantum dots via photopolymerization initiated by the quantum dots. Nanotechnology,2008, 19:485602.
    30. Schwartz DA, Norberg NS, Nguyen QP, Parker JM, Gamelin DR. Magnetic Quantum Dots:Synthesis, Spectroscopy, and Magnetism of Co2+- and Ni2+-Doped ZnO Nanocrystals. Journal of the American Chemical Society,2003,125:13205-13218.
    31. Zhuang J, Zhang X, Wang G, Li D, Yang W, Li T. Synthesis of water-soluble ZnS:Mn2+ nanocrystals by using mercaptopropionic acid as stabilizer. Journal of Materials Chemistry, 2003,13:1853-1857.
    32. Hanif KM, Meulenberg RW, Strouse GF. Magnetic Ordering in Doped Cd1-xCoxSe Diluted Magnetic Quantum Dots. Journal of the American Chemical Society,2002, 124:11495-11502.
    33. Setua S, Menon D, Asok A, Nair S, Koyakutty M. Folate receptor targeted, rare-earth oxide nanocrystals for bi-modal fluorescence and magnetic imaging of cancer cells. Biomaterials,2010,31:714-729.
    34. Hai HEA. Synthesis and characterization of Eu:Y2O3 nanoparticles. Nanotechnology, 2002,13:318.
    35. Srivastava BB, Jana S. Pradhan N. Doping Cu in Semiconductor Nanocrystals:Some Old and Some New Physical Insights. Journal of the American Chemical Society,2011, 133:1007-1015.
    36. Meulenberg RW, van Buuren T, Hanif KM, Willey TM, Strouse GF, Terminello LJ. Structure and Composition of Cu-Doped CdSe Nanocrystals Using Soft X-ray Absorption Spectroscopy. Nano Letters,2004,4:2277-2285.
    37. Ji S, Yin L, Liu G, Zhang L, Ye C. Synthesis of Rare Earth Ions-Doped ZnO Nanostructures with Efficient Host-Guest Energy Transfer. The Journal of Physical Chemistry C,2009,113:16439-16444.
    38. Li I, Yeh C. Synthesis of Gd doped CdSe nanoparticles for potential optical and MR imaging applications. Journal of Materials Chemistry,2010,20:2079-2081.
    39. Archer PI, Santangelo SA, Gamelin DR. Inorganic Cluster Syntheses of TM2+-Doped Quantum Dots (CdSe, CdS, CdSe/CdS):Physical Property Dependence on Dopant Locale. Journal of the American Chemical Society,2007,129:9808-9818.
    40. Peng ZA, Peng X. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. Journal of the American Chemical Society,2001,123:183-184.
    41. Yu WW, Peng X. Formation of High-Quality CdS and Other Ⅱ-Ⅵ Semiconductor Nanocrystals in Noncoordinating Solvents:Tunable Reactivity of Monomers. Angewandte Chemie International Edition,2002,41:2368-2371.
    42. Rajh T, Micic OI, Nozik AJ. Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots. The Journal of Physical Chemistry,1993, 97:11999-12003.
    43. Vossmeyer T, Katsikas L, Giersig M, Popovic IG, Diesner K, Chemseddine A, Eychmueller A, WellerH. CdS Nanoclusters:Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift. The Journal of Physical Chemistry,1994,98:7665-7673.
    44. Rogach A, Kershaw SV, Burt M, Harrison MT, Kornowski A, Eychmuller A, Weller H. Colloidally Prepared HgTe Nanocrystals with Strong Room-Temperature Infrared Luminescence. Advanced Materials,1999,11:552-555.
    45. Harrison MT. Kershaw SV. Burt MG, Eychmuller A. Weller H. Rogach AL. Wet chemical synthesis and spectroscopic study of CdHgTe nanocrystals with strong near-infrared luminescence. Materials Science and Engineering B,2000,69-70:355-360.
    46. Zheng FEA. Synthesis of highly luminescent Mn:ZnSe/ZnS nanocrystals in aqueous media. Nanotechnology,2010,21:305604.
    47. Zheng FEA. Synthesis of highly luminescent Mn:ZnSe/ZnS nanocrystals in aqueous media. Nanotechnology,2010,21:305604.
    48. Zheng J, Yuan X, Ikezawa M, Jing P, Liu X, Zheng Z, Kong X, Zhao J, Masumoto Y. Efficient Photoluminescence of Mn2+ Ions in MnS/ZnS Core/Shell Quantum Dots. The Journal of Physical Chemistry C,2009,113:16969-16974.
    49. Zhenyu GEA. One-pot synthesis of highly luminescent CdTe/CdS core/shell nanocrystals in aqueous phase. Nanotechnology,2008,19:135604.
    50. Zou L, Gu Z, Zhang N, Zhang Y, Fang Z, Zhu W, Zhong X. Ultrafast synthesis of highly luminescent green-to near infrared-emitting CdTe nanocrystals in aqueous phase. Journal of Materials Chemistry,2008,18:2807-2815.
    51. Lesnyak V, Plotnikov A,"Gaponik N, Eychmuller A. Toward efficient blue-emitting thiol-capped Znl-CdSe nanocrystals. Journal of Materials Chemistry,2008, 18:5142-5146.
    52. Xufeng LEA. A novel route to photoluminescent, water-soluble Mn-doped ZnS quantum dots via photopolymerization initiated by the quantum dots. Nanotechnology,2008, 19:485602.
    53. Zheng Y, Yang Z, Ying JY. Aqueous Synthesis of Glutathione-Capped ZnSe and Zn1xCdxSe Alloyed Quantum Dots. Advanced Materials,2007,19:1475-1479.
    54. Lan G, Lin Y, Huang Y, Chang H. Photo-assisted synthesis of highly fluorescent ZnSe(S) quantum dots in aqueous solution. Journal of Materials Chemistry,2007,17:2661-2666.
    55. Qian H, Qiu X, Li L, Ren J. Microwave-Assisted Aqueous Synthesis:A Rapid Approach to Prepare Highly Luminescent ZnSe(S) Alloyed Quantum Dots. The Journal of Physical Chemistry B,2006,110:9034-9040.
    56. Shavel A, Gaponik N, Eychmuller A. Efficient UV-Blue Photoluminescing Thiol-Stabilized Water-Soluble Alloyed ZnSe(S) Nanocrystals. The Journal of Physical Chemistry B,2004,108:5905-5908.
    57. Zhuang J, Zhang X, Wang G, Li D, Yang W, Li T. Synthesis of water-soluble ZnS:Mn2+ nanocrystals by using mercaptopropionic acid as stabilizer. Journal of Materials Chemistry, 2003,13:1853-1857.
    58. Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmuller A, Weller H. Thiol-Capping of CdTe Nanocrystals:An Alternative to Organometallic Synthetic Routes. The Journal of Physical Chemistry B,2002, 106:7177-7185.
    59. Bol AA, Meijerink A. Luminescence Quantum Efficiency of Nanocrystalline ZnS:Mn2+. 1. Surface Passivation and Mn2+ Concentration. The Journal of Physical Chemistry B, 2001,105:10197-10202.
    60. Rogach A, Kershaw SV, Burt M, Harrison MT, Kornowski A, Eychmuller A, Weller H. Colloidally Prepared HgTe Nanocrystals with Strong Room-Temperature Infrared Luminescence. Advanced Materials,1999,11:552-555.
    61. Rogach AL,-Kornowski A, Gao M, Eychmuller A, Weller H. Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals. The Journal of Physical Chemistry B,1999,103:3065-3069.
    62. Darbandi M, Thomann R, Nann T. Single Quantum Dots in Silica Spheres by Microemulsion Synthesis. Chemistry of Materials,2005,17:5720-5725.
    63. Xing Y, Chaudry Q, Shen C, Kong KY, Zhau HE, Chung LW, Petros JA, O'Regan RM, Yezhelyev MV, Simons JW, Wang MD, Nie S. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry.2007,2:1152-1165.
    64. Loening AM, Fenn TD, Wu AM, Gambhir SS. Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Engineering, Design & Selection,2006,19:391-400.
    65. Loening AM, Fenn TD, Gambhir SS. Crystal Structures of the Luciferase and Green Fluorescent Protein from Renilla reniformis. Journal of Molecular Biology,2007, 374:1017-1028.
    66. Loening AM. Wu AM. Gambhir SS. Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nature Methods,2007,4:641-643.
    67. Loening AM, Dragulescu-Andrasi A, Gambhir SS. A red-shifted Renilla luciferase for transient reporter-gene expression. Nature Methods,2010,7:5-6.
    68. So M, Xu C, Loening AM, Gambhir SS, Rao J. Self-illuminating quantum dot conjugates for in vivo imaging. Nature Biotechnology,2006,24:339-343.
    69. Xing Y, So M, Koh AL, Sinclair R, Rao J. Improved QD-BRET conjugates for detection and imaging. Biochemical and Biophysical Research Communications,2008, 372:388-394.
    70. Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A. Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking. Science,2003, 302:442-445.
    71. Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nature Biotechnology,2004,22:198-203.
    72. Chen F, Gerion D. Fluorescent CdSe/ZnS Nanocrystal-Peptide Conjugates for Long-term, Nontoxic Imaging and Nuclear Targeting in Living Cells. Nano Letters,2004, 4:1827-1832.
    73. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechnology,2003,21:47-51.
    74. Lee J, Choi Y, Kim K, Hong S, Park H, Lee T, Cheon GJ, Song R. Characterization and Cancer Cell Specific Binding Properties of Anti-EGFR Antibody Conjugated Quantum Dots. Bioconjugate Chemistry,2010,21:940-946.
    75. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles. Science,2002, 298:1759-1762.
    76. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS. Noninvasive Imaging of Quantum Dots in Mice. Bioconjugate Chemistry,2004,15:79-86.
    77. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG. Dor DM, Cohn LH. Bawendi MG. Frangioni JV. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nature Biotechnology,2004, 22:93-97.
    78. Kobayashi H, Hama Y, Koyama Y, Barrett T, Regino CAS, Urano Y, Choyke PL. Simultaneous Multicolor Imaging of Five Different Lymphatic Basins Using Quantum Dots. Nano Letters,2007,7:1711-1716.
    79. Dunn BK, Jegalian K, Greenwald P. Biomarkers for Early Detection and as Surrogate Endpoints in Cancer Prevention Trials:Issues and Opportunities. Recent Results in Cancer Research,2011,188:21-47.
    80. Rhodes DR, Sanda MG,Otte AP, Chinnaiyan AM, Rubin MA. Multiplex biomarker approach for determining risk of prostate-specific antigen-defined recurrence of prostate cancer. Journal of the National Cancer Institute,2003,95(9):661-668.
    81. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. Reporting recommendations for tumor marker prognostic studies (REMARK). Nature Clinical Practice Oncology,2005,2:416-422.
    82. Kattan MW. Judging new markers by their ability to improve predictive accuracy. Journal of the National Cancer Institute,2003,95:634-635.
    83. Bast RC, Ravdin P, Hayes DF, Bates F, Fritsche H Jr, Jessup JM, Kemeny N, Locker JY, Mennel RG, Somerfield MR.2000 Update of recommendations for the use of tumor markers in breast and colorectal cancer:clinical practice guidelines of the American Society of Clinical Oncology. Journal of Clinical Oncology,2001,19:1865-1878.
    84. Hayes DF, Bast RC, Desch CE, Fritsche H Jr, Kemeny NE, Jessup JM, Locker GY, Macdonald JS, Mennel RG, Norton L, Ravdin P, Taube S, Winn RJ. Tumor Marker Utility Grading System:a framework to evaluate clinical utility of tumor markers. Journal of the National Cancer Institute,1996,88:1456-1466.
    85. Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting in vivo. Proceedings of the National Academy of Sciences,2002,99:12617-12621.
    86. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology,2004,22:969-976.
    87. Taik Lim Y. Kim S. Nakayama A, Stott NE. Bawendi MG. Frangioni JV. Selection of Quantum Dot Wavelengths for Biomedical Assays and Imaging. Molecular Imaging,2003, 2:50-64.
    88. Weissleder R. A clearer vision for in vivo imaging. Nature Biotechnology,2001, 19:316-317.
    89. Cai W, Shin D, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X. Peptide-Labeled Near-Infrared Quantum Dots for Imaging Tumor Vasculature in Living Subjects. Nano Letters,2006,6:669-676.
    90. Harrison MT, Kershaw SV, Burt MG, Eychmuller A, Weller H, Rogach AL. Wet chemical synthesis and spectroscopic study of CdHgTe nanocrystals with strong near-infrared luminescence. Materials Science and Engineering B,2000,69-70:355-360.
    91. Chen H, Wang Y, Xu J, Ji J, Zhang J, Hu Y, Gu Y. Non-invasive Near Infrared Fluorescence Imaging of CdHgTe Quantum Dots in Mouse Model. Journal of Fluorescence,2008,18:801-811.
    92. Zhang Y, Li Y, Yan X. Photoactivated CdTe/CdSe Quantum Dots as a Near Infrared Fluorescent Probe for Detecting Biothiols in Biological Fluids. Analytical Chemistry, 2009,81:5001-5007.
    93. Jiang W, Singhal A, Zheng J, Wang C, Chan WCW. Optimizing the Synthesis of Red-to Near-IR-Emitting CdS-Capped CdTexSe1-x Alloyed Quantum Dots for Biomedical Imaging. Chemistry of Materials,2006,18:4845-4854.
    94. Ken-Tye Y. Mn-doped near-infrared quantum dots as multimodal targeted probes for pancreatic cancer imaging. Nanotechnology,2009,20:15102.
    95. Hu R, Ken-TyeYong, Roy I, Ding H, Law W, Cai H, Zhang X, Vathy LA, Bergey EJ, Prasad PN. Functionalized near-infrared quantum dots for in vivo tumor vasculature imaging. Nanotechnology,2010,21:145105.
    96. Gao J, Chen K, Xie R, Xie J, Yan Y, Cheng Z, Peng X, Chen X. In Vivo Tumor-Targeted Fluorescence Imaging Using Near-Infrared Non-Cadmium Quantum Dots. Bioconjugate Chemistry,2010,21:604-609.
    97. Kim S, Zimmer JP, Ohnishi S, Tracy JB, Frangioni JV, Bawendi MG. Engineering InASXP1-x/InP/ZnSe Ⅲ-Ⅴ Alloyed Core/Shell Quantum Dots for the Near-Infrared. Journal ofthe American Chemical Society,2005,127:10526-10532.
    98. Allen PM, Bawendi MG. Ternary Ⅰ-Ⅲ-Ⅵ Quantum Dots Luminescent in the Red to Near-Infrared. Journal of the American Chemical Society,2008,130:9240-9241.
    99. Xie R, Peng X. Synthesis of Cu-Doped InP Nanocrystals (d-dots) with ZnSe Diffusion Barrier as Efficient and Color-Tunable NIR Emitters. Journal of the American Chemical Society,2009,131:10645-10651.
    100. Smith AM, Nie S. Bright and Compact Alloyed Quantum Dots with Broadly Tunable Near-Infrared Absorption and Fluorescence Spectra through Mercury Cation Exchange. Journal of the American Chemical Society,2011,133:24-26.
    101. Harris DK, Allen PM, Han H, Walker BJ, Lee J, Bawendi MG. Synthesis of Cadmium Arsenide Quantum Dots Luminescent in the Infrared. Journal of the American Chemical Society,2011,133:4676-4679.
    102. Zhou L, EI-Deiry WS. Multispectral Fluorescence Imaging. J Nucl Med,2009, 50:1563-1566.
    103. Kos-aka N, Ogawa M, Longmire MR, Choyke PL, Kobayashi H. Multi-targeted multi-color in vivo optical imaging in a model of disseminated peritoneal ovarian cancer. Journal of biomedical optics,2009,14:14023.
    104. Fountaine TJ, Wincovitch SM, Geho DH, Garfield SH, Pittaluga S. Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots.2006,19:1181-1191.
    105. Kobayashi H, Hama Y, Koyama Y, Barrett T, Regino CAS, Urano Y, Choyke PL. Simultaneous Multicolor Imaging of Five Different Lymphatic Basins Using Quantum Dots. Nano Letters,2007,7:1711-1716.
    106. Kobayashi H, Ogawa M, Kosaka N, Choyke PL, Urano Y. Multicolor imaging of lymphatic function with two nanomaterials:quantum dot-labeled cancer cells and dendrimer-based optical agents. Nanomedicine,2009,4:411-419.
    107. Fountaine TJ, Wincovitch SM, Geho DH, Garfield SH, Pittaluga S. Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots.2006.19:1181-1191.
    108. Chen F, Gerion D. Fluorescent CdSe/ZnS Nanocrystal-Peptide Conjugates for Long-term, Nontoxic Imaging and Nuclear Targeting in Living Cells. Nano Letters,2004, 4:1827-1832.
    109. Cai W, Shin D, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X. Peptide-Labeled Near-Infrared Quantum Dots for Imaging Tumor Vasculature in Living Subjects. Nano Letters,2006,6:669-676.
    110. Fountaine TJ, Wincovitch SM, Geho DH, Garfield SH, Pittaluga S. Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots.2006,19:1181-1191.
    111. Chen H, Wang Y, Xu J, Ji J, Zhang J, Hu Y, Gu Y. Non-invasive Near Infrared Fluorescence Imaging of CdHgTe Quantum Dots in Mouse Model. Journal of Fluorescence,2008,18:801-811.
    112. Zhang Y, Li Y, Yan X. Photoactivated CdTe/CdSe Quantum Dots as a Near Infrared Fluorescent Probe for Detecting Biothiols in Biological Fluids. Analytical Chemistry, 2009,81:5001-5007.
    113. Gao J, Chen K, Xie R, Xie J, Yan Y, Cheng Z, Peng X, Chen X. In Vivo Tumor-Targeted Fluorescence Imaging Using Near-Infrared Non-Cadmium Quantum Dots. Bioconjugate Chemistry,2010,21:604-609.
    114. Kim S, Zimmer JP, Ohnishi S, Tracy JB, Frangioni JV, Bawendi MG. Engineering InAsxPi-x/InP/ZnSe Ⅲ-Ⅴ Alloyed Core/Shell Quantum Dots for the Near-Infrared. Journal of the American Chemical Society,2005,127:10526-10532.
    115. Jiang W, Singhal A, Zheng J, Wang C, Chan WCW. Optimizing the Synthesis of Red-to Near-IR-Emitting CdS-Capped CdTexSe1-x Alloyed Quantum Dots for Biomedical Imaging. Chemistry of Materials,2006,18:4845-4854.
    116. Allen PM, Bawendi MG. Ternary Ⅰ-Ⅲ-Ⅵ Quantum Dots Luminescent in the Red to Near-Infrared. Journal of the American Chemical Society,2008,130:9240-9241.
    117. Cao J, Hongyan Zhu H, Deng D, Xue B, Tang L, Mahounga D, Qian Z, Gu Y. In vivo N1R imaging with PbS quantum dots entrapped in biodegradable micelles. Journal of Biomedical Materials Research Part A,2012.100A:958-968.
    118. Smith AM, Nie S. Bright and Compact Alloyed Quantum Dots with Broadly Tunable Near-Infrared Absorption and Fluorescence Spectra through Mercury Cation Exchange. Journal of the American Chemical Society,2011,133:24-26.
    119. Harris DK, Allen PM, Han H, Walker BJ, Lee J, Bawendi MG. Synthesis of Cadmium Arsenide Quantum Dots Luminescent in the Infrared. Journal of the American Chemical Society,2011,133:4676-4679.
    120. Vosch T, Antoku Y, Hsiang J, Richards CI, Gonzalez JI, Dickson RM. Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores. Proceedings of the National Academy of Sciences,2007,104:12616-12621.
    121. Xu H, Suslick KS. Water-Soluble Fluorescent Silver Nanoclusters. Advanced Materials, 2010,22:1078-1082.
    122. Adhikari B, Banerjee A. Facile Synthesis of Water-Soluble Fluorescent Silver Nanoclusters and HgII Sensing. Chemistry of Materials,2010,22:4364-4371.
    123. Lin CJ, Yang T, Lee C, Huang SH, Sperling RA, Zanella M, Li JK, Shen J, Wang H, Yeh H, Parak WJ, Chang WH. Synthesis, Characterization, and Bioconjugation of Fluorescent Gold Nanoclusters toward Biological Labeling Applications. ACS Nano,2009,3:395-401.
    124. Richards CI, Choi S, Hsiang J, Antoku Y, Vosch T, Bongiorno A, Tzeng Y, Dickson RM. Oligonucleotide-Stabilized Ag Nanocluster Fluorophores. Journal of the American Chemical Society,2008,130:5038-5039.
    125. Yu J, Choi S, Dickson RM. Shuttle-Based Fluorogenic Silver-Cluster Biolabels. Angewandte Chemie International Edition,2009,48:318-320.
    126. Archana RASS. Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging. Nanotechnology,2010, 21:55103.
    127. Shang L, Dorlich RM, Brandholt S, Schneider R, Trouillet V, Bruns M, Gerthsen D, Nienhaus GU. Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale,2011,3:2009-2014.
    128. Yu J, Patel SA, Dickson RM. In Vitro and Intracellular Production of Peptide-Encapsulated Fluorescent Silver Nanoclusters. Angewandte Chemie International Edition,2007,46:2028-2030.
    129. Shang L, Dong S, Nienhaus GU. Ultra-small fluorescent metal nanoclusters:Synthesis and biological applications. Nano Today,2011,6:401-418.
    130. Wang H, Lin CJ, Lee C, Lin Y, Tseng Y, Hsieh C, Chen C, Tsai C, Hsieh C, Shen J, Chan W, Chang WH, Yeh H. Fluorescent Gold Nanoclusters as a Biocompatible Marker for In Vitro and In Vivo Tracking of Endothelial Cells. ACS Nano,2011,5:4337-4344.
    131. Mocatta D, Cohen G, Schattner J, Millo O, Rabani E, Banin U. Heavily Doped Semiconductor Nanocrystal Quantum Dots. Science,2011,332:77-81.
    132. Han JL, Sun LZ, Qu XD, Chen YP, Zhong JX. Electronic properties of the Au impurity in Hg0.75Cd0.25Te:First-principles study. Physica B:Condensed Matter,2009,404:131-137.
    133. Ryan FJ, Shin SH, Edwall DD, Pasko JG, Khoshnevisan M, Westmark CI, Fuller C. Gamma ray detectors with HgCdTe contact layers. Applied Physics Letters,1985, 46:274-276.
    134. Shih HD, Kinch MA, Aqariden F, Liao PK, Schaake HF, Nathan V. Development of gold-dDped Hg0.79Cd0.21Te for very-long-wavelength infrared detectors. Applied Physics Letters,2003,82:4157-4159.
    135. Shih HD, Kinch MA, Aqariden F, Liao PK, Dreiske PD, Ohlson MJ, Orent TW, Robinson JE, Schaake HF, Teherani TH, Kalma AH, Roush FM. Development of high-operating-temperature infrared detectors with gold-doped Hg0.70Cd0.30Te. Applied Physics Letters,2004,84:1263-1265.
    136. Zheng Y, Yang Z, Ying JY. Aqueous Synthesis of Glutathione-Capped ZnSe and Zn1-xCdxSe Alloyed Quantum Dots. Advanced Materials,2007,19:1475-1479.
    137. Yuan J, Guo W, Yin J, Wang E. Glutathione-capped CdTe quantum dots for the sensitive detection of glucose. Talanta,2009,77:1858-1863.
    138. Xue M, Wang X, Wang H, Tang B. The preparation of glutathione-capped CdTe quantum dots and their use in imaging of cells. Talanta,2011,83:1680-1686.
    139. Yan Y, Mu Y, Feng G, Zhang L, Zhu L, Xu L, Yang R, Jin Q. Novel Strategy for Synthesis of High Quality CdTe Nanocrystals in Aqueous Solution. Chemical Research in Chinese Universities,2008,24:8-14.
    140. Texier I, Goutayer M, Da Silva A, Guyon L, Djaker N, Josserand V, Neumann E, Bibette J, Vinet F. Cyanine-loaded lipid nanoparticles for improved in vivo fluorescence imaging. Journal of Biomedical Optics,2009,14:54005-54011.
    141. Zitzmann S, Ehemann V, Schwab M. Arginine-Glycine-Aspartic Acid (RGD)-Peptide Binds to Both Tumor and Tumor-Endothelial Cells in Vivo. Cancer Research,2002, 62:5139-5143.
    142. Wang L, Lin SH, Wu WG, Kemp BL, Walsh GL, Hong WK, Mao L. C-CAM1, a Candidate Tumor Suppressor Gene, Is Abnormally Expressed in Primary Lung Cancers. Clinical Cancer Research,2000,6:2988-2993.
    143. Bublil EM, Yarden Y. The EGF receptor family:spearheading a merger of signaling and therapeutics. Current Opinion in Cell Biology,2007,19:124-134.
    144. de Bono JS, Rowinsky EK. The ErbB receptor family:a therapeutic target for cancer. Trends in Molecular Medicine,2002,8:S19-S26.
    145. Boshoff C, Posner M. Targeting EGFR in head and neck cancer:a decade of progress. 2009,6:123.
    146. Baselga J. Targeting Tyrosine Kinases in Cancer:The Second Wave. Science,2006, 312:1175-1178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700