亚临界水中纤维素、木质素和褐煤的选择性氧化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,以煤炭、石油、天然气为代表的化石能源仍然是燃料及化工产品的主要来源。化石能源有限的储量以及不可再生性,给日益增长的能源和化学品需求带来了严峻的挑战。生物质由于储量丰富、分布广泛、具有可再生性,被认为是替代化石能源的最佳选择。由于亚临界水独特的性质,在作为生物质转化反应溶剂的同时,还能起到酸碱催化的作用。基于此,本文主要对亚临界水中纤维素氧化制取甲酸和乙酸进行了研究,并且对亚临界水中催化氧化木质素磺酸钠制取香兰素和褐煤氧化制取苯多羧酸进行了初步的研究。总结如下:
     (1)研究了纤维素在亚临界水中氧化制备甲酸和乙酸的反应规律。结果表明:以活性炭(AC)为催化剂时,在最佳反应条件下,纤维素的转化率为92.65%,甲酸和乙酸的收率分别为17.2%和10.45%;实验表明Co(Ac)2、V2O5、Mn7Ce3Oz、AC等是活性较好的催化剂,在同样条件下,加入上述催化剂比无催化剂时乙酸的收率分别提高了69.0%、55.5%、57.2%、12.6%;在温度210-250℃范围内,纤维素的转化率以及甲酸、乙酸的收率都随温度的升高呈先增大后减小的趋势;在考察的反应时间(0.25-3 h)内,随时间的延长,纤维素的转化率在1h时达到100%,甲酸的收率先增大后减小,乙酸的收率达到某一值后维持不变;在氧气初始压力为1-6 MPa范围内,纤维素的转化率在低于4 MPa时随着压力的增大逐渐增大,在4 MPa及高于4 MPa时,转化率为100%,甲酸的收率在此压力范围内一直呈增大趋势,乙酸的收率先增大后减少,在4 MPa时达到最大;水溶剂中纤维素的浓度为13 g/L-53 g/L范围内时,纤维素浓度小于33g/L时纤维素的转化率为100%,高于33 g/L时逐渐降低,甲酸和乙酸的收率呈先增大后减少的趋势,在33 g/L时均达到最大值;反应产物除了甲酸和乙酸外,还含有少量的5-羟甲基糠醛、糠醛、葡萄糖、果糖,以及单糖的二聚到四聚产物;此外,由于产物的进一步降解和过氧化作用,还生成了大量的CO2。
     (2)探索性研究了木质素磺酸钠水热催化氧化制备香兰素。结果表明,催化剂的加入能很大程度地提高香兰素的收率;碱及碱浓度的大小对香兰素的收率起着至关重要的作用,不加碱时,无香兰素生成,在一定范围内香兰素的收率与碱的浓度成正比关系。
     (3)探索性研究了褐煤水热氧化制备苯多羧酸。结果表明,褐煤的碱氧氧化用于生产苯多羧酸在理论技术上是可行的,但需要消耗大量的碱,增加了成本。褐煤的碱氧氧化方法能得到较高的苯多羧酸收率,但同时需消耗大量的碱。对苯二甲酸生产中高活性的催化剂MnBr2以及FeCl3、CuBr2、CoBr2催化剂应用于褐煤的氧化时,并未有明显的催化作用。
At present, fossil fuels, represented by coal, oil and natural gas, are the main resources of fuel and chemical products. However, these fossil fuels are unrenewable and their reserves are limited, and human society demand on fuel and chemical products is sharply increasing with the development of economy and technology as well as the surge of population, which may result in a serious influence on the human development. Biomass is considered as the most potential alternatives for fossil energy due to its abundance, widespread distribution and renewability, and one of the most promising approaches for use of biomass is to convert biomass to high value chemicals. Subcritical water owns some particular properties, such as acid and base properties, which can act as catalyst as well as solvent. Therefore, some chemical reactions depended on acid or alkali catalyst can be performed in subcritical water system, on the one hand reducing the cost of production and on the other hand avoiding the environmental pollution. In this work, we mainly investigated the preparation of formic acid and acetic acid from cellulose in subcritical water. Besides, the catalytic oxidation of sodium ligninsulfonate and lignite were studied preliminarily. The results are summarized as follows.
     (1) The preparation of formic acid and acetic acid by oxidation of cellulose in subcritical water was studied. The results show that the conversion of cellulose reaches 92.65% and the yield of formic acid and acetic acid attain 17.2% and 10.45% respectively under the optimum conditions with active carbon (AC) catalyst. Co(Ac)2, V2O5 Mn7Ce3Oz, and AC have been demonstrated to be efficient catalysts, which can adjust the distribution of products and improve the yield and selectivity of formic acid and acetic acid, and the yields of acetic acid can be improved by 69.0%,55.5%,57.2% and 12.6% for Co(Ac)2, V2O5, Mn7Ce3Oz, and AC, respectively. As the temperature increases from 210℃to 250℃, the conversion of cellulose and the yields of formic acid and acetic acid increase first and then decrease. The conversion of cellulose is increased to 100% at 60 min, the yield of formic acid increases first and then decreases with time, and the yield of acetic acid increases within 60 min and then keeps constant. Under the initial oxygen pressures ranging from 1 MPa to 6 MPa, the conversion of cellulose increases gradually with increasing pressure, and reaches 100% at 4 MPa and higher pressures. The yield of formic acid increases with the increase of pressure among the whole pressures, the yield of acetic acid increases first and then decreases, and the maximal yield is reached at 4 MPa. When the concentration of cellulose ranges from 13 g/L to 33 g/L, the conversion of cellulose is 100%, then it decreases gradually when the concentration of cellulose is from 33 g/L to 53 g/L, and the yields of formic acid and acetic acid increase first and then decrease, both of them reaching a maximum at 33 g/L. There are also small amount of by-products, such as 5-HMF, furfural, glucose, fructose and some other oligosaccharides, besides formic acid and acetic acid in the liquid phase. Moreover, there is a large amount of CO2 in the gas phase because of degradation and peroxidation of liquid products.
     (2) The catalytic oxidation of sodium ligninsulfonate to prepare vanillin has been primarily explored. The results reveal that the addition of catalysts can largely improve the yield of vanillin. Moreover, the presence of alkali plays an essential role in the yield of vanillin, and the yield of vanillin shows a linear relationship with the concentration of alkali to some extent; while no vanillin is detected when alkali is absent.
     (3) The catalytic oxidation of lignite to prepare aromatic carboxylic acids has been also investigated. The results show that the oxidation of lignite by alkali and oxygen is feasible theoretically, but its application is prohibited due to the vast consumption of alkali. The catalyst MnBr2, FeCl3, CuBr2 and CoBr2 show little catalytic property in this process.
引文
[1]Cheremisinoff N P, Cheremisinoff P N. Biomass:applications, technology, and production [M]. New York:Marcel Dekker,1980
    [2]Clinton U P W J, Developing and Promoting Biobased Products and Bioenergy [R]. Washington D.C.,1999
    [3]Balat M, Balat M, Kirtay E, et al. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1:Pyrolysis systems[J]. Energy Conversion and Management,2009, 50(12):3147-3157
    [4]Klemm D, Heublein B, Fink H-P, et al. Cellulose:Fascinating biopolymer and sustainable raw material[J]. Angewandte Chemie International Edition,2005,44(22):3358-3393
    [5]黄进,夏涛,郑化.生物质化工与生物质材料[M].北京:化学工业出版社,2009
    [6]埃利奥特(美).煤利用化学(上)[M].孙弄,高建辉,译.北京:化学工业出版社,1991.421
    [7]陈洪章,王岚.生物基产品制备关键过程及其生态产业链集成的研究进展-生物基产品过程工程的提出[M].2008,676-681
    [8]Kamm B, Kamm M. Principles of biorefineries[J]. Applied Microbiology and Biotechnology, 2004,64(2):137-145
    [9]陈洪章.生物基产品过程工程[M].北京:化学工业出版社,2010,2-4
    [10]Dodds D R, Gross R A. Chemicals from Biomass[J]. Science,2007,318(5854):1250-1251
    [11]Lipinsky E S. Chemicals from biomass:Petrochemical substitution options[J]. Science,1981, 212(4502):1465-1471
    [12]Demirbas A. Biomass resource facilities and biomass conversion processing for fuels and chemicals[J]. Energy Conversion and Management,2001,42(11):1357-1378
    [13]孟浩,陈颖健,杨朝峰.能源技术领域分析报告[M].北京:科学技术文献出版社,2008
    [14]Camacho F, Gonzalez-Tello P, Jurado E, et al. Microcrystalline-cellulose hydrolysis with concentrated sulphuric acid[J]. Journal of Chemical Technology & Biotechnology,1996, 67(4):350-356
    [15]Lee Y, Iyer P, Torget R. Dilute-acid hydrolysis of lignocellulosic biomass[J]. Advances in Biochemical Engineering/Biotechnology,1999,65:93-115
    [16]Kim J S, Lee Y Y, Torget R W. Cellulose hydrolysis under extremely low sulfuric acid and high-temperature conditions[J]. Applied Biochemistry and Biotechnolog,2001,91(1):331-340
    [17]Zhang L, Xu C, Champagne P. Overview of recent advances in thermo-chemical conversion of biomass[J]. Energy Conversion and Management,2010,51(5):969-982
    [18]何方,王华,金会心.生物质液化制取液体燃料和化学品[J].能源工程,1999,(5):14-17
    [19]Akiya N, Savage P E. Roles of water for chemical reactions in high-temperature Water[J]. Chemical Reviews,2002,102(8):2725-2750
    [20]韩布兴等.超临界流体科学与技术[M].北京:中国石化出版社,2005
    [21]Puczy Ska I, Skrzypski J, Imbierowicz M, et al. Determination of heat effects during the oxidation of biomass in subcritical water:Proceedings of ECOpole[C],2009
    [22]吴克宏,张居正.超临界水氧化技术及其在废水处理中的应用[J].云南环境科学,2003,22(4):35-38
    [23]吕秀阳,迫田章义.纤维素在近临界水中的分解动力学和产物分布[J].化工学报,2001,52(006):556-559
    [24]Sasaki M, Kabyemela B, Malaluan R, et al. Cellulose hydrolysis in subcritical and supercritical water[J]. The Journal of Supercritical Fluids,1998,13(1-3):261-268
    [25]Townsend S H, Abraham M A, Huppert G L, et al. Solvent effects during reactions in supercritical water[J]. Industrial & Engineering Chemistry Research,1988,27(1):143-149
    [26]Klein M T, Torry L A, Wu B C, et al. Hydrolysis in supercritical water:Solvent effects as a probe of the reaction mechanism[J]. The Journal of Supercritical Fluids,1990,3(4):222-227
    [27]Antal Jr M J, Mok W S L, Richards G N. Four-carbon model compounds for the reactions of sugars in water at high temperature[J]. Carbohydrate Research,1990,199(1):111-115
    [28]Malaluan R M. A study on cellulose decomposition in subcritical and supercritical water[D]. Sendai:Tohoku University,1995
    [29]Sasaki M, Fang Z, Fukushima Y, et al. Dissolution and hydrolysis of cellulose in subcritical and supercritical water[J]. Industrial & Engineering Chemistry Research,2000,39(8): 2883-2890
    [30]Selhan K, Thallada B, Akinori M, et al. Low-temperature catalytic hydrothermal treatment of wood biomass:analysis of liquid products[J]. Chemical Engineering Journal,2005,108(1-2): 127-137
    [31]Xiuyi Y, Fangming J, Kazuyuki T, et al. Hydrothermal conversion of carbohydrate biomass to lactic acid[J]. AIChE Journal,56(10):2727-2733
    [32]Zhao Y, Lu W-J, Wang H-T. Supercritical hydrolysis of cellulose for oligosaccharide production in combined technology[J]. Chemical Engineering Journal,2009,150(2-3): 411-417
    [33]Sasaki M, Adschiri T, Arai K. Kinetics of cellulose conversion at 25 MPa in sub-and supercritical water[J]. AIChE Journal,2004,50(1):192-202
    [34]Kabyemela B M, Adschiri T, Malaluan R M, et al. Kinetics of glucose epimerization and decomposition in subcritical and supercritical water[J]. Industrial & Engineering Chemistry Research,1997,36(5):1552-1558
    [35]Kamio E, Sato H, Takahashi S, et al. Liquefaction kinetics of cellulose treated by hot compressed water under variable temperature conditions[J]. Journal of Materials Science, 2008,43(7):2179-2188
    [36]Antal Jr M J, Mok W S, Richards G N. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose an sucrose[J]. Carbohydrate Research, 1990,199(1):91-109
    [37]Ogihara Y, Smith R L, Inomata H, et al. Direct observation of cellulose dissolution in subcritical and supercritical water over a wide range of water densities (550-1000 kg/m 3)[J]. Cellulose,2005,12(6):595-606
    [38]Schutt B D, Serrano B, Cerro R L, et al. Production of chemicals from cellulose and biomass-derived compounds through catalytic sub-critical water oxidation in a monolith reactor[J]. Biomass and Bioenergy,2002,22(5):365-375
    [39]Levec J, Pintar A. Catalytic wet-air oxidation processes:A review[J]. Catalysis Today,2007, 124(3-4):172-184
    [40]Luck F. Wet air oxidation:past, present and future[J]. Catalysis Today,1999,53(1):81-91
    [41]Mantzavinos D, Hellenbrand R, Livingston A G, et al. Catalytic wet oxidation of p-coumaric acid:partial oxidation intermediates, reaction pathways and catalyst leaching[J]. Applied Catalysis B:Environmental,1996,7(3-4):379-396
    [42]Kolaczkowski S T, Plucinski P, Beltran F J, et al. Wet air oxidation:a review of process technologies and aspects in reactor design[J]. Chemical Engineering Journal,1999,73(2): 143-160
    [43]Mills P L, Chaudhari R V. Reaction engineering of emerging oxidation processes[J]. Catalysis Today,1999,48(1-4):17-29
    [44]Bjerre A B, Soerensen E. Decomposition of polyolefins and higher paraffins by wet oxidation[J]. Industrial & Engineering Chemistry Research,1994,33(3):736-739
    [45]Robert R, Barbati S, Ricq N, et al. Intermediates in wet oxidation of cellulose:Identification of hydroxyl radical and characterization of hydrogen peroxide[J]. Water Research,2002,36(19): 4821-4829
    [46]Mishra V S, Mahajani V V, Joshi J B. Wet air oxidation[J]. Industrial & Engineering Chemistry Research,1995,34(1):2-48
    [47]Kim Y-L, Kim J-D, Lim J S, et al. Reaction Pathway and Kinetics for Uncatalyzed Partial Oxidation of p-Xylene in Sub-and Supercritical Water[J]. Industrial & Engineering Chemistry Research,2002,41(23):5576-5583
    [48]Dunn J B, Savage P E. Economic and environmental assessment of high-temperature water as a medium for terephthalic acid synthesis[J]. Green Chemistry,2003,5(5):649-655
    [49]Fraga-Dubreuil J, Garcia-Serna J, Garcia-Verdugo E, et al. The catalytic oxidation of benzoic acid to phenol in high temperature water[J]. The Journal of Supercritical Fluids,2006,39(2): 220-227
    [50]Dunn J B, Savage P E. High-Temperature Liquid Water:A Viable Medium for Terephthalic Acid Synthesis[J]. Environmental Science & Technology,2005,39(14):5427-5435
    [51]Dunn J B, Savage P E. Terephthalic Acid Synthesis in High-Temperature Liquid Water[J]. Industrial & Engineering Chemistry Research,2002,41(18):4460-4465
    [52]Jin F, Zhou Z, Moriya T, et al. Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass[J]. Environmental Science & Technology,2005, 39(6):1893-1902
    [53]Jin F, Zhou Z, Kishita A, et al. Hydrothermal conversion of biomass into acetic acid[J]. Journal of Materials Science,2006,41(5):1495-1500
    [54]Jin F, Zhou Z, Kishita A, et al. A new hydrothermal process for producing acetic acid from biomass Waste[J]. Chemical Engineering Research and Design,2007,85(2):201-206
    [55]Jin F, Yun J, Li G, et al. Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures[J]. Green Chemistry,2008,10(6):612-615
    [56]朱岚.Mn-Ce复合氧化物催化剂的制备及其催化湿式氧化正丁酸的研究[D].长春:吉林大学,2007
    [57]闫海生,刘博,喻为福,等.催化湿式氧化中多相非贵金属催化剂的研究进展[J].化工环保,2006,26(3):213-216
    [58]Fortuny A, Mir C, Font J, et al. Three-phase reactors for environmental remediation:catalytic wet oxidation of phenol using active carbon[J]. Catalysis Today,1999,48(1-4):323-328
    [59]尹大宇,金杏妹,杨超,等.改性活性炭用于三氟二氯乙烷的催化氧化[J].工业催化,2010,18(3):50-52
    [60]Lei Z, Yuan J, Zhu J. Solubility of CO2 in propanone, 1-ethyl-3-methylimidazolium tetrafluoroborate, and their mixtures[J]. Journal of Chemical & Engineering Data,2010, 55(10):4190-4194
    [61]Yu J, Savage P E. Decomposition of formic acid under hydrothermal conditions[J]. Industrial & Engineering Chemistry Research,1998,37(1):2-10
    [62]B K, R G P, K K.生物炼制-工业过程与产品(下卷)[M].北京:化学工业出版社,2007.137
    [63]Araujo J D P, Grande C A, Rodrigues A E. Vanillin production from lignin oxidation in a batch reactor[J]. Chemical Engineering Research and Design,2010,88(8):1024-1032
    [64]王瑞芳,周强,杨乐敏.木素绿色化学法合成香兰素[J].纸和造纸,2002,(4):47-49
    [65]刘学苏.木质素催化氧化制备香兰素的宏观动力学研究[D].淮南:安徽理工大学,2006
    [66]周强,陈中豪.碱木素多相催化氧化反应催化剂的制备方法[P].中国专利,00117349
    [67]周强,陈中豪.以碱木素利用绿色化学法合成香兰素的方法[P].中国专利,00117415
    [68]平兆艳.木质素催化氧化制备香兰素的氧化液的萃取精制[D].淮南:安徽理工大学,2006
    [69]高小跃,杨子荣.我国褐煤的综合利用途径及前景展望[J].煤炭技术,2008,27(9):122-124
    [70]舒歌平.煤炭液化技术[M].北京:煤炭工业出版社,2004.64
    [71]韩威,佟威,杨海波,等.煤的微生物溶(降)解及其产物研究[J].大连理工大学学报,1 994,34(6):653-661
    [72]Li C-Z. Advances in the Science of Victorian Brown Coal[M].余江龙,常丽萍,译.北京:化学工业出版社,2009
    [73]Miura K, Mae K, Okutsu H, et al. New oxidative degradation method for producing fatty acids in high yields and high selectivity from low-rank coals[J]. Energy & Fuels,1996,10(6): 1196-1201
    [74]Mae K, Shindo H, Miura K. A new two-step oxidative degradation method for producing valuable chemicals from low rank coals under mild conditions[J]. Energy & Fuels,2001, 15(3):611-617
    [75]关珺.烟煤氧化及产物煤酸异构化制对苯二甲酸研究[D].大连:大连理工大学,2002
    [76]潘琦琨.霍林河褐煤碱氧氧化及煤酸浆态床异构化制对苯二甲酸研究[D].大连:大连理工大学,2007
    [77]李佩勇.无烟煤两段氧化及产物异构化制对苯二甲酸[D].大连:大连理工大学,2009
    [78]Hamley P A, Ilkenhans T, Webster J M, et al. Selective partial oxidation in supercritical water: the continuous generation of terephthalic acid from para-xylene in high yield[J]. Green Chemistry,2002,4(3):235-238

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700