纳米HA_P/PLA复合材料的制备及形状记忆性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乳酸(Polylactide, PLA)是一种具有良好生物相容性、形状记忆效应的生物可降解高分子材料,现在主要运用于手术缝合和骨折修复。但纯聚乳酸制件的机械强度难与皮质骨相匹配;聚乳酸的降解中间产物呈酸性,容易引起人体无菌性炎症等问题,限制了其进一步应用。而纳米HAP(nano-Hydroxyapatite, n-HA)与PLA的复合,有望对此有所改善。
     本文采用水热法制备了纳米羟基磷灰石粒子(nHAP),研究了不同的表面活性剂、水热处理温度和时间、pH值对合成HA纳米粒子形貌、成分的影响。结果表明水热法制备HA纳米粒子工艺简单、成本低、适合大批量生产。
     采用KH550对纳米HAP进行了表面处理和改性,运用熔融共混法制备了纳米HAP/PLA复合材料。通过透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射分析(XRD)、能谱(EDAX)、傅立叶变换红外光谱(FTIR)等现代测试手段,对复合材料中nHAp的分散进行分析,并研究了纳米HAP的比例与表面处理对复合材料的力学性能和形状记忆性能的影响。
     试验结果表明,在纳米HAP含量低于30%时,经硅烷偶联剂KH550处理的纳米HAP能够均匀地分散在PLA基体中;随着纳米HAP含量的增加,复合材料的形状记忆性能有所下降;偶联剂的使用可以缓和这一趋势;当纳米HAP为30%时,复合材料的综合性能最佳,其缺口冲击强度为11.32kJ/m2,拉伸强度为75.4MPa,形状固定率为97.5%,形状回复率为94.5%。复合材料的降解实验表明,纳米HAP的存在可以缓解PLA降解所产生的酸性,在复合材料表面有球状磷灰石的聚积物。
Polylactide(PLA) is a biocompatible and biodegradable polymer with shape-memory property, which has been widely used in fields of postoperative seam, and possibly applied in riveting of bone fractures. However, the further application of pure PLA has been restricted due to its poor toughness and the inflammation caused by its acidity during degradation. The composite of polylactide (PLA) and nano- Hydroxyapatite (n-HA) particle is supposed to resolve these problems.
     The synthesis of HA nanoparticles (nHAP) were studied by means of hydrothermal process in present work. The effects of different surfactants, pH value of the mixed solution, reaction temperature and time on the morphology and Ca/P molar ratio of nHAP were investigated also . The results show that the hydrothermal process is suitable for quantity production of HA nanoparticles due to its simplicity and low costs.
     The nHAP reinforced Polylactide(PLA) composites were prepared through melt commixing method with the nano-particle pretreated using KH550 coupling agent. Subsequently, The dispersion of nHAP in the PLA matrix, influences of nHAp content and surface modification on the mechanical and shape-memory properties of composites were characterized by means of TEM, SEM, XRD, EDAX and FTIR methods.
     The experimental results indicate that nHAP coupled by KH550 were uniformly dispersed in PLA at the contents lower than 30%. The optimal overall mechanical and shape-memory properties were obtained with the 30% nHAP/PLA composite, i.e. tensile strength 75.4MPa, impact toughness 11.32kJ/m2, shape fastness 97.5%, as well as shape recovery 94.5%. Furthermore, with the increasing nHAp content, the shape recovery and shape fastness decrease in comparison with pure PLA. Surface-coupling pretreatment of nHAP is able to postpone this trend. Finally, the in- vitro degradation results of the compsite show that nHAP can counteract the acidity caursed by the disassembly of PLA, and nHAP congregates at the form of spherical apatite.
引文
[1]陶宝祺.智能材料结构[M].北京:国防工业出版社, 1997, 22~123.
    [2]朱光明.形状记忆聚合物及其应用[M].北京:化学工业出版社, 2002, 26~30.
    [3]谭树松.形状记忆合金研究的最新进展及其应用[J].功能材料, 1991, 22(3): 185~190.
    [4] S Ota. The heat shrinkage properties of polyethylene[J]. Radiat. PHys. Chem, 1981, 18(3)81~84.
    [5] M Irie. Developments and applications of shape memory polymers[M]. First Edition. Tokyo: Co Ltd, 1989, 1023~1027.
    [6]张兴栋.生物材料.生物活性人工骨及其临床应用论文汇编.四川大学. 1992. 20(7): 27~32.
    [7]易民,李振江.一种新型医用绷带,中国, 2002, CN1357388A.
    [8]马祥利,杨庆,氯醋共聚树脂作为低温热塑性医用外固定材料的研究[J],塑料科技, 2004, 23(5): 25~29.
    [9]张爱清.新型医用固定材料的研究[J],湖北化工, 2002, 12(2): 8~9.
    [10]传秀云,秦永,崔荣国.炭石墨材料的生物机械性能和骨固定材料[J],炭素技术, 2004, 8(3): 27~32.
    [11]石田正雄.形状记忆树脂[J].配管技术, 1989, 31(8): 112
    [12] H Tobushi, T Hashimoto, S Hayashi, E Yamada. Thermo mechanical constitutive modeling in shape memory polymer of polyurethane series[J], Journal of intelligent material systems and structures, 1997, 8(3): 711~718.
    [13] T H obushi, K Okumura, S Hayashi, N Ito. Thermomechanical constitutive model of shape memory polymer[J], Mechanics of materials, 2001, 33(23): 545~554.
    [14] J Morshedian, H Khonakdar, S Rasouli. Modeling of Shape Memory Induction and Recovery in Heat-Shrinkable Polymers[J], Macromolecular Theory Simulation, 2005, 14:428~434.
    [15] J Diani, Y Liu, K Gall. Finite Strain 3D Thermoviscoelastic Constitutive Model for Shape Memory Polymers[J], Polymer Engineering & Science, 2006, 46(4): 486~492.
    [16] J H Yanga, B C Chuna, Y C Chungb, J H Choc. Comparison of thermal/mechanical properties and shape memory effect of polyurethane block-copolymers with planar or bent shape of hard segment[J], Polymer, 2003, 44(5): 3251~3258.
    [17]王诗任,徐修成,过梅丽,贺鹏. EVA的形状记忆功能探讨[J],北京航空航天大学学报,2000, 26(11):1~4.
    [18] R Lin, L W Chen. Study on shape-memory behavior of polyether-based polyurethane, Influence of the hard-segment content, Journal of applied polymer science, 1998,69(23): 1563~1574.
    [19] K J Bixler, G C Calhhoun, K M Scholsky. Ploymerzation ofε-caprolactone in the present of carboxylic acids[J]. Polym. Prepr, 1990, 31(2): 494~497.
    [20] E B Ludivig, B G Belenokaya, A L Izyunikov. High temperature ring-opening oligomerization ofε-caprolactone by 2-hydroxxyethylesters[J]. Ser. A, 1986, 28: 1774~1776.
    [21] H R Kricheldorf, T Mang, J M Jonte. Stereospecificity of the polymerization of D, L-leu-nca and D, L-val-nca[J]. Macromolecules, 1984, 17(2): 2173~2176.
    [22] H R Kricheldorf, I J Kreiser. Transesterification of poly(L-Lactide) with polyglycolide, poly(beta-propio-lactone), and poly(epsilon-caprolactone)[J]. Makromol Sci. Chem, 1986, 187: 1611~1615.
    [23] P Teyssie, I Barakat, C Dubois. Macromolecular engineering of polylactones and polylactides. XV. Poly(D-L)-lactide macromonomers as precursors of biocompatible graft copolymers and bioerodible gels[J]. J. Polym. Sci, Polym. Chem, 1994, 32(21): 2099~2104.
    [24] F E Kohn, J G Vanommen. Characterization of poly(D, L-lactic acid) by gel permeation chromatograpHy[J]. J Eur Polym, 1983, 19: 1081~1084.
    [25] R Miyoshi. Biodegradable poly (Lactic Acid) withhigh molecular weight[J]. Int Polym Proc, 1996, 11(4): 320~323.
    [26] D Carlson, P Dubois. Polylactic acid technology[J]. Polym Eng and Sci, 1998, 38(2): 311~313.
    [27]汪朝阳,赵耀明,麦杭珍.熔融一固相缩聚法中固相聚合对聚乳酸合成的影响[J].材料科学与工程. 2002, 20(3): 403~406.
    [28] S I Moon, C W Lee, I Taniguchi, M Miyamoto, Y Kimura. Melt/solid Polycondensation of L-Lactic Acid: An Alternative Route to Poly(L-Lactic Acid) with High Molecular Weight[J]. Polymer. 2001, 42: 5059~5062.
    [29] Y Shikinami. Shape Memory Biodebradable and Absorbable Material[P]. US 6, 281, 262B1. 2001.
    [30] Y Shikinami. Shape Memory Biodebradable and Absorbable Material[P]. US 6, 281, 262B2. 2001.
    [31] E M Frick, A S Zalusky, M A Hillmyer. Characterization of Polylactide-b-polyisoprene-b-polylactide Thermoplastic Elastomers[J]. Biomacromolecules. 2003, 4: 216~223.
    [32] N Ogata, H Sasayama, K Nakane, T Ogihara. Preparation of Poly(L-lactide) Film Having High Elastic Recovery[J]. Journal of Applied PolymerScience. 2003, 89: 474~480.
    [33] C Min, W Cui, J Bei, S G Wand. Biodegradable Shape Memory Polymer-Polylactide-co-Poly(glycodide-co-caprolactone) Multiblock Copolymer[J]. Polymers for Advanced Technology. 2005, 16(8): 608~615.
    [34] J Barsa, T Rarris, J Lagow. Synthesis for Crytalline Hxdroxyapatite [P]. US: 4046858. 1977.
    [35]左奕,李玉宝,魏杰,严永刚.纳米羟基磷灰石的常压合成与表征[J].高技术通讯. 2003, (4): 58~61.
    [36] A Maurer, G Raab, G Raad. Process for the Preparation of Hydroxyapatite [P]. US: 5405436. 1995.
    [37] Y M Asuda, K M Atubara, S Sakka. Synthesis of hydroxyapatite from metal alkoxide through sol-gel technique[J]. Jpn. Ceram. Soc. 1990, 11(3): 1255-1266.
    [38] G Kordas, C C Trapalis. Fourier transform and multi dimensional EPR spectroscopy for the characterization of hydroxyapatite gels [J]. Journal of Sol-gel Science and Technology. 1997, 9(12): 305~309.
    [39] M Kinoshita, K Itatani, S Nakamura. Preparation and morphology of carbonate-containing hydroxyapatite by homogeneous and hydrothermal methods[J]. Gypsum and Lime. 1990, 227: 19~27.
    [40] M Yoshimura, H Suda, K Okamoto. Hydrothermal Synthesis of Needle-like Apatite Crystal [J]. The Chemical Society of Japan. 1991, 5(10): 1402~1407.
    [41] K Ioku, S Yamauchi, H Fujimori. Hydrothermal preparation of fibrous apatite and apatite sheet [J]. Solid State lonics. 2002, 151(7): 147~150.
    [42]冯庆玲,崔福斋,张伟,纳米轻基磷灰石胶原骨修复材料中国医学科学院报[J]. 2002, 24(24): 124~128.
    [43] S Min, A Jin, H Zhong, W Yao. Three-dimensional porous Poly-DL-Lactide/Hydroxyapatite/basic fibroblast growth factor composites for repair of longbone defect [J]. Chinese Journal of Clinical Rehabilitation. 2006, 10(13): 79~82.
    [44] C C Verheyen, J R Wijn, C A Blitterswijk. Hydroxylapatite/poly (L-lactide) composites: ananimalstudy on push-out strengths and interface histology [J]. Journal of Biomedical Materials Research. 1993, 27 (4): 433~444.
    [45]黄立业,徐可为.纳米针状轻基磷灰石涂层的制备及其性能的研究[J].硅酸盐学报, 1999, 27(3): 351~356.
    [46] A Hideki, O Masataka. Effects of Adriacin-adsorbing HAP-Sol on Ca-9 cell Growth[J]. Reports of the Institute for Medical and DentalEngineering. 1993, (27): 39~44.
    [47] Z Wang, T Wan, Y Yan. Preparation and characterization of hydroxyapatite/ collagen/poly-L-lactic acid three-dimensional porous reservoir type drug carrier for controlled release[J]. Chinese Journal of Clinical Rehabilitation. 2006, 10(41): 198~201.
    [48] A Hideki, O Masataka, K Seisuke. Effects of HAP-Sol on cell growth[J]. Report of the Institute for Medical and Dental Engineering. 1992, 24(26): 15~21.
    [49]张士成,李世普.磷灰石超微粉对癌细胞作用的初步研究[J].武汉工业大学学报. 1996, 18(11): 5~8.
    [50]魏凤香,罗佳滨,孟祥才.羟基磷灰石纳米粒子对宫颈癌细胞凋亡作用的研究[J].黑龙江医学与药剂, 2005, 28(3): 25~29.
    [51] A Majola, S Vainionapaa, K Vihtonen. Absorption. biocompatibility and fixation properties of polylactic acid in bone tissue: an experimental study in rats[J]. Clinical Orthopaedics and Related Research. 1991, 268:260~269.
    [52] A U Daniels, M K O Chang, K P Andriano. Mechanical Properties of Biodegradable Polymers and composites proposed for internal fixation of bone [J]. Appl Biomater. 1990, 1: 57~58.
    [53]宋存先.可降解与吸收材料.生物医用材料.天津大学出版社. 2000. 50.
    [54] F B Bagambisa. U Joos. W Schilii. Mechanisims and structure of the bond between bone and hydroxyapatite ceramics [J]. Journal of Biomedical Materials Research. 1993. 27(8): 1047~1055.
    [55]任卫.曹献英等.纳米羟基磷灰石合成及表面改性的途径和方法[J].硅酸盐通报. 2002. 21(1): 38~43.
    [56] R I Martin, P W Brown. Mechanical properties of hydroxyapatite formed at physiological temperature [J]. Journal of Materials Science Materials in Medicine. 1995, 6(3): 138~143.
    [57] C M Agrawal, K A Athanasiou. Technique to control pH in vicinity of biodegrading PLA-PGA implants[J]. Biomed Mater Res 1997. 38(2): 104~105.
    [58] J Barsa, T Rarris, J Lagow. Synthesis for Crytalline Hxdroxyapatite [P]. US: 4046858. 1977.
    [59] L Bernard, M Freche, J L Lacout. Preparation of hydroxyaptite by neutralization at low temperature influence of purity of the raw materal[J]. Powder Technology, 1999, 103(1): 19~25.
    [60]魏杰,李玉宝,陈维琼等.纳米级类骨磷灰石的研制[J].功能材料, 2003, 34(4): 471~472.
    [61]童义平,李粉玲,刘桂华等.沉淀法制备羟基磷灰石粉料[J].中国陶瓷, 2004, 40(4): 28~30.
    [62] A Jillavenkatesa, R A Condrate SR. Sol-gel processing of hydroxyapatite[J]. Journal of Materals Science, 1998, 33: 4111~4119.
    [63]张大海,阚红华,翁文剑,醇化合物法合成钙磷酸盐[J].硅酸盐通报, 1998, 17(6): 9~12.
    [64] K Cheng, G Han. Sol-gel derived fluoridated hydroxyapatite films[J]. Materials Rearch Bulletin, 2003, 38: 89~97.
    [65] M Kinoshita, J W Choi. Synthyesis of ultra-finehydroxy apatite powder by hydrothermal reaction[J]. Yoop Hakhoechi, 1992, 29(12): 997~1003.
    [66] Y Fujishiro, H Babaki, K Kawamura. Preparation of needle-like hydroxyapatite by homogeneous precipitation under hydrothermal conditions[J]. Japan Chem Tech, 1993, 57(5): 349~353.
    [67] Y B Li, K De, J Win. MorpHology and composition of nanograde calcium phosphate needle-like crystal formed by simple hydrothermal treatment[J]. Mater. Sci, 1994, 5(6): 236~331.
    [68] K S Min, J W Choi. Synthyesis of ultra-hydroxyapatite powder by hydrothermal reaction[J]. Yoop Hakhoechi, 1992, 29(12): 997~1003.
    [69]李浩莹,陈运法,臧丽坤.水热法制备针状羟基磷灰石[J],材料导报, 2000, 14(2): 305~308.
    [70]王学江,汪建新,李玉宝等.常压下纳米级羟基磷灰石针状晶体的合成[J],高科技通讯, 2000(11): 92~94.
    [71] A Verges M, F Gonzalez C, M Gallego M. Hydrothermal Synthesis of Calcium Deficient Hydroxyapatites with Controlled Size and Homogeneous Morphology[J]. Europen Ceramic Society, 1998, 18(13):1245~1250.
    [72]冯拉俊,刘毅辉,雷阿利.纳米微粒团聚的控制[J].微纳电子技术, 2003(7/8): 536~541.
    [73]王平华,严满清,唐龙祥.纳米粒子表面修饰与改性SiO2纳米粒子表面接枝聚合[J].高分子材料科学与工程, 2003, 19(5): 183~186.
    [74]李爱元,徐国财,邢宏龙.纳米微粒表面改性技术及应用[J].化工新型材料, 2002, 30(10): 25~29.
    [75]吴崇浩,王世敏.纳米微粒表面修饰的研究进展[J].化工新型材料, 2002, 30(7): 1~5.
    [76]李光亮.有机硅高分子化学[M].科学出版社.1999.4.
    [77] M Wang, R Joseph, W Bonfield. Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology[J]. Biomater, 1998, 19(5): 2357~2366.
    [78] Y Zhang, K E Tanner. Impact behavior of Hydroxyapatite reinforced polyethylene composites[J]. Journal of Materials Science, 2003, 14: 63~68.
    [79]李世普,戴红莲,方园.无机钙质材料与聚乳酸的复合[J].生物骨科材料与临床研究, 2005, 4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700