垃圾渗滤液原位与异位耦合脱氮工艺及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫生填埋法是我国城市生活垃圾无害化处理处置最主要的方式和手段。然而随着《生活垃圾填埋场污染控制标准》(GB16889—2008)的颁布,大幅提高了渗滤液外排TN控制要求,填埋过程中产生的大量性质多变、高浓度氨氮和有机物的垃圾渗滤液脱氮难题成为制约生活垃圾填埋场可持续发展的重要因素,因此,开发经济高效的垃圾填埋场渗滤液脱氮技术显得尤其重要。以渗滤液回灌为特征的生物填埋技术的发展为开发垃圾填埋场渗滤液原位与异位耦合脱氮工艺奠定了良好的基础。本文通过高有机物渗滤液短程硝化作用影响因素与硝化细菌变化规律、适龄填埋垃圾反硝化特性及其反硝化细菌种群多样性等方面的研究,构建了填埋垃圾堆体外硝化-堆体内反硝化-MAP沉淀-混凝沉淀-土壤植被层原位脱氮工艺;通过研究填埋垃圾厌氧产沼性能、垃圾渗滤液半短程硝化过程控制策略和硝化出水厌氧氨氧化反应器运行性能,集成构建了垃圾渗滤液填埋垃圾厌氧产沼-堆体外Sharon-厌氧氨氧化脱氮工艺。研究结果为渗滤液原位与异位耦合脱氮工艺的开发和应用提供了理论依据。论文主要结果如下:
     1、采用单级完全混合式好氧反应器可实现垃圾渗滤液COD和NH4+-N的有效去除。反应器的COD去除负荷和NH4+-N转化负荷可分别达到2.48Kg/(m3·d)和0.37Kg/(m3·d).在平均COD负荷为1.50Kg/(m3·d)条件下,实现短程硝化过程的最适DO浓度范围为1.00-1.70mg/L。对活性污泥amoA基因和nxrA基因进行Q-PCR分析结果表明,氨氧化细菌amoA基因拷贝数与比污泥氨氮去除速率之间、亚硝酸盐氧化菌nxrA基因拷贝数与比污泥硝酸盐产生速率之间有很好的相关性。amoA基因拷贝数在9.08×108~6.71×109copies/g VSS间变化,nxrA基因拷贝数在1.53×107~1.54×109copies/g VSS间变化.
     2、7年填埋龄垃圾具有良好的反硝化脱氮性能。将硝化后渗滤液回灌至7年填埋龄垃圾反应器,其TON(N02--N和N03--N)去除速率在16.4-67.2g N/(t-TS·d),平均值为44.9g N/(t-TS·d)。通过对填埋垃圾进行nirS基因克隆文库分析结果表明,异养菌Azoarcus tolulyticu是填埋垃圾反应器最主要的反硝化功能菌。集成构建的垃圾渗滤液“填埋垃圾堆体外硝化-堆体内反硝化-磷酸铵镁结晶-混凝沉淀-土壤植被层”组合原位脱氮处理技术对渗滤液COD和NH4+-N具有良好的处理效果。当气温为1-22℃、进水渗滤液COD为2983-11780mg/L、NH4+-N浓度为910-1731mg/L时,最终出水COD小于500mg/L,NH4+-N浓度小于25mg/L,TN浓度小于60mg/L。
     3、同步硝化反硝化污泥与反硝化-Sharon反应器污泥细菌种群多样性差异显著。利用高通量测序分析同步硝化反硝化污泥接种至反硝化-Sharon反应器的细菌群落变化,结果表明,在细菌门类上,两种污泥差别不大。同步硝化反硝化污泥和Sharon反应器污泥中变形菌门Proteobacteria的数量最高,拟杆菌门Bacteroidetes次之,其中变形菌门中又以β-Proteobacteria和γ-Proteobacteria的比例较高。但在菌属水平上,相差较大。同步硝化反硝化脱氮污泥中存在异养反硝化、自养反硝化、氨氧化过程、有机物降解、丝状菌等相关作用的微生物,可能存在潜在的厌氧氨氧化过程。占优势的细菌为:Thauera属、Nitrosomonas属、uncultured Anaerolineaceae属、Saprospiraceae属和浮霉菌门Planctomycetes.而Sharon污泥中存在有机物氧化、异养反硝化、氨氧化过程等相关作用的微生物,占优势的细菌为:Rhodanobacter属、Ottowia属、Nitrosomonas属等。
     4、集成创建的垃圾渗滤液“填埋垃圾厌氧产沼-Sharon-Anammox"工艺可以同时实现能源回收和经济高效脱氮的目的。填埋垃圾厌氧产沼反应器对回灌渗滤液COD有良好的去除效果。COD去除负荷可达1.0Kg/(m3·d)(以总体积计),产气性能为0.47L/g COD. Sharon反应器在FA浓度在1-280mg/L均可实现稳定的短程硝化作用。通过进水的碱度/NH4+比调节可以任意控制Sharon出水NO2-/NH4+比。利用渗滤液生物脱氮污泥可成功启动厌氧氨氧化MBR反应器,在活性停滞阶段,将NO2--N浓度控制在60mg/L以下有利于厌氧氨氧化菌的快速启动。一定比例的渗滤液硝化出水对厌氧氨氧化活性有明显的促进作用,渗滤液硝化出水可降解有机物的存在会对厌氧氨氧化活性有明显的抑制作用。以渗滤液Sharon出水为厌氧氨氧化反应器进水,在T=30±1℃,NH4+-N和NO2--N浓度在550-620mg/L,出水NH4+-N和NO2--N均小于5mg/L, NO3--N浓度低于100mg/L,容积氮去除负荷达到200mg/(L-d)左右。
The "sanitary" landfill technique, as it is practiced today, is one of the most important methods for municipal solid waste disposal in China. In recent years, more stringent discharge standard for landfill leachate (GB16889-2008) is imposed by the Chinese government. However, treatment of landfill leachate produced from the landfill, which is characteristic of high COD and ammonia concentration, becomes the bottleneck of sustainable development of sanitary landfill. Therefore, it is imperative to develop economic and efficient technology for landfill leachate treatment. Bioreactor landfill, which consists in controlling moisture through the recirculation of the leachate or by other means, lays the foundation for combined ex situ and in situ process. The objectives of this study were:(1) to assess the nitrogen removal performance by a combined process with ex situ nitrification/in situ denitrification/MAP precipitation/coagulation/soil infiltration;(2) to establish the correlation between the abundance of nitrifiers and nitrification performance;(3) to explore primary functional denitrifiers in the landfill bioreactor;(4) to assess the nitrogen removal performance by Anaerobic fermentation/Sharon/Anammox process. The obtained results will provide profound role in nitrogen removal from landfill leachate by combined ex situ and in situ biological process. The primary results of this study are summaried as follows.
     (1) A combined process consisting of ex situ nitrification and in situ denitrification in landfill refuse was studied in pilot scale for nitrogen removal from municipal landfill leachate. The results showed that simultaneous organic matter removal and complete ammonia oxidation was accomplished in a single aerobic reactor at COD loading rate of2.48Kg/(m3·d) and NH4+-N loading rate of0.37Kg/(m3·d). Above80%of partial nitrification ratio and an average COD loading rate of1.50Kg/(m3·d) were steadily maintained under DO concentrations of1.00-1.70mg L-1Quantitative PCR results indicated that the abundance of ammonia oxidizing bacterial (AOB) amoA and nitrite oxidizing bacterial (NOB) nxrA genes were highly correlated with the specific ammonia removal rate and specific nitrate production rate. The gene copy number of amoA ranged from9.08×108to6.71×109copies/g VSS, and gene copy number of nxrA ranged from1.53×107to1.54×109copies/g VSS.
     (2)7-year-old landfilled refuse exhibited high denitrification capacity. Nitrified landfill leachate could be denitrified in the landfill bioreactor with total oxidizing nitrogen (TON) removal rate ranging from16.4-67.2g N/(t-TSwaste d). Clone and sequencing analysis of denitrifying bacterial nirS gene inferred that heterotrophic Azoarcus tolulyticu was the primary denitrifier in the landfill bioreactor. The combined process consisting of ex situ nitrification/in situ denitrification/MAP precipitation/coagulation/soil infiltration showed high COD and ammonia removal. When the influent COD and ammonia of leachate were2983-11780mg/L and910-1731mg/L, respectively, the effluent of COD lower than500mg/L, ammonia lower than25mg/L and TN lower than60mg/L was achieved.
     (3) A microbial community on two sludge samples from a SND reactor and Sharon reactor was analyzed by high throughput sequencing. The obtained results indicated that the corresponding most dominant phylum in the two samples are Betaproteobacteria, Gammaproteobacteria, Bacteroidetes. However, different bacterial composition at genus level was found in the two samples. The dominant process in the SND sludge was heterophic denitrification, autotrophic denitrification, ammonia oxidation, organic decomposition, and bulking, as well as potential anammox. The dominant genus was Thauera, Nitrosomonas, uncultured Anaerolineaceae, Saprospiraceae and Planctomycetes. While the dominant process in the Sharon sludge was heterophic denitrification, autotrophic denitrification and ammonia oxidation. The dominant genus was Rhodanobacter, Ottowia and Nitrosomonas.
     (4) A combined process consisting of in situ anaerobic fermentation and ex situ Sharon/Anammox was studied for methane recovery and nitrogen removal from municipal landfill leachate. The results showed that COD removal rate was1.0Kg/(m3·d) and methane production rate was0.47L/g COD. Stable short-cut nitrification could be achieved at FA concentration of1-280mg/L in Sharon reactor. The effluent NO2-/NF4+ratio could be adujusted by the ratio of influent alkalinity/NH4+. Anammox was started up successfully using SND sludge from landfill leachate treatment. In the phases of sluggish, it is helpful for rapid start-up of Anammox at nitrite concentration lower than60mg/L. Low percentage of effluent from Sharon reactor could promote the Anammox activity, while the presence of biodegradable organic matter could inhibit the Anammox activity. When the influent ammonia and nitrie concentration ranged from550to620mg/L, the effluent ammonia and nitrie concentration were lower than5mg/L, nitrate concentration was lower than100mg/L. Nitrogen removal rate could reach at about200mg/(L-d).
引文
Abma, W.,Schultz, C.,Mulder, J., et al. Full-scale granular sludge Anammox process [J]. Water Science and Technology,2007,55 (8-9):27-33.
    Agdag, O. N.,Sponza, D. T. Sequential anaerobic, aerobic/anoxic treatment of simulated landfill leachate [J]. Environmental Technology,2008,29 (2):183-197.
    Ahn, Y. H.,Hwang, I. S.,Min, K. S. ANAMMOX and partial denitritation in anaerobic nitrogen removal from piggery waste [J]. Water Science and Technology,2004,49 (5-6): 145-153.
    Anthonisen, A.,Loehr, R.,Prakasam, T., et al. Inhibition of nitrification by ammonia and nitrous acid [J]. Journal Water Pollution Control Federation,1976,835-852.
    APHA. Standard Methods for the Examination of Water and Wastewater, twentieth ed [M]. Washington, D.C, USA:American Public Health Association,1998.
    Ariesyady, H. D.,Ito, T.,Okabe, S. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester [J]. Water Research,2007, 41 (7):1554-1568.
    Augenstein, D.,Morck, R.,Pacey, J., et al. White paper:The bioreactor landfill an innovation in solid waste management [M]. Silver Spring:Solid Waste Association North America, 1998; 173-180.
    Aziz, H. A.,Yusoff, M. S.,Adlan, M. N., et al. Physico-chemical removal of iron from semi-aerobic landfill leachate by limestone filter [J]. Waste Management,2004,24 (4): 353-358.
    Bagchi, S.,Biswas, R.,Nandy, T. Start-up and stabilization of an Anammox process from a non-acclimatized sludge in CSTR [J]. Journal of Industrial Microbiology and Biotechnology,2010,37 (9):943-952.
    Bai, Y. H.,Sun, Q. H.,Wen, D. H., et al. Abundance of ammonia-oxidizing bacteria and archaea in industrial and domestic wastewater treatment systems [J]. FEMS microbiology ecology,2012,80 (2):323-330.
    Barnes, D.,Bliss, P. J. Biological control of nitrogen in wastewater treatment [M]. E.& F.N. Spon, New York,1983.
    Baumgarten, G.,Seyfried, C. F. Experiences and new developments in biological pretreatment and physical post-treatment of landfill leachate [J]. Water Science and Technology,1996, 34 (7-8-8 pt 4):445-453.
    Benson, C. H.,Barlaz, M. A.,Lane, D. T., et al. Practice review of five bioreactor/recirculation landfills [J]. Waste Management,2007,27 (1):13-29.
    Berge, N. D.,Reinhart, D. R.,Batarseh, E. S. An assessment of bioreactor landfill costs and benefits [J]. Waste Management,2009,29 (5):1558-1567.
    Berge, N. D.,Reinhart, D. R.,Dietz, J., et al. In situ ammonia removal in bioreactor landfill leachate [J]. Waste Management,2006,26 (4):334-343.
    Berge, N. D.,Reinhart, D. R.,Townsend, T. G. The Fate of Nitrogen in Bioreactor Landfills [J]. Critical Reviews in Environmental Science and Technology,2005,35 (4):365-399.
    Bernet, N.,Dangcong, P.,Delgenes, J. P., et al. Nitrification at low oxygen concentration in biofilm reactor [J]. Journal of Environmental Engineering,2001,127 (3):266-271.
    Broda, E. Two kinds of lithotrophs missing in nature [J]. Zeitschrift fur allgemeine Mikrobiologie,1977,17 (6):491-493.
    Burton, S. A. Q.,Watson-Craik, I. A. Ammonia and nitrogen fluxes in landfill sites: applicability to sustainable landfilling [J]. Waste Management & Research,1998,16 (1): 41-53.
    Caffaz, S.,Canziani, R.,Lubello, C., et al. Autotrophic nitrogen removal from anaerobic supernatant of Florence's WWTP digesters [J]. Water Science and Technology,2006,53 (12):129-138.
    Chamchoi, N.,Nitisoravut, S.,Schmidt, J. E. Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification [J]. Bioresource technology,2008,99 (9):3331-3336.
    Chandran, K.,Smets, B. F. Single-step nitrification models erroneously describe batch ammonia oxidation profiles when nitrite oxidation becomes rate limiting [J]. Biotechnology and Bioengineering,2000,68 (4):396-406.
    Chao, A.,Shen, T.-J. Nonparametric estimation of Shannon's index of diversity when there are unseen species in sample [J]. Environmental and Ecological Statistics,2003,10 (4): 429-443.
    Chen, C. J.,Huang, X. X.,Lei, C. X., et al. Improving Anammox start-up with bamboo charcoal [J]. Chemosphere,2012,89 (10):1224-1229.
    Chen, Y. X.,Wu, S. W.,Wu, W. X., et al. Denitrification capacity of bioreactors filled with refuse at different landfill ages [J]. Journal of Hazardous Materials,2009,172 (1): 159-165.
    Cheung, K. C.,Chu, L. M.,Wong, M. H. Ammonia stripping as a pretreatment for landfill leachate [J]. Water Air and Soil Pollution,1997,94 (1-2):209-221.
    Cho, S. P.,Hong, S. C.,Hong, S. I. Photocatalytic degradation of the landfill leachate containing refractory matters and nitrogen compounds [J]. Applied Catalysis B: Environmental,2002,39 (2):125-133.
    Choi, E.,Hwang, I. S.,Min, K. S., et al. Nitrogen removal from piggery waste using the combined SHARON and ANAMMOX process [J]. Water Science and Technology,2005, 52 (10):487-495.
    Ciudad, G.,Rubilar, O.,Munoz, P., et al. Partial nitrification of high ammonia concentration wastewater as a part of a shortcut biological nitrogen removal process [J]. Process biochemistry,2005,40 (5):1715-1719.
    Cocolin, L.,Manzano, M.,Cantoni, C., et al. Denaturing gradient gel electrophoresis analysis of the 16S rRNA gene V1 region to monitor dynamic changes in the bacterial population during fermentation of Italian sausages [J]. Applied and Environmental Microbiology, 2001,67 (11):5113-5121.
    Dapena-Mora, A.,Fernandez, I.,Campos, J. L., et al. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production [J]. Enzyme and Microbial Technology,2007,40.(4):859-865.
    Di Palma, L.,Ferrantelli, P.,Merli, C., et al. Treatment of industrial landfill leachate by means of evaporation and reverse osmosis [J]. Waste Management,2002,22 (8):951-955.
    Doyle, J. D.,Parsons, S. A. Struvite formation, control and recovery [J]. Water Research,2002, 36 (16):3925-3940.
    Egli, K.,Fanger, U.,Alvarez, P. J. J., et al. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate [J]. Archives of Microbiology,2001,175 (3):198-207.
    EPA, U. Landfill bioreactor performance:Second interim report outer loop recycling & disposal facility, Louisville, Kentucky [R]. Cincinnati, Ohio.:National Risk Management Research Laboratory. Office of Research and Development. U.S. Environmental Protection Agency,2006.
    Etchebehere, C.,Tiedje, J. Presence of Two Different Active nirS Nitrite Reductase Genes in a Denitrifying Thauera sp. from a High-Nitrate-Removal-Rate Reactor [J]. Applied and Environmental Microbiology,2005,71 (9):5642-5645.
    Felfoldi, T.,Keki, Z.,Sipos, R., et al. Ottowia pentelensis sp. nov., a floc-forming betaproteobacterium isolated from an activated sludge system treating coke plant effluent [J]. International Journal of Systematic and Evolutionary Microbiology,2011,61 (9): 2146-2150.
    Fernandez, I.,Dosta, J.,Fajardo, C., et al. Short-and long-term effects of ammonium and nitrite on the Anammox process [J]. Journal of Environmental Management,2012,95 (SUPPL.):S170-S174.
    Frascari, D.,Bronzini, F.,Giordano, G., et al. Long-term characterization, lagoon treatment and migration potential of landfill leachate:A case study in an active Italian landfill [J]. Chemosphere,2004,54 (3):335-343.
    Fu, Z.,Yang, F.,An, Y., et al. Characteristics of nitrite and nitrate in situ denitrification in landfill bioreactors [J]. Bioresource Technology,2009,100 (12):3015-3021.
    Fujii, T.,Sugino, H.,Rouse, J. D., et al. Characterization of the microbial community in an anaerobic ammonium-oxidizing biofilm cultured on a nonwoven biomass carrier [J]. Journal of Bioscience and Bioengineering,2002,94 (5):412-418.
    Fux, C.,Boehler, M.,Huber, P., et al. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant [J]. Journal of Biotechnology,2002,99 (3):295-306.
    Fux, C.,Siegrist, H. Nitrogen removal from sludge digester liquids by nitrification/denitrification or partial nitritation/anammox:Environmental and economical considerations [J]. Water Science and Technology,2004,50 (10):19-26.
    Guven, D.,Dapena, A.,Kartal, B., et al. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria [J]. Applied and Environmental Microbiology, 2005,71(2):1066-1071.
    Guven, D.,Van De Pas-Schoonen, K.,Schmid, M. C., et al. Implementation of the anammox process for improved nitrogen removal [J]. Journal of Environmental Science and Health-Part A Toxic/Hazardous Substances and Environmental Engineering,2004,39 (7): 1729-1738.
    Ganigu6, R.,L6pez, H.,Balaguer, M. D., et al. Partial ammonium oxidation to nitrite of high ammonium content urban landfill leachates [J]. Water Research,2007,41 (15): 3317-3326.
    Ginige, M. P.,Keller, J.,Blackall, L. L. Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization-microautoradiography [J]. Applied and Environmental Microbiology,2005, 71 (12):8683-8691.
    Guo, J.,Peng, Y. Z.,Wang, S. Y., et al. Long-term effect of dissolved oxygen on partial nitrification performance and microbial community structure [J]. Bioresource technology, 2009,100 (11):2796-2802.
    Han, Z.-Y.,Liu, D.,Li, Q.-B. A removal mechanism for organics and nitrogen in treating leachate using a semi-aerobic aged refuse biofilter [J]. Journal of Environmental Management,2013,114 336-342.
    Hanaki, K.,Wantawin, C.,Ohgaki, S. Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor [J]. Water Research,1990,24 (3): 297-302.
    He, P. J.,Shao, L. M.,Guo, H. D., et al. Nitrogen removal from recycled landfill leachate by ex situ nitrification and in situ denitrification [J]. Waste Management,2006,26 (8):838-845.
    He, S.,Zhang, Y.,Yang, M., et al. Repeated use of MAP decomposition residues for the removal of high ammonium concentration from landfill leachate [J]. Chemosphere,2007, 66 (11):2233-2238.
    Heijnen, J. J.,Hellinga, C.,Mulder, J. W., et al. The SHARON process:an innovative method for nitrogen removal from ammonium-rich waste water [J]. Water Science and Technology, 1998,37(9):135-143.
    Hellinga, C.,Schellen, A.,Mulder, J. W., et al. The SHARON process:An innovative method for nitrogen removal from ammonium-rich waste water [J]. Water science and technology, 1998,37(9):135-142.
    Henry, J. G.,Prasad, D.,Young, H. Removal of organics from leachates by anaerobic filter [J]. Water Research,1987,21 (11):1395-1399.
    Hu, Z.,Chandran, K.,Grasso, D., et al. Effect of Nickel and Cadmium Speciation on Nitrification Inhibition [J]. Environmental Science & Technology,2002,36 (14): 3074-3078.
    Huang, L. N.,Zhou, H.,Chen, Y. Q., et al. Diversity and structure of the archaeal community in the leachate of a full-scale recirculating landfill as examined by direct 16S rRNA gene sequence retrieval [J]. Fems Microbiology Letters,2002,214 (2):235-240.
    Huang, L. N.,Zhou, H.,Zhu, S., et al. Phylogenetic diversity of bacteria in the leachate of a full-scale recirculating landfill [J]. Fems Microbiology Ecology,2004,50 (3):175-183.
    Huo, S. L.,Xi, B. D.,Yu, H. C., et al. In situ simultaneous organics and nitrogen removal from recycled landfill leachate using an anaerobic-aerobic process [J]. Bioresource Technology, 2008,99 (14):6456-6463.
    Hwang, C.,Wu, W. M.,Gentry, T. J., et al. Changes in bacterial community structure correlate with initial operating conditions of a field-scale denitrifying fluidized bed reactor [J]. Applied microbiology and biotechnology,2006,71 (5):748-760.
    Im, J. H.,Woo, H. J.,Choi, M. W., et al. Simultaneous organic and nitrogen removal from municipal landfill leachate using an anaerobic-aerobic system [J]. Water Research,2001, 35 (10):2403-2410.
    Isaka, K.,Sumino, T.,Tsuneda, S. High nitrogen removal performance at moderately low temperature utilizing anaerobic ammonium oxidation reactions [J]. Journal of Bioscience and Bioengineering,2007,103 (5):486-490.
    Islam, A.,Chen, D.,White, R. E. Heterotrophic and autotrophic nitrification in two acid pasture soils [J]. Soil Biology and Biochemistry,2007,39 (4):972-975.
    Jetten, M. S. M.,Logemann, S.,Muyzer, G., et al. Novel principles in the microbial conversion of nitrogen compounds [J]. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology,1997,71 (1-2):75-93.
    Jetten, M. S. M.,Strous, M.,Van De Pas-Schoonen, K. T., et al. The anaerobic oxidation of ammonium [J]. Fems Microbiology Reviews,1998,22 (5):421-437.
    Jiang, J.,Yang, G.,Deng, Z., et al. Pilot-scale experiment on anaerobic bioreactor landfills in China [J]. Waste Management,2007,27 (7):893-901.
    Jokela, J. P. Y.,Kettunen, R. H.,Sormunen, K. M., et al. Biological nitrogen removal from municipal landfill leachate:Low-cost nitrification in biofilters and laboratory scale in-situ denitrification [J]. Water Research,2002,36 (16):4079-4087.
    Jubany, I.,Lafuente, J.,Baeza, J. A., et al. Total and stable washout of nitrite oxidizing bacteria from a nitrifying continuous activated sludge system using automatic control based on Oxygen Uptake Rate measurements [J]. Water Research,2009,43 (11):2761-2772.
    Jun, D.,Zhao, Y. S.,Henry, R. K., et al. Impacts of aeration and active sludge addition on leachate recirculation bioreactor [J]. Journal of Hazardous Materials,2007,147 (1-2): 240-248.
    Jung, J. Y.,Kang, S. H.,Chung, Y. C., et al. Factors affecting the activity of anammox bacteria during start up in the continuous culture reactor [J]. Water Science and Technology,2007, 55 (1-2):459-468.
    Kampschreur, M. J.,Temmink, H.,Kleerebezem, R., et al. Nitrous oxide emission during wastewater treatment [J]. Water Research,2009,43 (17):4093-4103.
    Kargi, F.,Pamukoglu, M. Y. Simultaneous adsorption and biological treatment of pre-treated landfill leachate by fed-batch operation [J]. Process Biochemistry,2003,38 (10): 1413-1420.
    Kennedy, K. J.,Lentz, E. M. Treatment of landfill leachate using sequencing batch and continuous flow upflow anaerobic sludge blanket (UASB) reactors [J]. Water Research, 2000,34 (14):3640-3656.
    Kettunen, R. H.,Rintala, J. A. Performance of an on-site UASB reactor treating leachate at low temperature [J]. Water Research,1998,32 (3):537-546.
    Kim, D.-J.,Lee, D.-I.,Keller, J. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH [J]. Bioresource technology,2006,97 (3):459-468.
    Knox, K.,Jones, P. H. Complexation characteristics of sanitary landfill leachates [J]. Water Research,1979,13 (9):839-846.
    Kraigher, B.,Kosjek, T.,Heath, E., et al. Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors [J]. Water Research,2008,42 (17):4578-4588.
    Kulikowska, D.,Klimiuk, E. The effect of landfill age on municipal leachate composition [J]. Bioresource Technology,2008,99 (13):5981-5985.
    Kumar, M.,Lin, J. G. Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal-Strategies and issues [J]. Journal of hazardous materials,2010,178 (1-3):1-9.
    Lan, C. J.,Kumar, M.,Wang, C. C., et al. Development of simultaneous partial nitrification, anammox and denitrification (SNAD) process in a sequential batch reactor [J]. Bioresource technology,2011,102 (9):5514-5519.
    Li, H.,Zhao, Y.,Shi, L., et al. Three-stage aged refuse biofilter for the treatment of landfill leachate [J]. Journal of Environmental Sciences-China,2009a,21 (1):70-75.
    Li, X. R.,Du, B.,Fu, H. X., et al. The bacterial diversity in an anaerobic ammonium-oxidizing (anammox) reactor community [J]. Systematic and Applied Microbiology,2009b,32 (4): 278-289.
    Li, X. Z.,Zhao, Q. L. Efficiency of biological treatment affected by high strength of ammonium-nitrogen in leachate and chemical precipitation of ammonium-nitrogen as pretreatment [J]. Chemosphere,2001,44 (1):37-43.
    Li, X. Z.,Zhao, Q. L.,Hao, X. D. Ammonium removal from landfill leachate by chemical precipitation [J]. Waste Management,1999,19 (6):409-415.
    Liang, Z.,Liu, H.-x. Control factors of partial nitritation for landfill leachate treatment [J]. Journal of Environmental Sciences-China,2007a,19 (5):523-529.
    Liang, Z.,Liu, J.-x. Control factors of partial nitritation for landfill leachate treatment [J]. Journal of Environmental Sciences,2007b,19 (5):523-529.
    Liang, Z.,Liu, J. Landfill leachate treatment with a novel process:Anaerobic ammonium oxidation (Anammox) combined with soil infiltration system [J]. Journal of hazardous materials,2008,151 (1):202-212.
    Liu, B.,Zhang, F.,Feng, X., et al. Thauera and Azoarcus as functionally important genera in a denitrifying quinoline-removal bioreactor as revealed by microbial community structure comparison [J]. FEMS microbiology ecology,2006,55 (2):274-286.
    Lo, I. M. C. Characteristics and treatment of leachates from domestic landfills [J]. Environment International,1996,22 (4):433-442.
    Long, Y.,Guo, Q.-W.,Fang, C.-R., et al. In situ nitrogen removal in phase-separate bioreactor landfill [J]. Bioresource Technology,2008a,99 (13):5352-5361.
    Long, Y.,Hu, L. F.,Shen, D. S. Nitrogen transformation in the hybrid bioreactor landfill [J]. Bioresource Technology,2009,100 (9):2527-2533.
    Long, Y.,Lao, H.-M.,Hu, L.-F., et al. Effects of in situ nitrogen removal on degradation/stabilization of MSW in bioreactor landfill [J]. Bioresource Technology, 2008b,99 (8):2787-2794.
    Marttinen, S. K.,Kettunen, R. H.,Sormunen, K. M., et al. Screening of physical-chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates [J]. Chemosphere,2002,46 (6):851-858.
    Mertoglu, B.,Calli, B.,Inanc, B., et al. Evaluation of in situ ammonia removal in an aerated landfill bioreactor [J]. Process biochemistry,2006,41 (12):2359-2366.
    Morgan-Sagastume, F.,Nielsen, J. L.,Nielsen, P. H. Substrate-dependent denitrification of abundant probe-defined denitrifying bacteria in activated sludge [J]. FEMS microbiology ecology,2008,66 (2):447-461.
    Mosquera-Corral, A.,Gonzalez, F.,Campos, J. L., et al. Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds [J]. Process biochemistry, 2005,40 (9):3109-3118.
    Mulder, A.,van de Graaf, A. A.,Robertson, L. A., et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor [J]. FEMS microbiology ecology,1995, 16(3):177-183.
    Mulder, J. W.,Loosdrecht, M. C. M. v.,Hellinga, C., et al. Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering [J]. Water Science and Technology,2001a,43 (11):127-135.
    Mulder, J. W.,van Loosdrecht, M. C. M.,Hellinga, C., et al. Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering [J]. Water science and technology,2001b,43 (11):127-134.
    Narihiro, T.,Terada, T.,Ohashi, A., et al. Quantitative detection of previously characterized syntrophic bacteria in anaerobic wastewater treatment systems by sequence-specific rRNA cleavage method [J]. Water Research,2012,46 (7):2167-2175.
    Ni, S.-Q.,Ni, J.-Y.,Hu, D.-L., et al. Effect of organic matter on the performance of granular anammox process [J]. Bioresource technology,2012,110 (0):701-705.
    Ni, S. Q.,Lee, P. H.,Fessehaie, A., et al. Enrichment and biofilm formation of Anammox bacteria in a non-woven membrane reactor [J]. Bioresource technology,2010,101 (6): 1792-1799.
    Oman, C. B.,Junestedt, C. Chemical characterization of landfill leachates-400 parameters and compounds [J]. Waste Management,2008,28 (10):1876-1891.
    Onay, T. T.,Pohland, F. G. In situ nitrogen management in controlled bioreactor landfills [J]. Water Research,1998,32 (5):1383-1392.
    Onay, T. T.,Pohland, F. G. Nitrogen and sulfate attenuation in simulated landfill bioreactors [J]. Water Science and Technology,2001,44 (2-3):367-372.
    Orupold, K.,Tenno, T.,Henry sson, T. Biological lagooning of phenols-containing oil shale ash heaps leachate [J]. Water Research,2000,34 (18):4389-4396.
    Osaka, T.,Shirotani, K.,Yoshie, S., et al. Effects of carbon source on denitrification efficiency and microbial community structure in a saline wastewater treatment process [J]. Water Research,2008,42 (14):3709-3718.
    Osaka, T.,Yoshie, S.,Tsuneda, S., et al. Identification of Acetate-or Methanol-Assimilating Bacteria under Nitrate-Reducing Conditions by Stable-Isotope Probing [J]. Microbial Ecology,2006,52 (2):253-266.
    Ozturk, I.,Altinbas, M.,Koyuncu, I., et al. Advanced physico-chemical treatment experiences on young municipal landfill leachates [J]. Waste Management,2003,23 (5):441-446.
    Park, H.-D.,Wells, G. F.,Bae, H., et al. Occurrence of Ammonia-Oxidizing Archaea in Wastewater Treatment Plant Bioreactors [J]. Applied and Environmental Microbiology, 2006,72 (8):5643-5647.
    Patil, S. A.,Surakasi, V. P.,Koul, S., et al. Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber [J]. Bioresource technology,2009, 100 (21):5132-5139.
    Paxeus, N. Organic compounds in municipal landfill leachates [J]. Water Science and Technology,2000,42 (7/8):323-333.
    Pelaez, A. I.,Sanchez, J.,Almendros, G. Bioreactor treatment of municipal solid waste landfill leachates:Characterization of organic fractions [J]. Waste Management,2009,29 (1): 70-77.
    Peng, Y.,Zhu, G Biological nitrogen removal with nitrification and denitrification via nitrite pathway [J]. Applied microbiology and biotechnology,2006,73 (1):15-26.
    Pohland, F. G. Sanitary landfill stabilization with leachate recycle and residual treatment [J]. Sanitary Landfill Stabilization with Leachate Recycle and Residual Treatment,1975.
    Pohland, F. G.,Kim, J. C. Microbially mediated attenuation potential of landfill bioreactor systems [J]. Water Science and Technology,2000,41 (3):247-254.
    Pollice, A.,Tandoi, V.,Lestingi, C. Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate [J]. Water Research,2002,36 (10):2541-2546.
    Poly, F.,Wertz, S.,Brothier, E., et al. First exploration of Nitrobacter diversity in soils by a PCR cloning-sequencing approach targeting functional gene nxrA [J]. FEMS microbiology ecology,2008,63 (1):132-140.
    Poth, M.,Focht, D. D.15N Kinetic Analysis of N2O Production by Nitrosomonas europaea: an Examination of Nitrifier Denitrification [J]. Applied and Environmental Microbiology, 1985,49(5):1134-1141.
    Price, G. A.,Barlaz, M. A.,Hater, G. R. Nitrogen management in bioreactor landfills [J]. Waste Management,2003,23 (7):675-688.
    Reinhart, D. R. Full-scale experiences with leachate recirculating landfills:case studies [J]. Waste Management & Research,1996,14 (4):347-365.
    Renou, S.,Givaudan, J. G.,Poulain, S., et al. Landfill leachate treatment:Review and opportunity [J]. Journal of Hazardous Materials,2008,150 (3):468-493.
    Robertson, L. A.,Cornelisse, R.,De Vos, P., et al. Aerobic denitrification in various heterotrophic nitrifiers [J]. Antonie van Leeuwenhoek,1989,56 (4):289-299.
    Robertson, L. A.,DaIsgaard, T.,Revsbech, N. P., et al. Confirmation of'aerobic denitrification' in batch cultures, using gas chromatography and 15N mass spectrometry [J]. FEMS microbiology ecology,1995,18 (2):113-119.
    Rotthauwe, J. H.,Witzel, K. P.,Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker:molecular fine-scale analysis of natural ammonia-oxidizing populations [J]. Applied and Environmental Microbiology,1997,63 (12):4704-4712.
    Ruscalleda, M.,Lopez, H.,Ganigue, R., et al. Heterotrophic denitrification on granular anammox SBR treating urban landfill leachate [J]. Water Science and Technology,2008, 58(9):1749-1755.
    Sang, N. N.,Soda, S.,Ishigaki, T., et al. Microorganisms in landfill bioreactors for accelerated stabilization of solid wastes [J]. Journal of Bioscience and Bioengineering,2012,114 (3): 243-250.
    Sang, N. N.,Soda, S.,Sei, K., et al. Effect of Aeration on Stabilization of Organic Solid Waste and Microbial Population Dynamics in Lab-Scale Landfill Bioreactors [J]. Journal of Bioscience and Bioengineering,2008,106 (5):425-432.
    Schmid, M.,Twachtmann, U.,Klein, M., et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation [J]. Systematic and Applied Microbiology,2000,23 (1):93-106.
    Shao, L.-M.,He, P.-J.,Li, G.-J. In situ nitrogen removal from leachate by bioreactor landfill with limited aeration [J]. Waste Management,2008,28 (6):1000-1007.
    Shen, L.-d.,Hu, A.-h.,Jin, R.-c., et al. Enrichment of anammox bacteria from three sludge sources for the startup of monosodium glutamate industrial wastewater treatment system [J]. Journal of Hazardous Materials,2012,199193-199.
    Siegrist, H.,Reithaar, S.,Koch, G., et al. Nitrogen loss in a nitrifying rotating contactor treating ammonium-rich wastewater without organic carbon [J]. Water science and technology, 1998,38 (8-9):241-248.
    Silva, A. C.,Dezotti, M.,Sant'Anna Jr, G. L. Treatment and detoxification of a sanitary landfill leachate [J]. Chemosphere,2004,55 (2):207-214.
    Song, B.,Ward, B. B. Nitrite reductase genes in halobenzoate degrading denitrifying bacteria [J]. FEMS microbiology ecology,2003,43 (3):349-357.
    Spring, S.,Jackel, U.,Wagner, M., et al. Ottowia thiooxydans gen. nov., sp. nov., a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen. nov., comb, nov [J]. International Journal of Systematic and Evolutionary Microbiology,2004,54 (1):99-106.
    Strous, M.,Heijnen, J.,Kuenen, J., et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms [J]. Applied Microbiology and Biotechnology,1998,50 (5):589-596.
    Strous, M.,Kuenen, J. G.,Jetten, M. S. M. Key Physiology of Anaerobic Ammonium Oxidation [J]. Applied and Environmental Microbiology,1999,65 (7):3248-3250.
    Strous, M.,Pelletier, E.,Mangenot, S., et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome [J]. Nature,2006,440 (7085):790-794.
    Strous, M.,Van Gerven, E.,Kuenen, J. G, et al. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge [J]. Applied and Environmental Microbiology,1997,63 (6):2446-2448.
    Sun, F. Q.,Wu, S. W.,Liu, J. J., et al. Denitrification capacity of a landfilled refuse in response to the variations of COD/NO3-N in the injected leachate [J]. Bioresource technology, 2012,103(1):109-115.
    Surmacz-Gorska, J.,Cichon, A.,Miksch, K. Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification [J]. Water science and technology,1997,36 (10):73-78.
    Tiirker, M.,Celen, I. Removal of ammonia as struvite from anaerobic digester effluents and recycling of magnesium and phosphate [J]. Bioresource Technology,2007,98 (8): 1529-1534.
    Tang, C.-J.,Zheng, P.,Chen, T.-T., et al. Enhanced nitrogen removal from pharmaceutical wastewater using SBA-ANAMMOX process [J]. Water Research,2011a,45 (1):201-210.
    Tang, C.-J.,Zheng, P.,Wang, C.-H., et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge [J]. Water Research,2011b,45 (1):135-144.
    Tang, C.-J.,Zheng, P.,Zhang, L., et al. Enrichment features of anammox consortia from methanogenic granules loaded with high organic and methanol contents [J]. Chemosphere, 2010,79 (6):613-619.
    Tatsi, A. A.,Zouboulis, A. I.,Matis, K. A., et al. Coagulation-flocculation pretreatment of sanitary landfill leachates [J]. Chemosphere,2003,53 (7):737-744.
    Thole, D.,Cornelius, A.,Rosenwinkel, K. H. Full scale experiences with deammonification of sludge liquer at Wastewater Treatment Plant Hattingen [J]. GroBtechnische Erfahrungen zur Deammonifikation von Schlammwasser auf der Klaranlage Hattingen,2005,146 (2): 104-109.
    Tokutomi, T.,Shibayama, C.,Soda, S., et al. A novel control method for nitritation:The domination of ammonia-oxidizing bacteria by high concentrations of inorganic carbon in an airlift-fluidized bed reactor [J]. Water Research,2010,44 (14):4195-4203.
    Trebouet, D.,Schlumpf, J. P.,Jaouen, P., et al. Effect of operating conditions on the nanofiltration of landfill leachates:Pilot-scale studies [J]. Environmental Technology, 1999,20 (6):587-596.
    Trigo, C.,Campos, J.,Garrido, J., et al. Start-up of the Anammox process in a membrane bioreactor [J]. Journal of biotechnology,2006,126 (4):475-487.
    Uygur, A.,Kargi, F. Biological nutrient removal from pre-treated landfill leachate in a sequencing batch reactor [J]. Journal of Environmental Management,2004,71 (1):9-14.
    Valencia, R.,van der Zon, W.,Woelders, H., et al. Anammox:An option for ammonium removal in bioreactor landfills [J]. Waste Management,2011,31 (11):2287-2293.
    Van De Graaf, A. A.,De Bruijn, P.,Robertson, L. A., et al. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor [J]. Microbiology,1996, 142 (8):2187-2196.
    van de Graaf, A. A.,Mulder, A.,de Bruijn, P., et al. Anaerobic oxidation of ammonium is a biologically mediated process [J]. Applied and Environmental Microbiology,1995,61 (4): 1246-51.
    van der Star, W. R. L.,Abma, W. R.,Blommers, D., et al. Startup of reactors for anoxic ammonium oxidation:Experiences from the first full-scale anammox reactor in Rotterdam [J]. Water Research,2007,41 (18):4149-4163.
    van der Star, W. R. L.,Miclea, A. I.,van Dongen, U. G. J:M., et al. The membrane bioreactor: a novel tool to grow anammox bacteria as free cells [J]. Biotechnology and bioengineering, 2008a,101 (2):286-294.
    Van Der Star, W. R. L.,Van De Graaf, M. J.,Kartal, B., et al. Response of anaerobic ammonium-oxidizing bacteria to hydroxylamine [J]. Applied and Environmental Microbiology,2008b,74 (14):4417-4426.
    van Dongen, U.,Jetten, M.,Van Loosdrecht, M. The SHARON-Anammox process for treatment of ammonium rich wastewater [J]. Water Science and Technology,2001,44 (1): 153-161.
    Van Hulle, S. W. H.,Volcke, E. I. P.,Teruel, J. L., et al. Influence of temperature and pH on the kinetics of the SHARON nitritation process [J]. Journal of Chemical Technology and Biotechnology,2007,82 (5):471-480.
    Van Kempen, R.,Mulder, J.,Uijterlinde, C., et al. Overview:full scale experience of the SHARON process for treatment of rejection water of digested sludge dewatering [J]. Water Science and Technology,2001,44 (1):145-152.
    van Niel, E. W. J.,Arts, P. A. M.,Wesselink, B. J., et al. Competition between heterotrophic and autotrophic nitrifiers for ammonia in chemostat cultures [J]. Ferns Microbiology Letters,1993,102(2):109-118.
    Vigneron, V.,Ponthieu, M.,Barina, G., et al. Nitrate and nitrite injection during municipal solid waste anaerobic biodegradation [J]. Waste Management,2007,27 (6):778-791.
    Vilar, A.,Eiroa, M.,Kennes, C., et al. The SHARON process in the treatment of landfill leachate [J]. Water Science and Technology,2010,61 (1):47-53.
    Waki, M.,Tokutomi, T.,Yokoyama, H., et al. Nitrogen removal from animal waste treatment water by anammox enrichment [J]. Bioresource technology,2007,98 (14):2775-2780.
    Wan, C.-Y.,De Wever, H.,Diels, L., et al. Biodiversity and population dynamics of microorganisms in a full-scale membrane bioreactor for municipal wastewater treatment [J]. Water Research,2011,45 (3):1129-1138.
    Wang, C.-C.,Lee, P.-H.,Kumar, M., et al. Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant [J]. Journal of Hazardous Materials,2010,175 (1-3):622-628.
    Wang, C.,Xie, B.,Han, L., et al. Study of anaerobic ammonium oxidation bacterial community in the aged refuse bioreactor with 16S rRNA gene library technique [J]. Bioresource Technology,2013, (0).
    Wang, T.,Zhang, H.,Gao, D., et al. Enrichment of Anammox bacteria in seed sludges from different wastewater treating processes and start-up of Anammox process [J]. Desalination, 2011,271 (1-3):193-198.
    Wang, T.,Zhang, H.,Yang, F., et al. Start-up of the Anammox process from the conventional activated sludge in a membrane bioreactor [J]. Bioresource technology,2009a,100 (9): 2501-2506.
    Wang, X.,Zhang, K.,Ren, N., et al. Monitoring microbial community structure and succession of an A/O SBR during start-up period using PCR-DGGE [J]. Journal of Environmental Sciences,2009b,21 (2):223-228.
    Wang, Z. P.,Zhang, Z.,Lin, Y. J., et al. Landfill leachate treatment by a coagulation-photooxidation process [J]. Journal of Hazardous Materials,2002,95 (1-2): 153-159.
    Wett, B.,Rauch, W. The role of inorganic carbon limitation in biological nitrogen removal of extremely ammonia concentrated wastewater [J]. Water Research,2003,37 (5): 1100-1110.
    Wu, J. J.,Wu, C. C.,Ma, H. W., et al. Treatment of landfill leachate by ozone-based advanced oxidation processes [J]. Chemosphere,2004,54 (7):997-1003.
    Xia, Y.,Kong, Y.,Thomsen, T. R., et al. Identification and Ecophysiological Characterization of Epiphytic Protein-Hydrolyzing Saprospiraceae ("Candidatus Epiflobacter" spp.) in Activated Sludge [J]. Applied and Environmental Microbiology,2008,74 (7):2229-2238.
    Xie, B.,Xiong, S.,Liang, S., et al. Performance and bacterial compositions of aged refuse reactors treating mature landfill leachate [J]. Bioresource Technology,2012,103 (1): 71-77.
    Yamamoto, T.,Takaki, K.,Koyama, T., et al. Long-term stability of partial nitritation of swine wastewater digester liquor and its subsequent treatment by Anammox [J]. Bioresource technology,2008,99 (14):6419-6425.
    Yang, C.,Zhang, W.,Liu, R., et al. Phylogenetic Diversity and Metabolic Potential of Activated Sludge Microbial Communities in Full-Scale Wastewater Treatment Plants [J]. Environmental Science & Technology,2011a,45 (17):7408-7415.
    Yang, J.,Zhang, L.,Hira, D., et al. Anammox treatment of high-salinity wastewater at ambient temperature [J]. Bioresource technology,2011b,102 (3):2367-2372.
    Yang, Y.,Yue, B.,Yang, Y., et al. Influence of semi-aerobic and anaerobic landfill operation with leachate recirculation on stabilization processes [J]. Waste Management & Research, 2012,30 (3):255-265.
    Zhang, H. G.,Zhou, S. Q. Treating leachate mixture with anaerobic ammonium oxidation technology [J]. Journal of Central South University of Technology (English Edition),2006, 13 (6):663-667.
    Zhang, L.,Zheng, P.,Tang, C. J., et al. Anaerobic ammonium oxidation for treatment of ammonium-rich wastewaters [J]. Journal of Zhejiang University. Science. B,2008,9 (5): 416-426.
    Zhao, R.,Novak, J. T.,Goldsmith, C. D. Evaluation of on-site biological treatment for landfill leachates and its impact:A size distribution study [J]. Water Research,2012,46 (12): 3837-3848.
    Zhong, Q.,Li, D.,Tao, Y., et al. Nitrogen removal from landfill leachate via ex situ nitrification and sequential in situ denitrification [J]. Waste Management,2009,29 (4):1347-1353.
    毛跃建.废水处理系统中重要功能类群Thauera属种群结构与功能的研究[D].博士,上海交通大学2009.
    王洪涛,殷勇.渗滤液回灌条件下生化反应器填埋场水分运移数值模拟[J].环境科学,2003,02:66-72.
    王淑莹,顾升波,杨庆.SBR工艺实时控制策略研究进展[J].环境科学学报,2009,29(6):1121-1130.
    王罗春,李华,赵由才,et al.垃圾填埋场渗滤液回灌及其影响[J].城市环境与城市生态,1999,01:46-48.
    付丽霞,吴立波,宫玥,et al.垃圾渗滤液中有机污染物对厌氧氨氧化的影响研究[J].水资源与水工程学报,2010,03:25-29.
    向怡卉,苏秀榕,张聪.海参细菌的生理生化特性研究[A].In浙江省生物化学与分子生物学学术交流会[C],中国杭州,2005;8.
    李达,杨凤玲,李华,et al浅谈氨氮废水处理技术[J].煤化工,2006,34(2):25-28.
    周少奇,杨志泉.广州垃圾填埋渗滤液中有机污染物的去除效果[J].环境科学,2005,26(3):186-191.
    柯水洲,欧阳衡.城市垃圾填埋场渗滤液处理工艺及其研究进展[J].给水排水,2004,11:26-33.
    胡浩元,周恭明.UASB反应器处理垃圾渗滤液的快速启动方法[J].工业用水与废水,2002,06:29-31.
    唐家富,李国建.垃圾填埋场渗滤液回灌处理的影响因素研究[J].环境卫生工程,1997,01:14-20.
    唐崇俭.厌氧氨氧化工艺特性与控制技术的研究[D].博士,浙江大学2011.
    唐崇俭,郑平,余燚,et al.味精废水短程硝化工艺的运行性能[J].环境科学学报,2008,28(11):2228-2235.
    曾薇,彭永臻,王淑莹.以DO、ORP、pH作为两段SBR工艺的实时控制参数[J].环境科学学报,2003,23(2):252-256.
    刘杰.亚硝化—厌氧氨氧化处理垃圾渗滤液一级厌氧出水的研究[D].博士,中国矿业大学(北京)2010.
    刘军,鲍林发,汪苹.运用GC-MS联用技术对垃圾渗滤液中有机污染物成分的分析[J].环境污染治理技术与设备,2003,4(8):31-33.
    卢平,曾丽璇,张秋云,et al.高浓度氨氮垃圾渗滤液处理方法研究[J].中国给水排水,2003,(05):44-45.
    吕卓.处理渗滤液陈垃圾生物反应器脱氮功能微生物分子解析[D].硕士,华东师范大学2012.
    吴松维.填埋垃圾生物反应器反硝化性能及反硝化微生物研究[D].博士,浙江大学2010.
    吴丽娜,彭永臻,王淑莹.游离氨对城市生活垃圾渗滤液短程硝化的影响[J].环境科学,2008,29(12):3428-3432.
    吴飞.垃圾渗滤液回灌处理的中试研究[D].硕士,武汉理工大学2003.
    孙洪伟,彭永臻,时晓宁,et al.两级UASB-SBR处理高氨氮垃圾渗滤液的快速启动及稳定运行[J].环境科学,2009,06:1681-1688.
    张少辉,郑平.厌氧氨氧化反应器启动方法的研究[J].中国环境科学,2004,04:113-117.
    张胜利,郑爽英,刘丹,et al.超声波辅助萃取GC/MS法测定垃圾渗滤液中的有机污染物[J].环境污染与防治,2008,30(7):32-34,38.
    张鸿郭,陈迪云,阎佳,et al.低氨氮垃圾渗滤液中有机污染物厌氧氨氧化处理[J].环境化学,2009,04:553-557.
    杨洋,左剑恶,沈平,et al.温度、pH值和有机物对厌氧氨氧化污泥活性的影响[J].环境科 学,2006,04:691-695.
    欧阳峰.生物反应器填埋场渗滤液控制技术研究[D].博士,西南交通大学2002.
    许玫英,方卫,张丽娟,et al生物脱氮新技术在垃圾渗滤液工程化处理中的应用[J].环境科学,2007,03:607-612.
    郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004.
    郑曼英,李丽桃.垃圾渗液中有机污染物初探[J].重庆环境科学,1996,(04):41-43.
    陈重军.甲鱼养殖废水厌氧氨氧化处理及其微生物机理研究[D].博士,浙江大学2012.
    鲁颐琼,左剑恶,杨洋.动力学调控实现单一反应器内亚硝化与硝化过程的相互转化[J].环境科学学报,2008,28(7):1265-1271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700