采用Klebsiella pneumoniae生物合成2,3-丁二醇过程分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2,3-丁二醇作为重要的化工原料具有广泛用途。生物法较化学法具有安全、环保、反应条件温和、原料可再生等优点,已成为当前研究开发的热点。目前许多研究聚焦在采用木质纤维素水解液进行发酵,然而这些研究中2,3-丁二醇浓度、生产强度都无法与葡萄糖发酵结果相比。本文综合考察了菌种、底物消耗及培养条件等因素对克雷伯氏肺炎杆菌(Klebsiella.pneumoniae)采用模拟木质纤维素水解液合成2,3-丁二醇的影响特点及作用规律。
     为了提高菌株2,3-丁二醇产量,以紫外诱变为手段,采用产酸量和产物耐受性为目标筛选突变菌株,最终获得一株编号为Klebsiella pneunoniae UV-86(K.pneumoniae UV-86)遗传稳定的突变株。此菌株产物得率0.438g/g,比原菌提高1.22倍,2,3-丁二醇脱氢酶比酶活提高38.6%。表明该筛选方法有效。
     对底物类型及影响2,3-丁二醇合成的温度、pH进行研究,结果表明菌株底物代谢顺序为葡萄糖先于木糖。两者代谢的较优温度均为30℃,pH均为6.0。添加乙酸能够促进细胞生长,而乙酸添加量为1g/L时产物量达到最高。
     以葡萄糖和木糖混合物为底物,研究不同供氧对发酵过程影响,结果表明生物量随供氧增加而增加。供氧对菌株消耗葡萄糖影响较小。而代谢木糖能力随供氧增加而增强。微氧条件下菌株生产能力最强,2,3-丁二醇产量和产率均在1.5vvm达到最高为30.1g/L和0.485g/(Lh)。木糖代谢阶段乙酸生成量显著增加。并据此提出了可能的供氧调控策略。
2,3-butanediol was an important chemical because it has a large number of industrial applications. Comparing with the chemical process, the biological process was safe, environmental friendly, mild reaction condition and could use renewable resources. So it has been paid more and more attentions. Nowadays, many research efforts have focused on using low price substrates lignocellulosic hydrolysate to produce the 2,3-butanediol. However, both the 2,3-butanediol concentration and the productivity were lower than those of glucose. This paper investigated the screening of producing strains, the sugars fermented and operating conditions applied on 2,3-butanediol fermentation by Klebsiella pneumoniae with synthetic medium of rice straw hydrolysate.
     In order to improve strain to produce 2,3-butanediol with high yield, UV mutagenesis with acid-producing and product tolerance capability was established to select positive mutant bacteria. A strain named Klebsiella pneumoniae UV-86 (K.pneumoniae UV-86) with the highest 2,3-butanediol production capability and heritage stability was chosen as the target strain for the following investigations. The yield of 2,3-butanediol by K.pneumoniae UV-86 was 0.438g/g, which was 1.22 times to that of the original strain. The specific activity of 2, 3-butanediol dehydrogenase was increased by 38.6%. The results demonstrated the effective and efficient high throughput screening technique.
     The sugars fementated, temperature and pH were investigated for the bio-production of 2, 3-butanediol. It was found that the order of the preferential sugar utilization was glucose>xylose. The optimal temperature and pH for bacterial fermentation with glucose and xylose were 30℃and 6.0, respectively. The cell growth was improved by adding acetate and the maximum 2,3-butanediol concentration was obtained by acetate adding concentration 1g/L.
     In order to investigate the influence of dissolved oxygen concentration on 2, 3-butanediol bioproduction process, the cofermentation of glucose and xylose was investigated. It was found that high oxygen supply favoured cell mass formation. The influence of oxygen on glucose consumption was not significant. But it had a significant impact on xylose consumption and the average specific xylose consumption rate was improved with the oxygen supply. The micro-aerobic condition favoured formation of 2, 3-butanediol. The maximum 2,3-butanediol concentration 30.1g/L and productivity 0.485g/ (L h) were both obtained at 1.5vvm. The accumulation of acetate was enhanced during the xylose metabolism process. According to these results, the oxygen supply control strategy was proposed.
引文
[1]张刚,杨光.生物法生产2,3-丁二醇研究进展.中国生物工程杂志.2008,28(6):133-140.
    [2]Syu MJ. Biological Production of 2,3-Butanediol. Appl Microbiol Biotechnol.2001, 55(1):10-18.
    [3]Garg SK, Jain A. Fermentative Production of 2,3-Butanediol:A Review [J]. Bioresour. Technol.1995,51(2/3):103-109.
    [4]Caspi R. Acetoin biosynthesis Ⅰ. Acetoin biosynthesis Ⅱ. Butanediol biosynthesis. MetaCyc encyclopedia of metabolic pathways.2008.
    [5]Hespell RB. Fermentation of xylan, corn fiber, or sugars to acetoin and butanediol by Bacillus polymyxa strains. Current Microbiology.1996,32:291-296.
    [6]Mallonee DH, Speckman RA. Development of a mutant strain of Bacillus polymyxa showing enhanced production of 2,3-butanediol. Appl Environ Microbiol.1988, 54:168-171.
    [7]Nakashimada Y, Marwoto B, Kashiwamura T, et al. Enhanced 2,3-butanediol production by addition of acetic acid in Paenibacillus polymyxa. Journal of Bioscience and Bioengineering.2000,90(6):661-664.
    [8]Blomqvist K, Nikkola M, Lehtovaara P, et al. Characterization of the genes of the 2, 3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. Journal of Bacteriology.1993,175(5):1392-1404.
    [9]Mayer D, Schlensog V, Bock A. Identification of the transcriptional activator controlling the butanediol fermentation pathway in Klebsiella terrigena. Journal of Bacteriology. 1995,177(18):5261-5269.
    [10]Speckman RA, Collins EB. Microbial production of 2,3-butylene glycol from cheese whey. Appl Environ Microbiol.1982,43:1216-1218.
    [11]Saha BC, Bothast RJ. Production of 2,3-butanediol by newly isolated Enterobacter cloacae. Appl Microbiol Biotechnol.1999,52:321-326.
    [12]Perego P, Converti A, Del BA, et al.2,3-Butanediol production by Enterobacter aerogenes:selection of the optimal conditions and application to food industry residues. Bioprocess Eng.2000,23:613-620.
    [13]Alam S, Capit F, Weigands WA, et al. Kinetics of 2,3-butanediol fermentation by Bacillus amyloliquefaciens:effect of initial substrate concentration and aeration. J Chem Technol Biotechnol.1990,47:71-84.
    [14]Mickelson M, Werkman CH. Influence of pH on the dissimilation of glucose by Aerobacter indologenes. J Bacteriol.1938,36:67-76.
    [15]Cho SM, Kang BR, Han SH, et al.2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis 06, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant-Microb Interact.2008,21:1067-1075.
    [16]Koyu HN. A unique feature of hydrogen recovery in endogenous starch-to-alcohol fermentation of the marine microalga, Chlamydomonas perigranulata. Applied Biochemistry and Biotechnology.2006,131:808-828
    [17]Laube VM, Groleau D, Martin SM.2,3-Butanediol production from xylose and other hemicellulosic components by Bacillus polymyxa. Biotechnol Lett.1984,6:57-62
    [18]Sarah B, Martinez, Ray AS.2,3-butanediol production from hydrolyzed whey permeate by immobilized cells of Bacillus polymyxa. The Humana Press Inc.1988,88:303-313
    [19]Gao J, Xu H, Li QJ, et al. Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R,R-2,3-butanediol. Bioresource Technology.2010,101:7076-7082.
    [20]Zhang LY, Yang YL, Sun JA, et al. Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30. Bioresource Technology.2010, 101:1961-1967.
    [21]Ji XJ, Huang H, Zhu JG, et al. Engineering Klebsiella oxytoca for Efficient 2, 3-Butanediol Production through Insertional Inactivation of Acetaldehyde Dehydrogenase Gene. Appl Microbiol Biotechnol.2010,85:1751-1758.
    [22]Ji XJ, Huang H, Du J, et al. Development of an Industrial Medium for Economical 2, 3-Butanediol Production through Co-fermentation of Glucose and Xylose by Klebsiella oxytoca [J]. Bioresour. Technol.2009,100(21):5214-5218.
    [23]Jansen NB, Michael CF, George TT. Production of 2,3-butanediol from D-Xylose by Klebsiella oxytoca ATCC 8724. Biotechnology and Bioengineering.1984,26:362-369.
    [24]Ma CQ, Wang A, Qin JY, et al. Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl Microbiol Biotechnol.2009,82:49-57.
    [25]Wang A, Wang Y, Jiang TY, et al. Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production. Appl Microbiol Biotechnol.2010,87:965-970.
    [26]Yu EKC, Saddler JN. Fed-batch Approach to Production of 2,3-Butanediol by Klebsiella pneumoniae grown on High Substrate Concentrations [J]. Appl. Environ. Microbiol., 1983,46(3):630-635.
    [27]Sun LH, Wang XD, Dai JY, et al. Microbial Production of 2,3-Butanediol from Jerusalem artichoke Tubers by Klebsiella pneumoniae [J]. Appl Microbiol Biotechnol. 2009,82(5):847-852.
    [28]Petrov K, Petrova P. High Production of 2,3-Butanediol from Glycerol by Klebsiella pneumoniae G31 [J]. Appl Microbiol Biotechnol.2009,84(4):659-665.
    [29]Bassit N, Boquien CY. Effect of initial oxygen concentration on diacetyl and acetoin production by Lactococcus lactis subsp. Lactis biovar diacetylactis. Applied and Environmental Microbiology.1993,59(6),1893-1897.
    [30]Zeng AP, Biebl H, Deckwer WD. Production of 2,3-Butanediol in a Membrane Bioreactor with Cell Recycle [J]. Appl Microbiol Biotechnol.1991,34(4):463-468.
    [31]Sablayrolles JM, Goma G. Butanediol production by Aerobacter aerogenes NRRL B199: effects of initial substrate concentration and aeration agitation. Biotechnol Bioeng.1984, 26:148-155.
    [32]De MC, Jansen NB, Tsao GT. Production of Optically Active 2,3-Butanediol by Bacillus polymyxa [J]. Biotechnol Bioeng.1988,31(4):366-377.
    [33]Celinska E, Grajek W. Biotechnological production of 2,3-butanediol-current state and prospects. Biotechnology Advances.2009,27:715-725.
    [34]Booth IR. Regulationof cytoplasmic pH in bacteria. Microbiol Rev.1985,49:356-378.
    [35]Bryn K, Ulstrup JC, Stormer FC. Effect of acetate upon the formation of acetoin in Klebsiella and Enterobacter and its possible practical application in a rapid Voges-Proskauer test. Appl Microbiol.1973,25:511-512.
    [36]Yu EK, Saddler JN. Enhanced production of 2,3-butanediol by Klebsiella pneumoniae grown on high sugar concentrations in the presence of acetic acid. Appl Environ Microbiol.1982a,44:777-784.
    [37]Afschar, AS. The production of 2,3-butanediol by fermentation of high test molasses. Appl Microbiol Biotechnol.1991,34:582-585.
    [38]Magee R.J, Kosaric.N. The microbial production of 2,3-butanediol [J]. Adver Appl Microbiol.1987,32:89-161
    [39]Topiwala, H, Sinclair, CG. Biotech Bioeng.1971,13,795.
    [40]Olson, BH, Johnson MJ, Bact J.1948,55,209.
    [41]Marwoto B, Nakashimada Y, Nishio N. Enhancement of (R, R)-2,3-butanediol production from xylose by Paenibacillus polymyxa at elevated temperatures. Biotechnology Letters.2002; 24:109-114.
    [42]Van HR, Aertsen A, Michiels CW. Quorum-sensing-dependent switch to butanediol fermentation prevents lethal medium acidification in Aeromonas hydrophila AH-1N. Res Microbiol.2007,158:379-385.
    [43]Zeng AP, Biebl H. Effect of pH and acetic acid on growth and 2,3-butanediol production of Enterobacter aerogenes in continuous culture. Applied Microbiology Biotechnology. 1990,33:485-489.
    [44]Maddox IS. Microbial production of 2,3-butanediol. Biotechnology.1996,269-291.
    [45]Stormer FC. The pH 6 acetolactate-forming enzyme from Aerobacter aerogenes. Kinetics studies. J Biol Chem.1968a,243:3735-3739.
    [46]Converti A, Perego P, Del BM. Effect of specific oxygen uptake rate on Enterobacter aerogenes energetics:carbon and reduction degree balances in batch cultivations. Biotechnol Bioeng.2003,82:370-377.
    [47]Kosaric N, Magee R, Blaszczyk R. Redox potential measurement for monitoring glucose and xylose conversion by K. pneumoniae. Chem Biochem Eng Q.1992,6:145-152.
    [48]Voloch M, Jansen NB, Ladish MR, et al.2,3-Butanediol. Comprehensive biotechnology. applications and regulations of biotechnology in industry. Agriculture and Medicine. 1985,933-944.
    [49]Zeng AP, Biebl H, Deckwer WD.2,3-butanediol production by Enterobacter aerogenes in continuous culture:role of oxygen. Appl Microbiol Biotechnol.1990a,33:264-268.
    [50]Barret EL, Collins EB, Hall BJ, et al. Production of 2,3-butylene glycol from whey by Klebsiella pneumoniae and Enterobacter aerogenes.J Dairy Sci.1983,66:2507-2514.
    [51]Ji XJ, Huang H, Du J, et al. Enhanced 2,3-butanediol production by Klebsiella oxytoca using a two-stage agitation speed control strategy. Bioresource Technology.2009, 100:3410-3414.
    [52]Petrov.K, Petrova P. High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl Microbiol Biotechnol.2009.
    [53]Grover BP, Garg SK Verma J. Production of 2,3-butanediol from wood hydrolysate by Klebsiella pneumoniae. World Journal of Microbiology and Biotechnology.6:328-332.
    [54]Patrick L. The present status of the 2,3-butylene glycol fermentation. Advances in Applied Microbiology.1963,5,135-155.
    [55]Yu EK, Levitin N, Saddler JN. Production of 2,3-butanediol by Klebsiella pneumoniae grown on acid hydrolysed wood hemicellulose. Biotechnol Lett.1982,4:741-746.
    [56]Xiao Z, Xu P. Acetoin metabolism in bacteria. Crit Rev Microbiol.2007,33:127-140.
    [57]Laube VM, Groleau D, Martin SM.2,3-butanediol production from xylose and other hemicellulosic components by B.polymyxa. Biotechnology.1984,6(4):257-262.
    [58]赵世敏.微生物发酵法生产2,3-丁二醇.2008,27-31.
    [59]诸葛健,李华钟.微生物学[M].北京,科学出版社.
    [60]Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry.1959,31:426-428.
    [61]Bradford MM. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry.1976, 72(1-2):248-254.
    [62]Ji XJ, Huang H, Ouyang PK. Microbial 2,3-butanediol production:A state-of-the-art review. Biotechnology Advances.2011,29:351-364.
    [63]赵世敏,严群.产2,3-丁二醇的产气肠杆菌株的诱变和筛选[J].研究报告.2008,34(3):25-28.
    [64]王宝光,刘铭.产1,3-丙二醇菌株的诱变和筛选[J].中国生物工程杂质.2006,26(6):59-65.
    [65]Qureshi N. Production of 2,3-butanediol by Klebsiella oxytoca. Applied Microbiology Biotechnology.1989,30:440-443.
    [66]冯燕青,夏黎明Klebsiella oxytoca发酵木糖生产2,3-丁二醇的研究[J].林产化学与工业.2009,29(1):103-106.
    [67]Niu K, Zhang X Tan WS, et al. Characteristics of fermentative hydrogen production with Klebsiella pneumoniae ECU-15 isolated from anaerobic sewage sludge. Hydrogen energy.2010,35:71-80.
    [68]Stephanopoulos G. Challenges in engineering microbes for biofuels production. Science. 2007,315,801-804.
    [69]Strobel HJ. Evidence for catabolite inhibition in regulation of pentose utilization and transport in the ruminal bacterium Selenomonas ruminantium. Applied and environmental microbiology.1993,59:40-46.
    [70]Martin SA, Russell JB. Phosphenolpyruvatedependent phosphorylation of hexoses by ruminal bacteria:evidence for the phosphotransferase transport system. Appl Environ Microbiol.1986,52:1348-1352.
    [71]Martin SA, Russell JB. Mechanisms of sugar transport in the rumen bacterium Selenomonas ruminantium. J Gen Microbiol.1988,134:819-827.
    [72]Esener AA, Bol G, Kossen NWF. Advances in Biotechnology.1981,1:339.
    [73]Wu KJ, Saratale GD, Lo YC, et al. Simultaneous production of 2,3-butanediol, ethanol and hydrogen with a Klebsiella sp. Strain isolated from sewage sludge. Bioresource Technology.2008,99:7966-7970.
    [74]Jansen NB, Tsao GT. Bioconversion of pentoses to 2,3-butanediol by Klebsiella pneumoniae. Adv Biochem Eng.1983,27:85-99.
    [75]Lee KS, Lin PJ, Chang JS. Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers. Int J Hydrogen Energy.2006, 31:465-472.
    [76]张根林,邓辉.葡萄糖和木糖双底物生物合成2,3-丁二醇的条件优化.过程工程学报.2009,6:1174-1177.
    [77]Schiitz M, Schrne N, Klemm K. Butandiolbildung aus Laktose durch Enterobacter cloacae in kontinuierlicher Kultur. Milchwissenschaft.1985,40:513-517.
    [78]Biebl H, Zeng AP, Menzel K, et al. Fermentation of glycerol to 1,3-propanediol and 2, 3-butanediol by Klebsiella pneumoniae. Appl Microbiol Biotechnol.1998,50:24-29.
    [79]Cheng KK, Qing Liu. Improved 2,3-butanediol production from corncob acid hydrolysate by fed-batch fermentation using Klebsiella oxytoca. Process Biochemistry. 2010(45):613-616.
    [80]Fond O, Jansen NB, Tsao GT. A Model of Acetic Acid and 2,3-Butanediol Inhibition of the Growth and Metabolism of Klebsiella oxytoca [J]. Biotechnol. Lett.,1985,7(10): 727-732.
    [81]马成伟,孙亚琴.葡萄糖和木糖双底物生物转化生产2,3-丁二醇和氢气的代谢计量分析.生物加工过程.2006,4(3):44-50.
    [82]戴建英,孙亚琴.生物基化学品2,3-丁二醇的研究进展.过程工程学报.2010,10(1):200-205.
    [83]Chen Z, Liu HJ, Zhang JA, et al. Cell physiology and metabolic flux response of Klebsiella pneumoniae to aerobic conditions. Process Biochemistry.2009,44:862-868.
    [84]锅炉用水和冷却水分析方法亚硫酸盐的测定.中华人民共和国国家标准GB/T14426-93.
    [85]张延平,刘铭,曹竹安.代谢副产物对Klebsiella pneumoniae生长及合成1,3-丙二醇的影响.过程工程学报,6(5):804-808.
    [86]Song S, Park C. Organization and regulation of the D-xylose operons in Escherichia coli K-12:XylR acts as a transcriptional activator. Journal of bacteriology 1997,179: 7025-7032.
    [87]纪晓俊,黄和.2,3-丁二醇发酵过程中葡萄糖碳流分配数学模型,化学与生物工程.2007,32-36.
    [88]Groleau D, Laube VM, Martin SM. The effect of various atmospheric conditions on the 2, 3-butanediol fermentation from glucose by Bacillus polymyxa. Biotechnol. Lett.1985,7, 53-58.
    [89]Marwoto B, Nakashimada Y, Kakizono T, et al. Metabolic analysis of acetate accumulation during xylose consumption by Paenibacillus polymyxa. Appl Microbiol Biotechnol.2004,64:112-119.
    [90]Cao NG, Xia YK, Gong CS, et al. Production of 2,3-butanediol from pretreated corn cob by Klebsiella oxytoca in the presence of fungal cellulose.1997, Appl Biochem Biotechnol,63-65:129-139.
    [91]Lee HK, Maddox IS. Microbial production of 2,3-butanediol from whey permeate. Biotechnol Lett.1984,6:815-818.
    [92]Fages J, Mulard D, Rouquet JJ, et al.2,3-Butanediol production from jerusalem artichoke, Helianthus tuberosus, by Bacillus polymyxa ATCC 12321:Optimization of kLa profile. Appl Microbiol Biotechnol.1986,25:197-202.
    [93]Ji XJ, Nie ZK, Huang H, et al. Elimination of carbon catabolite repression in Klebsiella oxytoca for effcient 2,3-butanediol production from glucose-xylose mixtures. Appl Microbiol Biotechnol.2011,89:1119-1125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700