ErbB_2及其结合蛋白Erbin在TRAIL介导的乳腺癌细胞凋亡中的作用及分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TRAIL(tumor necrosis factor-related apoptosis-inducing ligand)是肿瘤坏死因子(TNF)超家族的一个新成员,能够特异地诱导多种肿瘤细胞凋亡而对大多数正常细胞没有毒性,因此备受人们的关注。然而研究发现,还有一些肿瘤细胞对TRAIL不敏感。本文利用对TRAIL敏感性不同的乳腺癌MCF-7和MDA-MB-231细胞株来研究肿瘤细胞对TRAIL敏感性不同的分子机制。
     本研究发现,在TRAIL不敏感的MCF-7细胞中,rsTRAIL不能引起ErbB_2和Erbin表达变化,PKCδ抑制剂rottlerin单独或与rsTRAIL联合处理都可以导致ErbB_2和Erbin表达下调,同时抑制了ErbB_2下游的AKT信号通路的活化。而在敏感的MDA-MB-231细胞中,rsTRAIL单独处理就可以引起ErbB_2表达下调,对Erbin表达没有影响。进一步研究发现,caspase-8抑制剂Z-IETD-FMK能够抑制MCF-7细胞中rottlerin与rsTRAIL引起的ErbB_2表达下调以及MDA-MB-231细胞中rsTRAIL引起的ErbB_2的表达下调,而对Erbin的表达变化没有影响,说明caspase-8能够下调ErbB_2的表达。MDA-MB-231细胞中,rsTRAIL可以抑制NF-κB的活性;在MCF-7细胞中,rsTRAIL却可以激活NF-κB,提示在敏感的MDA-MB-231细胞中,由于rsTRAIL抑制了NF-κB和ErbB_2这两条和增殖密切相关的信号通路,使细胞在增殖和凋亡的动态平衡中走向凋亡;而在不敏感的MCF-7细胞中,由于PKCδ的高活性和rsTRAIL对NF-κB的激活,使细胞对TRAIL不敏感,在rottlerin和rsTRAIL的协同作用下,抑制了增殖信号通路,增加了对TRAIL的敏感性。
     使用RNA干扰技术抑制Erbin表达,ErbB_2的表达也降低,并导致ErbB_2的泛素化增加;同时,MCF-7细胞对TRAIL的敏感性增加,细胞内NF-κB的活性也受到抑制。表明Erbin作为ErbB_2的结合蛋白,可抑制ErbB_2的泛素化而维持其稳定性,并导致ErbB_2在乳腺癌细胞中高表达,这可能是MCF-7细胞对TRAIL不敏感的原因之一。
     本研究首次报道了Erbin和ErbB_2的相互作用机制,为我们深入探讨TRAIL诱导肿瘤细胞凋亡的作用机制及其耐药性的问题提供了新的思路。
Tumor necrosis factor(TNF)-related apoptosis-inducing ligand(TRAIL) is a member of the TNF superfamily with the ability to selectively induce apoptosis in a wide variety of transformed cell lines of diverse origin,but not in the most of normal cells. However,some cancer cell lines are resistant to TRAIL cytotoxicity.In this study, two breast cancer cell lines(MDA-MB-231 and MCF-7) were used to examine the molecular mechanism of different sensitivity to rsTRAIL.Erbin is a new member of LAP family,with 16 LRRs and one PDZ domain,firstly identified as a binding partner for ErbB_2.Via its domains,Erbin could bind many proteins in cytoplasm. More and more studies indicate that Erbin plays an important role not only in receptor localization or cell signaling but also in the establishment and the maintenance of cell to cell and cell to basement membrane adhesion.Therefore,further studies on the role of Erbin in cell signal transduction,especially its interaction with ErbB_2,is significant for comprehensive understanding of carcinogenesis and apoptosis-based cancer therapy.
     We showed in the present study that the expression of ErbB_2 and Erbin were not changed in MCF-7 cells treated with TRAIL,which is not sensitive to TRAIL cytotoxicity,while PKCδinhibitor,rottlerin,sensitized MCF-7 cells to TRAIL cyototoxicity and down-regulated the expression of both ErbB_2 and Erbin in the presence of TRAIL or not.However,the expression of ErbB_2 was down-regulated, but the expression of Erbin was not changed in MDA-MB-231 cells in the presence of TRAIL only,since the cells are sensitive to TRAIL cytotoxicity.Further study demonstrated that the down-regulation of ErbB_2,but not Erbin,was arrested by the inhibitor of caspase-8,Z-IETD-FMK,in both MCF-7 and MDA-MB-231 cells treated with TRAIL and/or rottlerin,suggesting that caspase-8 down-regulated the expression level of ErbB_2 induced by TRAIL.Downstream signal study showed that NF-κB activity was inhibited by rsTRAIL in MDA-MB-231 cells and enhanced in MCF-7 cells,suggesting that NF-κB activity might be a determine factor for cell apoptosis and proliferation.These data indicated that TRAIL inhibited the proliferation signal such as NF-κB and ErbB_2,and activated the apoptosis signals,so the balance trended to apoptosis in MDA-MB-231 cells,while high activity of PKCδand NF-κB in MCF-7 cells induced by rsTRAIL enabled the cells insensitive to TRAIL cytotoxicity, and therefore,the combination of rottlerin and rsTRAIL inhibited the proliferation signal pathway and induced cell apoptosis.
     Furthermore,we demonstrated the suppression of Erbin expression by using RNAi technology facilitates the sensitivity of the cells to TRAIL,the expression of ErbB_2 was down-regulated,and ubiquitination of ErbB_2 was increased in the MCF-7 cells. Moreover,AKT signal pathway and NF-κB activation,downstream of ErbB_2,was also inhibited in the MCF-7 cells,in which the expression of Erbin was declined by siRNA technology,suggestiong that Erbin could sustain the stability of ErbB_2 by suppression ErbB_2 ubiquitination and it might be one of the reasons that MCF-7 cells are resistant to TRAIL cytotoxicity.
     In summary,we have reported for the first time that Erbin could regulate ErbB_2 expression by suppressing ErbB_2 ubiquitination.These results are significant implication for understanding the resistant mechanism to TRAIL in MCF-7 cells and the mechanism of apoptosis-induced by TRAIL.
引文
1.Wiley SR,Schooley K,Smolak D,et al.Identification and characterization of a new member of the TNF family that induces apoptosis.Immunity,1995;3:673-682.
    2.Pan,G.,O'Rourke,K.,Chinnaiyan,A.M.,Gentz,R.,Ebner,R.,Ni,J.,and Dixit,V.M.The receptor for the cytotoxic ligand TRAIL.Science,1997;276,111-113.
    3.Walczak,H.,Degli-Esposti,M.A.,Johnson,R.S.,Smolak,P.J.,Waugh,J.Y.,Boiani,N.,Timour M.S.,Gerhart,M.J.,Schooley,K.A.,Smith,C.A.,Goodwin,R.G.,Rauch,C.T.TRAIL-R2:a novel apoptosis-mediating receptor for TRAIL.EMBO J..1997;16,5386-5397.
    4.Chaudhary,P.M.,Eby,M.,Jasmin,A.,Bookwalter,A.,Murray,J.,and Hood,L.Death receptor 5,a new member of the TNFR family,and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway.Immunity,1997;7:821-830.
    5.Yarden Y.Biology of HER2 and its importance in breast cancer.Oncology.2001;61(Suppl 2):1-13.
    6.Klapper,L.N.,Kirschbaum,M.H.,Sela,M.& Yarden,Y.Biochmical and clinical implications of the ErbB/HER signaling network of growth factor receptors.Adv Cancer Res 2000;77:25-79.
    7.Ouyang X.,Gulliford,T.,Zhang,H.,Smith,G.,Huang,G.& Epstein,R.J.Association of ErbB2 Ser1113 phosphorylation with epidermal growth factor receptor co-expression and poor prognosis in human breast cancer.Mol.Cell.Biochem.2001;218:47-54.
    8.Lemoine,N.R.,Staddon,S.,Dickson,C.,Barnes,D.M.& Gullick,W.J.Absence of activating transmembrane mutations in the c-erbB-2 proto-oncogene in human breast cancer.Oncogene,1990;5:237-239.
    9.Lenferink,A.E.,Pinkas-Kramarski,R.,van de Poll,M.L.,van Vugt,M.J.,Klapper,L.N.,Tzahar,E.,Waterman,H.,Sela,M.,van Zoelen,E.J.& Yarden,Y.Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers.EMBO J.1998;17:3385-3397.
    10.Hershko A and Ciechanover A.The ubiquitin system.Annu.Rev.Biochem.1998;67:425-479
    11.Weissman AM.Themes and variations on ubiquitylation.Nat.Rev.Mol.Cell Biol.2001;2:169-178
    12.Joazeiro CA,Wing SS,Huang H,Leverson JD,Hunter T and Liu YC.The tyrosine kinase negative regulator c-Cbl as a RING-type,E2-dependent ubiquitin-protein ligase.Science.1999;286:309-312.
    13.Levkowitz G,Waterman H,Ettenberg SA,Katz M,Tsygankov AY,Alroy I,Lavi S,Iwai K,Reiss Y,Ciechanover A,Lipkowitz S and Yarden Y.Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1.Mol.Cell.1999;4:1029-1040.
    14.Jiang J,Ballinger CA,Wu Y,Dai Q,Cyr DM,Hohfeld J and Patterson C.CHIP is a U-box-dependent E3 ubiquitin ligase:identification of Hsc70 as a target for ubiquitylation.J.Biol.Chem.2001;276,42938-42944.
    15.Connell P,Ballinger CA,Jiang J,Wu Y,Thompson LJ,Hohfeld J and Patterson C.The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins.Nat.Cell.Biol.2001;3:93-96.
    16.Xu W,Marcu M,Yuan X,Mimnaugh E,Patterson C and NeckersL.Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu.Proc.Natl.Acad.Sci.2002;99:12847-12852.
    17.Zhou P,FernandesN,Dodge IL,Reddi AL,Rao N,Safran H,DiPetrillo TA,Wazer DE,Band V and Band H.ErbB2 degradation mediated by the co-chaperone protein CHIP.J.Biol.Chem.2003;278:13829-13837.
    18..Borg JP,Marchetto S,Le Bivic A,Ollendorff V,Jaulin-Bastard F,Saito H,Fournier E,Adelaide J,Margolis B,Bimbaum D.ERBIN:a basolateral PDZ protein that interacts with the mammalian ERBB2/HER2 receptor. Nat Cell Biol.2000; 2(7): 407-14.
    
    19. Bryant PJ, Huwe A. LAP proteins: what's up with epithelia? Nat Cell Biol. 2000;2(8): E141-3.
    
    20. Ohno H., Hirabayashi S. Iizuka T., Ohnishi H., Fujita T., Hata Y. Localization of p0071-interacting proteins, plakophilin-related armadillo-repeat protein-interacting protein (PAPIN) and ERBIN, in epithelial cells. Oncogene.21,7042-7049(2002)
    
    21. Izawa I, Nishizawa M, Tomono Y, Ohtakara K, Takahashi T, Inagaki M. ERBIN associates with p0071, an armadillo protein, at cell-cell junctions of epithelial cells. Genes Cells. 2002; 7(5): 475-85.
    
    22. Fanny Jaulin-Bastard, Jean-Pierre Arsanto, Andre Le Bivic, Christel Navarro,Frederic Vely, Hiroko Saito, Sylvie Marchetto, Mechthild Hatzfeld.Maris-Josee Santoni, Daniel Birnbaum and Jean-Paul Borg. Interaction between Erbin and a Catenin-related protein in epithelial cells. 2002; J.Biol .Chem .277,2869-2875.
    
    23. Laura RP, Witt AS, Held HA, Gerstner R, Deshayes K, Koehler MF, Kosik KS,Sidhu SS, Lasky LA. The Erbin PDZ domain binds with high affinity and specificity to the carboxyl termini of delta-catenin and ARVCF. J. Biol. Chem.2002; 277 (15), 12906-14.
    
    24. Favre B, Fontao L, Koster J, Shafaatian R, Jaunin F, Saurat JH, Sonnenberg A,Borradori L. The hemidesmosomal protein bullous pemphigoid antigen 1 and the integrin beta 4 subunit bind to ERBIN. Molecular cloning of multiple alternative splice variants of ERBIN and analysis of their tissue expression. J. Biol. Chem.2001;276(35):32427-36.
    
    25. Huang YZ, Zang M, Xiong WC, Luo Z, Mei L. Erbin suppresses the MAP kinase pathway. J.Biol.Chem. 2003; 278(2):1108-14.
    
    26. Dai P, Xiong WC, Mei L. Erbin inhibits RAF activation by disrupting the Sur-8-Ras-Raf complex. J.Biol.Chem. 2006; 281(2):927-933.
    
    27. McDonald C, Chen FF, Ollendorff V, Ogura Y, Marchetto S, Lecine P, Borg JP,Nunez G. A role for Erbin in the regulation of Nod2-dependent NF-kB signaling. J.Biol.Chem.2005;280(48):40301-40309.
    28.Martelli AM,Sang N,Borgatti P,et al.Multiple biological responses activated by nuclear protein kinase C.J Cell Biochem.1999;74:499-521.
    29.Endo K,Oki E,Biedermann V,et al.Proteolytic Cleavage and Activation of Protein Kinase Cμ by Caspase-3 in the Apoptotic Response of Cells to 1-β-D-Arabinofuranosylcytosine and Other Genotoxic Agents.J Biol Chem.2000;275:18476-18481.
    30.Datta R,Kojima H,Yoshida K,et al.Caspase-3-mediated Cleavage of Protein Kinase Cθ in Induction ofApoptosis.Biol.Chem.1997;272:20317-20320.
    31.Zhang JD,Liu N,Zhang JC,Liu SL,Liu YX,and Zheng DX.PKCδ protects human breast tumor MCF7 cells against tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis.J Cellular Biochem.2005;96:522-532
    32.Ghosh S,Karin M.Missing pieces in the NF-kappaB puzzle.Cell.2002;109Suppl:S81-96.
    33.Baeuerle PA.IkappaB-NF-kappaB structures:at the interface of inflammation control.Cell.1998;95:729-31.
    34.Stancovski I,Baltimore D.NF-kappaB activation:the I kappaB kinase revealed?Cell.1997;91:299-302.
    35.Thanos D,Maniatis T.NF-kappa B:a lesson in family values.Cell.1995;80:529-32.
    36.D.L.斯佩克特,R.D.戈德曼,L.A.莱因万德着,黄培堂等译,细胞实验指南(上册),2001,科学出版社,北京,中国.
    37.J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯,分子克隆(第二版),金冬雁,黎孟枫译,1996,科学出版社,北京,中国.
    38.Alexey L.Glazyrin,Sreenivasa Chinni,Samir Alhasan,Volkan N.Adsay,Vainutis K.Vaitkevicius and Fazlul H.Sarkar.Molecular mechanism(s) of actinomycin-D induced sensitization of pancreatic cancer cells to CD95 mediated apoptosis.International J Oncology,2002,20:201-205.
    39.Meng XW,Fraser MJ,Feller JM,et al.Caspase-3-dependent and caspase-3-independent pathways leading to chromatin DNA fragmentation in HL-60 cells.Apoptosis.2000;5:61-67.
    40.Shigeno M,Nakao K,Ichikawa T,et al.Interferon-alpha sensitizes human hepatoma cells to TRAIL-induced apoptosis through DR5 upregulation and NF-kappa B inactivation.Oncogene.2003;22:1653-62.
    41.Lim JW,Kim H,Kim KH.Expression of Ku70 and Ku80 mediated by NF-r,B and cyclooxygenase-2 is related to proliferation of human gastric cancer cells.J Cell Biochem.2002;277(48):46093-46100.
    42.Sprick,M.R.,Weigand,M.A.,Rieser,E.,Rauch,C.T.,Juo,P.,Blenis,J.,Krammer,P.H.,Walczak,H.FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2.(2000) Immunity 12,599-609.
    43.Bodmer,J.L.,Holler,N.,Reynard,S.,Vinciguerra,P.,Schneider,P.,Juo,P.,Blenis,J.,Tschopp,J.TRAIL receptor-2 signals apoptosis through FADD and caspase-8.(2000) Nat.Cell.Biol.2,241-3
    44.Seol,D.W.,Li,J.,Seol,M.H.,Park,S.Y.,Talanian,R.V.,Billiar,T.R.Signaling events triggered by tumor necrosis factor-related apoptosis-inducing ligand(TRAIL):caspase-8 is required for TRAIL-induced apoptosis.(2001)Cancer Res.61,1138-43
    45.Benoit V,Chariot A,Delacroix L,et al.Caspase-8-dependent HER-2 cleavage in response to Tumor Necrosis Factor α stimulation is counteracted by Nuclear Factor κB through c-FLIP-L expression.Cancer Res.2004,64:2684-2691
    46.Stehlik C,de Martin R,Kumabashiri I,Schmid JA,Binder BR,Lipp J.Nuclear factor NF-κB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor κB -induced apoptosis.J Exp Med.1998;188:211-6.
    47.Kreuz S,Siegmund D,Scheurich P,Wajant H.NF-κB inducers upregulate cFLIP,a cycloheximide-sensitive inhibitor of death receptor signaling.Mol Cell Biol.2001;21:3964-73.
    48.Nicholas H,Michelle AH,Stuart NF,Gerald MC,and Marion M.Protein Kinase C modulates Tumor Necrosis Factor-related Apoptosis-inducing ligand-induced apoptosis by targeting the apical events of death receptor signaling.J.Biol.Chem.2003;278(45):44338-44347.
    49.Binhua P.Zhou,Mickey C.-T.Hu,Stephanie A.Miller,Zhenming Yu,Weiya Xia,Shiaw-Yih Lin,and Mien-Chie Hung.HER-2/neu Blocks Tumor Necrosis Factor-induced Apoptosis via the Akt/NF-kB Pathway.J.Biol.Chem.2000;275(11):8027-8031.
    50.Xiao-Feng Le,Francois-Xavier Claret,Amy Lammayot,Ling Tian,Deepa Deshpande,Ruth LaPushin,Ana M.Taft,and Robert C.Bast,Jr.The Role of Cyclin-dependent Kinase Inhibitor p27Kipl in Anti-HER2 Antibody-induced G1Cell Cycle Arrest and Tumor Growth Inhibition.J.Biol.Chem.2003;278(26):23441-23450.
    51.Le,X.F.,Claret,F.X.,Lammayot,A.,Tian,L.,Deshpande,D.,LaPushin,R.,Tari,A.M.and Bast Jr.,R.C.The role of cyclin-dependent kinase inhibitor p27Kipl in anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition.J.Biol.Chem.2003;278,23441-23450.
    52.Lenka Dubska,Ladislav Andera,Michael Alien Shear.HER2 signaling downregulation by trastuzumab and suppression of the PI3K/Akt pathway:An unexpected effect on TRAIL-induced apoptosis.FEBS Letters.2005;579:4149-4158
    53.Mauricio C,Seth AE,Amy SC,et al.Down-regulation of the erbB-2 receptor by Trastuzumab(Herceptin) enhances Tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast and ovarian cancer cell lines that overexpress erbB-2.Cancer Res.2001;61:4892-4900
    54.Dillon C,Creer A,Kerr K,Kumin A,Dickson C.Basolateral targeting of ErbB_2 is dependent on a novel bipartite juxtamembrane sorting signal but independent of the C-terminal ERBIN-binding domain.Mol Cell Biol.2002;22(18):6553-63.
    55.史娟,刘彦信,李晓玲,张锦春,刘士廉,郑德先。重组可溶性TRAIL 杀伤肿瘤的生物学活性研究,中国生物工程学报,2003;23(6):46-49.
    56.Lebeau S,Masouye I,Berti M,Augsburger E,Sara'at JH,Borradori L,Fontao L.Comparative analysis of the expression of ERBIN and Erb-B2 in normal human skin and cutaneous carcinomas.Br J Dermatol.2005;152(6):1248-55.
    57.Oleg Tikhomirov and Graham Carpenter.Caspase-dependent Cleavage of ErbB-2by Geldanamycin and Staurosporin.J.Biol.Chem.2001;276(36):33675-33680.
    58.Edward G.Mimnaugh,Christine Chavany,and Len Neckers.Polyubiquitination and proteasomal degradation of the p185~(c-erbB-2) receptor protein-tyrosine kinase induced by Geldanamycin.J.Biol.Chem.1996;271(37):22796-22801.
    59.Leah N.Klapper,Hadassa Waterman,Michael Sela,and Yosef Yarden.Tumor-inhibitory antibodies to HER-2/ErbB-2 may act by recruiting c-Cbl and enhancing ubiquitination of HER-2.Cancer Res.2000;60,3384-3388.
    60.Wanping Xu,Monica Marcu,Xitong Yuan,Edward Mimnaugh,Cam Patterson,and Len Neckers.Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu.Proc.Natl.Acad.Sci.2002;99(20):12847-12852.
    [1]Downward J,Yarden Y,Mayes E,Scrace G,Totty N,Stockwell P,et al.Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences.Nature 1984;307:521-7.
    [2]Guy PM,Platko JV,Cantley LC,Cerione RA,Carraway KL.Insect cell-expressed pl80ErbB3 possesses an impaired tyrosine kinase activity.Proc Natl Acad Sci USA 1994;91:8132-6.
    [3]Perrimon N,Perkins LA.There must be 50 ways to role the signal:the case of the Drosophila EGF receptor.Cell 1997;89:13-6.
    [4]Hopper NA,Lee J,Steinberg PW.ARK-1 inhibits EGFR signaling in C.elegans.Mol Cell 2000;6:65-75.
    [5]Casci T,Vinos J,Freeman M.Sprouty,an intracellular inhibitor of Ras signaling.Cell 1999;96:655-65.
    [6]Fiorentino L,Pertica C,Fiorini M,Talora C,Crescenzi M,Castellani L,et al.Inhibition of ErbB-2 mitogenic and transforming activity by RALT,a mitogen-induced signal transducer which binds to the ErbB-2 kinase domain.Mol Cell Biol 2000;20:7735-50.
    [7] Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 1995;80:179-85.
    
    [8] Brodsky FM, Chen CY, Knuehl C, Towler MC, Wakeham DE. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol 2001;17:517-68.
    
    [9] Warren RA, Green FA, Enns CA. Saturation of the endocytic pathway for the transferrin receptor does not affect the endocytosis of the epidermal growth factor receptor. J Biol Chem 1997;272:2116-21.
    
    [10] Nesterov A, Carter RE, Sorkina T, Gill GN, Sorkin A. Inhibition of the receptor-binding function of clathrin adaptor protein AP-2 by dominant-negative mutant mu2 subunit and its effects on endocytosis. EMBO J 1999;18:2489-99.
    
    [11] Heilker R, Spiess M, Crottet P. Recognition of sorting signals by clathrin adaptors. Bioessays 1999;21:558-67.
    
    [12] Levkowitz G, Waterman H, Zamir E, Kam Z, Oved S, Langdon WY, et al.c-Cb1/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev 1998;12:3663-74.
    
    [13] Waterman H, Levkowitz G, Alroy I, Yarden Y. The RING finger of c-Cb1 mediates desensitization of the epidermal growth factor receptor. J Biol Chem 1999;274:22151-4.
    
    [14] Lamaze C, Schmid SL. Recruitment of epidermal growth factor receptors into coated pits requires their activated tyrosine kinase. J Cell Biol 1995;129:47-54.
    
    [15] Wilde A, Beattie EC, Lem L, Riethof DA, Liu S-H, Mobley WC, et al. EGF receptor signaling stimulates Src kinase phosphorylation of clathrin, influencing clathrin redistribution and EGF uptake. Cell 1999;96:677-87.
    
    [16] Fazioli F, Bottaro DP, Minichiello L, Auricchio A, Wong WT, Segatto O, et al.Identification and biochemical characterization of novel putative substrates for the epidermal growth factor receptor kinase. J Biol Chem 1992;267:5155—61.
    
    [17] Paoluzi S, Castagnoli L, Lauro I, Salcini AE, Coda L, Fre S, et al. Recognition specificity of individual EH domains of mammals and yeast. EMBO J 1998;17:6541-50.
    [18] Torrisi MR, Lotti LV, Belleudi F, Gradini R, Salcini AE, Confalonieri S, et al.Eps15 is recruited to the plasma membrane upon epidermal growth factor receptor activation and localizes to components of the endocytic pathway during receptor internalization. Mol Biol Cell 1999;10:417-34.
    
    [19] Benmerah A, Lamaze C, Begue B, Schmid SL, Dautry Varsat A, Cerf Bensussan N. AP-2/Eps15 interaction is required for receptor-mediated endocytosis. J Cell Biol 1998;140:1055-62.
    
    [20] Confalonieri S, Salcini AE, Puri C, Tacchetti C, Di Fiore PP. Tyrosine phosphorylation of Eps15 is required for ligand-regulated, but not constitutive,endocytosis. J Cell Biol 2000;150:905-12.
    
    [21] Komada M, Kitamura N. Growth factor-induced tyrosine phosphorylation of Hrs,a novel 115-kilodalton protein with a structurally conserved putative zinc finger domain. Mol Cell Biol 1995;15:6213-21.
    
    [22] Chin LS, Raynor MC, Wei X, Chen HQ, Li L. Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor. J Biol Chem 2001;276:7069-78.
    
    [23] Lloyd TE, Atkinson R, Wu MN, Zhou Y, Pennetta G, Bellen HJ. Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell 2002;108:261-9
    
    [24] Yeung BG, Phan HL, Payne GS. Adaptor complex-independent clathrin function in yeast. Mol Biol Cell 1999;10:3643-59.
    
    [25] Rohrer J, Benedetti H, Zanolari B, Riezman H. Identification of a novel sequence mediating regulated endocytosis of the G protein-coupled alpha-pheromone receptor in yeast. Mol Biol Cell 1993;4:511-21.
    
    [26] Roth AF, Sullivan DM, Davis NG. A large PEST-like sequence directs the ubiquitination, endocytosis, and vacuolar degradation of the yeast a-factor receptor. J Cell Biol 1998;142:949-61.
    
    [27] Tan PK, Howard JP, Payne GS. The sequence NPFXD defines a new class of endocytosis signal in Saccharomyces cerevisiae. J Cell Biol 1996;135:1789-800.
    
    [28] Chen L, Davis NG. Recycling of the yeast a-factor receptor. J Cell Biol 2000;151:731-8.
    [29]Hershko A,Ciechanover A.The ubiquitin system.Ann Rev Biochem 1998;67:425-79.
    [30]Langdon WY,Hartley JW,Klinken SP,Ruscetti SK,Morse HD.v-cbl,an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas.Proc Natl Acad Sci USA 1989;86:1168-72.
    [31]Yoon CH,Lee J,Jongeward GD,Steinberg PW.Similarity of sli-1,a regulator of vulval development in C.elegans,to the mammalian proto-oncogene c-Cbl.Science 1995;269:1102-5.
    [32]Thien CB,Langdon WY.Cbl:many adaptations to regulate protein tyrosine kinases.Nat Rev Mol Cell Biol 2001;2:294-307.
    [33]Thien CB,Walker F,Langdon WY.RING finger mutations that abolish c-Cbl-directed polyubiquitination and downregulation of the EGF receptor are insufficient for cell transformation.Mol Cell 2001;7:355-65.
    [34]Feshchenko EA,Langdon WY,Tsygankov AY.Fyn,Yes,and Syk phosphorylation sites in c-Cbl map to the same tyrosine residues that become phosphorylated in activated T cells.J Biol Chem 1998;273:8323-31.
    [35]Sanjay A,Houghton A,NeffL,DiDomenico E,Bardelay C,Antoine E,et al.Cbl associates with Pyk2 and Src to regulate Src kinase activity,alpha(v)beta(3)integrin-mediated signaling,cell adhesion,and osteoclast motility.J Cell Biol 2001;152:181-95.
    [36]Miyake S,Mullane-Robinson KP,Lill NL,Douillard P,Band H.Cbl-mediated negative regulation of platelet-derived growth factor receptor-dependent cell proliferation.A critical role for Cbl tyrosine kinase-binding domain.J Biol Chem 1999;274:16619-28.
    [37]Waterman H,Katz M,Rubin C,Shtiegrnan K,Lavi S,Elson A,et al.A mutant EGF-receptor defective in ubiquitylation and endocytosis unveils a role for Grb2 in negative signaling.EMBO J 2002;21:303-13.
    [38]de Melker AA,van der Horst G,Calafat J,Jansen H,Borst J.c-Cbl ubiquitinates the EGF receptor at the plasma membrane and remains receptor associated throughout the endocytic route. J Cell Sci 2001; 114:2167-78.
    
    [39] Lai EC, Deblandre GA, Kintner C, Rubin GM. Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of delta. Dev Cell 2001;1:783-94.
    
    [40] Buttner C, Sadtler S, Leyendecker A, Laube B, Griffon N, Betz H, et al.Ubiquitination precedes internalization and proteolytic cleavage of plasma membrane-bound glycine receptors. J Biol Chem 2001 ;276:42978—85.
    
    [41] Nakatsu F, Sakuma M, Matsuo Y, Arase H, Yamasaki S, Nakamura N, et al. A Di-leucine signal in the ubiquitin moiety. Possible involvement in ubiquitination-mediated endocytosis. J Biol Chem 2000;275:26213-9.
    
    [42] Hofmann K, Bucher P. The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends Biochem Sci 1996;21:172-3.
    
    [43] Bartkiewicz M, Houghton A, Baron R. Leucine zipper-mediated homodimerization of the adaptor protein c-Cbl. A role in c-Cbl's tyrosine phosphorylation and its association with epidermal growth factor receptor. J Biol Chem 1999;274:30887-95.
    
    [44] Hoffman K, Falquetb L. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem Sci 2001;26:347-50.
    
    [45] Fu H, Sadis S, Rubin DM, Glickman M, van Nocker S, Finley D, et al.Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcbl. J Biol Chem 1998;273:1970-81.
    
    [46] Katzmann DJ, Babst M, Emr SD. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex. ESCRT-I Cell 2001;106:145-55.
    
    [47] Govers R, ten Broeke T, van Kerkhof P, Schwartz AL, Strous GJ. Identification of a novel ubiquitin conjugation motif, required for ligand-induced internalization of the growth hormone receptor. EMBO J 1999;18:28-36.
    
    [48] Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ. Regulation of receptor fate by ubiquitination of activated beta 2- adrenergic receptor and beta-arrestin. Science 2001;294:1307-13.
    [49]Cadavid AL,Ginzel A,Fischer JA.The function of the Drosophila fat facets deubiquitinating enzyme in limiting photoreceptor cell number is intimately associated with endocytosis.Development 2000;127:1727-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700