禾谷镰孢菌Fusarium graminearum Schwabe两个β-微管蛋白基因功能及对多菌灵的抗药性分子机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微管是构成真核生物细胞骨架的主要成分,在细胞的生命活动过程中起重要作用。α-和β-微管蛋白是构成微管的主要成分,而β-微管蛋白也是多菌灵等苯并咪唑杀菌剂的作用靶标,其特定位点的突变将导致苯并咪唑杀菌剂抗性。禾谷镰孢菌是我国引起小麦赤霉病的主要病原菌,多菌灵是防治该病害的主要药剂之一,但多菌灵对禾谷镰孢菌的作用表型及禾谷镰孢菌对多菌灵的抗性表型与其它植物病原真菌有差异。
     本论文通过观察多菌灵对禾谷镰孢菌的细胞学尤其是有丝分裂的影响,明确多菌灵对禾谷镰孢菌的作用机制;通过研究禾谷镰孢菌两个β-微管蛋白基因的敲除突变体、与GFP的融合表达突变体的形态学和生理学表型、两者在菌体不同阶段的表达差异以及两个β-微管蛋白在细胞内的定位,从而明确禾谷镰孢菌两个β-微管蛋白基因的关系以及在禾谷镰孢菌生命活动过程中的作用,确定多菌灵对禾谷镰孢菌的作用靶标及禾谷镰孢菌对多菌灵抗性的机理,从而为禾谷镰孢菌的抗药性治理以及以新的微管蛋白靶标药剂的设计提供重要的理论依据。
     1禾谷镰孢菌分生孢子萌发过程中核相变化及有丝分裂过程观察
     本研究通过Giemsa染色观察禾谷镰孢菌分生孢子萌发过程中的核相变化及有丝分裂过程。观察表明,分生孢子细胞为单核,细胞核在分生孢子细胞内分裂后进入芽管,在芽管内进行多次分裂,使芽管内细胞核数目不断变化。禾谷镰孢菌有丝分裂过程可以分为4个时期,前期染色体逐渐浓缩变短,中期染色体清晰可见,后期染色单体发生分离并向相反的两极移动,末期形成新的子核。有丝分裂过程中染色体的分离同步或不同步,不同步分离中的滞后染色体形成后期桥的现象更为普遍。
     2多菌灵对禾谷镰孢菌分生孢子萌发和有丝分裂的影响
     已有研究结果表明多菌灵对灰葡萄孢菌Botrytis cinerea等多种真菌的作用机制是抑制有丝分裂,其β-微管蛋白发生突变是抗药性产生的原因。本研究通过比较多菌灵对禾谷镰孢菌和灰葡萄孢菌分生孢子萌发以及幼殖体内有丝分裂的影响,以探明多菌灵对禾谷镰孢菌的作用机制以及禾谷镰孢菌对多菌灵的抗性机制。
     禾谷镰孢菌野生型(多菌灵敏感)菌株的分生孢子在多菌灵处理条件下萌发产生的幼殖体发生扭曲、分支增多、伸长受到抑制;其分生孢子在无药剂条件下产生的幼殖体在多菌灵处理条件下产生相同的特征。在药剂处理条件下细胞核不能正常地进行有丝分裂,染色体呈散乱分布。同时,染色体有丝分裂指数(CMI值)在药剂处理后60min内很快升高,然后又快速下降。多菌灵处理灰葡萄孢菌野生型菌株产生相同的形态学和细胞学特征。
     灰葡萄孢菌多菌灵抗性菌株在药剂处理条件下能进行正常的萌发、生长及有丝分裂。但是,禾谷镰孢菌多菌灵抗性菌株在药剂处理条件下分支增多、CMI值有显著的变化,尽管未见有丝分裂受到明显的影响。
     以上研究结果表明,同灰葡萄孢菌一样,多菌灵对禾谷镰孢菌的作用机制也是抑制其有丝分裂,但两者的抗性机制有差异。
     3多菌灵对禾谷镰孢菌的作用靶标
     本研究分别敲除禾谷镰孢菌的β1、β2-微管蛋白基因,并测定各敲除突变体菌株对多菌灵的敏感性,结果表明,敲除其中任意一个β-微管蛋白基因的突变体菌株都对多菌灵敏感,但敏感性有差异。同时获得绿色荧光蛋白GFP基因与禾谷镰孢菌的β1、β2-微管蛋白基因的融合突变体菌株,通过荧光显微观察多菌灵对禾谷镰孢菌β1、β2-微管蛋白的敏感性差异,结果同样表明两β-微管蛋白与多菌灵的敏感性有差异。
     以上研究结果表明禾谷镰孢菌的β1、β2-微管蛋白都是多菌灵等苯并咪唑杀菌剂的作用靶标,但两β-微管蛋白与多菌灵的敏感性有差异,这种差异可能是由于两者240位氨基酸的不同而导致的。同时,研究还表明禾谷镰孢菌荧光蛋白标记的β-微管蛋白基因可以同源替换内源的同一β-微管蛋白基因,甚至两个内源β-微管蛋白基因都可以同时替换,并能正常表达,且对目标蛋白的生物学功能没有影响。
     4禾谷镰孢菌两个β-微管蛋白基因功能
     本研究通过测定禾谷镰孢菌β1、β2-微管蛋白基因敲除突变体菌株的营养生长特性、生殖生长能力、细胞有丝分裂过程及其致病性等方面的生物学特性,以确定两个β-微管蛋白基因功能的差异。研究结果表明,β1-微管蛋白基因敲除突变体菌株的生物学表型与野生菌株差异不显著;而敲除β2-微管蛋白基因的突变体菌株尽管也能完成其生活史,但其菌丝生长变慢、分支增多、无性及有性生殖能力下降、致病力降低。由此可以看出β2-微管蛋白基因对禾谷镰孢菌是必需的而β1-微管蛋白基因是非必需的,但是两者在功能上是可以相互替代的。同时用荧光蛋白基因标记这两个β-微管蛋白基因以测定其时空表达,结果显示禾谷镰孢菌β1、β2-微管蛋白基因在各时期的菌体细胞内均是同时表达的,并都参与微管的组装。该结果进一步说明两者在功能上是互补的。
     以上研究结果表明禾谷镰孢菌β1、β2-微管蛋白基因在各种菌体细胞内均是同时表达的,并都参与微管的组装;两者在生物学功能上有些差异,但是在功能上互补。
     5禾谷镰孢菌对多菌灵抗性的分子机理
     大多数植物病原真菌苯并咪唑杀菌剂抗性的产生是由于β-微管蛋白基因发生突变。禾谷镰孢菌具有两个β-微管蛋白基因,前期研究表明其多菌灵抗性菌株β1-微管蛋白基因未发生突变,而仅β2-微管蛋白基因发生突变,其突变主要发生在编码167、198和200位氨基酸的碱基上。
     为了进一步证明β2-微管蛋白基因突变与多菌灵抗性的关系,本研究选取一株禾谷镰孢菌田间多菌灵高抗菌株,分别敲除其β1、β2-微管蛋白基因,测定各敲除突变体菌株的多菌灵敏感性,结果发现敲除β2-微管蛋白基因的突变体菌株对多菌灵超敏感,并且与野生菌株β2-微管蛋白基因敲除突变体菌株对多菌灵的敏感性一致;而敲除β1-微管蛋白基因的突变体菌株对多菌灵超高抗。Giemsa染色观察多菌灵处理这两类敲除突变体对其有丝分裂的影响,结果也证实了它们对多菌灵敏感性的变化。应用绿色荧光蛋白GFP标记同一田间抗性菌株的β1、β2-微管蛋白,荧光显微观察多菌灵的作用,结果进一步直接证实了该菌株β2-微管蛋白对多菌灵敏感性的降低。同时分别用禾谷镰孢菌多菌灵田间抗性的4种突变方式的β2-微管蛋白基因来恢复野生菌株的β2-微管蛋白基因敲除突变体菌株,获得的各类型恢复突变体菌株对多菌灵的敏感性与其恢复突变β2-微管蛋白基因DNA片段来源菌株对多菌灵的敏感性一致。
     以上研究结果表明禾谷镰孢菌田间多菌灵抗性是由于β2-微管蛋白基因的突变引起的,该基因的不同的突变方式导致对多菌灵抗性的差异。同时还表明禾谷镰孢菌多菌灵抗性突变的β2-微管蛋白基因可以用作禾谷镰孢菌遗传转化的显性筛选标记。
Microtubules, as steady-state dynamic polymers composed ofα-andβ-tubulin, are ubiquitous eukaryotic cell structures that are involved in a variety of intracellular processes including morphogenesis, cell growth and division. Beta-tubulin is the target of benzimidazoles, and the resistance of these fungicides is associated with amino acid substitutions at special codons ofβ-tubulin. Fusarium graminearum is the primary pathogen causing Fusarium head blight of wheat in China, and carbendazim (methyl benzimidazol-2-yl carbendazim, MBC) is one of the key fungicides used to control this disease, but the action and resistance phenotypes of this agent are different for F. graminearum than for most other filamentous pathogenic fungi.
     The purposes of this dissertation are to (1) understand the action mechanism of carbendazim on F. graminearum by compare the conidial germination and mitosis in germlings of carbendazim-sensitive and-resistant strains of F. graminearum and B. cinerea; (2) determine the target of carbendazim in F. graminearum by deletion theβ1-orβ2-tubulin gene and microtubules labeled by expressing the GFP taggedβ1-orβ2-tubulin; (3) study the physiological functions of the two P-tubulin genes in F. graminearum by compare the characteristics of mutants deletedβ1-orβ2-tubulin gene; (4) analysis the expression of the two P-tubulin genes in F. graminearum by taggingβ1-andβ2-tubulin with GFP and RFP; (5) confirm the carbendazim resistance mechanism by construction the putative carbendazim-resistantβ2-tubulin gene-deletion and-complementation mutants of F. graminearum. These results provide a theoretical foundation to control Fusarium head blight of wheat and manage carbendazim-resistance in F. graminearum.
     1 Mitotic Division in Germ Tube of Fusarium graminearum
     The nuclear phase and mitosis in germ tube of Fusarium graminearum were studied with staining by Giemsa techniques. There was single nucleus in conidial cell. After division in conidial cell, the nuclei entered into germ tube and divided repeatedly, and therefore the number of nuclei in germ tube variably multiplied. The mitosis of F. graminearum has four phases. The chromosomes gradually shortened and thickened during prophase, and at metaphase the chromosomes were distinctly visible. The chromatids separated at anaphase and moved to opposite poles, and then, daughter nuclei were shaped at telophase. Synchronous and asynchronous chromosome separation was seen, and it was more common that the lagging chromosomes formed anaphase bridges.
     2 Effects of Carbendazim on Conidial Germination and Mitosis in Germlings of Fusarium graminearum
     Previous data indicated that the action mechanism of benzimidazoles on most filamentous pathogenic fungi, e.g. Botrytis cinerea, is inhibition mitotic division, and resistance to benzimidazoles has been associated with mutations in theβ-tubulin gene. The effects and the different resistance mechanism of carbendazim in Fusarium graminearum was found, by comparison of the effects of carbendazim on conidial germination and mitosis in germlings of F. graminearum and B. cinerea. Conidia and germlings of F. graminearum wild type strains, as B. cinerea, germinated or grew in the presence of carbendazim to produce distorted, more branched, and elongation-restrained germlings and more branched foreparts. And in carbendazim-treated germlings there were irregularly distribution of chromosomes masses and no normal nuclei division was able to be observed. The CMIs (chromosome mitosis index) rapidly increased within 60 min and after that rapidly dropped. Compairing the carbendazim-resistants, however, F. graminearum was different from B. cinerea in growth and mitosis when they were treated with carbendazim. F. graminearum carbendazim-resistant strains, as ones of their wild-type, they produced significantly more branches and the CMIs have significant variation although abnormal mitosis was not observed under treatment of carbendazim. While B. cinerea carbendazim-resistant strains expressed normally in morphology of growth and mitosis after carbendazim treatment. The results show that carbendazim inhibits mitosis in F. graminearum and there should be a novel mechanism for carbendazim resistance in F. graminearum.
     3 Target of Carbendazim on Fusarium graminearum
     In this study, we deleted theβ1-andβ2-tubulin gene of F. graminearum, respectively, and measure the sensitivity of carbendazim on deletion mutants. The results indicated that theβ1-orβ2-tubulin gene-deletion mutants are carbendazim-sensitive, but there different sensitivity in these mutants to carbendazim. The same results have been obtained by acquirement the mutants which microtubules labeled by expression the GFP taggedβ1-or P2-tubulin, and determination the carbendazim-binding affinity onβ1-orβ2-tubulin of F. graminearum by observation the characteristics of microtubules in these mutants under carbendazim treatment. The results show that the affinities are different forβ1-tubulin than forβ2-tubulin.
     The present results indicate that bothβ1-andβ2-tubulin of F. graminearum are the targets of carbendazim, and there is different carbendazim-binding affinity of the twoβ-tubulins. This difference may be associated with amino acid diversity at codon 240 ofβ-tubulin. The present work also reveals clearly that bothβ1-and P2-tubulin of F. graminearum, tagged with GFP and replaced one or two endogenous P-tubulins with a tagged version of the same gene, is apparently biologically active, and expression does not impact cell physiology.
     4 Functions of Twoβ-Tubulin Genes in Fusarium graminearum
     The biological characteristics of theβ1-andβ2-tubulin gene deletion mutants of F. graminearum were assayed, including vegetative growth, asexual and sexual reproduction, mitosis and pathogenicity, to detect the physiological functions of the two P-tubulin genes. The results indicate that there are no significant different biological phenotypes inβ1-tubulin gene deletion mutants from wild type strains. Although they are active and can complete their life cycles, P2-tubulin gene deletion mutants have slow growth, more branches, decreased asexual and sexual reproduction ability, and poor pathogenicity. All mutants exhibit normal mitosis. These data indicate thatβ2-tubulin gene is more essential for activity thanβ1-tubulin gene, and there may be some functional differences between them, but the two P-tubulins are functionally interchangeable.
     The same results have been obtained by acquirement the mutants which microtubules labeled by expression the GFP taggedβ1-orβ2-tubulin, and determination the carbendazim-binding affinity onβ1- orβ2-tubulin of F. graminearum by observation the characteristics of microtubules in these mutants under carbendazim treatment.
     We constructed gene fusion mutants whichβ1-or/andβ2-tubulin was/were replaced by a GFP/RFP tagged version of the same gene, and determined temporal and spatial expression of the two P-tubulin genes. These data indicate that the two highly divergent P-tubulin genes in F. graminearum are both constitutively expressed during all lifecycle stages in all cells and individual microtubules can be composed of combinations between these different isotypes.
     All these data demonstrate that the twoβ-tubulins are substantially functionally interchangeable, but suggest that there may be subtle functional differences between them.
     5 Molecular Mechanisms of Carbendazim Resistance in Fusarium graminearum
     Benzimidazole fungicides are thought to act by bindingβ-tubulin and preventing its polymerisation to microtubules. Resistance is believed to be associated with mutations in theβ-tubulin gene resulting in altered binding affinity in most filamentous pathogenic fungi. Previous studies have indicated that two P-tubulin structural genes in F. graminearum, and carbendazim-resistance is not due toβ1-tubulin but due toβ2-tubulin mutation included at codon 167,198 and 200. More evidence is required to confirm this carbendazim-resistance mechanism in F. graminearum.
     In this study, we deleted theβ1-andβ2-tubulin gene of field carbendazim-resistant strain of F. graminearum, respectively, and measure the sensitivity of carbendazim on deletion mutants. The results indicated that theβ2-tubulin gene-deletion mutants are super-sensitive to carbendazim, same as the mutant deleted theP2-tubulin gene of wild type strain. But theβ1-tubulin gene-deletion mutants are very high resistant to carbendazim, namely, more resistant to carbendazim than the field carbendazim-resistant strain whichβ1-tubulin gene was deleted. These results are confirmed by observation the effects of carbendazim on mitosis of these mutants through Giemsa-stain method. We obtained the mutants which microtubules labeled by expression the GFP taggedβ1-orβ2-tubulin of the field carbendazim-resistant strain, and determination the carbendazim-binding affinity onβ1-orβ2-tubulin by observation the characteristics of microtubules in these mutants under carbendazim treatment. The results further directly verify that the carbendazim-binding affinity onβ2-tubulin of this field resistant strain is significantly lower than wild type strain. Four kinds of amino acid substitutions inβ2-tubulin gene of carbendazim field resistant strains were used to replace the P2-tubulin gene of wild type strain. All mutants are resistant to carbendazim, and the resistance level of these mutants is consistent with these field resistant strains.
     Altogether these observations confirm that carbendazim-resistance in F. graminearum is due toβ2-tubulin gene mutation, different amino acid substitutions inβ2-tubulin are correlated with different sensitivity to crabendazim andβ2-tubulin gene of carbendazim-resistant strains can be used as a dominant selectable marker in F. graminearum transformation.
引文
Alli E, Bash-Babula J, Yang JM, et al.2002. Efect of stathmin on the sensitivity to anti-microtubule drags in human breast cancer. Cancer Res.,62(23):6864-6869.
    Chen W, and Zhang D.2004.Kinetochore fibre dynamics outside the context of the spindle during anaphase. Nat. Cel.Biol.,6(3):227-231.
    Inclan Y F, and Nogales E.2001. Structural models for the self-assembly and microtubule interactions of gamma-, delta-and epsilon-tubulin. J. Cell Sci.,114:413-422.
    Leask A, and Stearns T.1998. Expression of amino-and carboxyl-terminal y-and a-tubulin mutants in cultured epithelial cells. J. Biol. Chem.,273(5):2661-2668.
    Nogales E, Wolf SG, and Downing KH.1998. Structure of the alpha beta tubulin dimer by electron crystallography. Nature,391:199-203.
    Ruaan NM, Fagerstrom CJ, Yvon AM, et al.2001. Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-alpha tubulin. Mol. Biol. Cell, 12(4):971-980.
    Ruiz F, Dupuis-Williams P, Klotz C, et al.2004. Genetic Evidence for Interaction between η- and P-Tubulins. Eukaryot. Cell,3:212-220.
    Paluh JL, Nogales E, Oakley BR, et al.2000. A mutation in gamma-tubulin alters microtubule dynamics and organization and is synthetically lethal with the kinesin-like protein pkllp. Mol. Biol. Cell., 11:1225-1239.
    Panda D, Miller HP, Wilson L.1999. Rapid treadmiling of brain microtubules free of microtubule--associated proteins in vitro and its suppression by tau. Proc Nail. Acad. Sci. USA, 96(22):12459-12464.
    Shaw SL, Kamyar R, Ehrhardt DW.2003. Sustained microtubule treadmiling in Arabidopsis cortical arrays. Science,300(5626):1715-1718.
    Wilson L, Panda D, Jordan MA.1999. Modulation of microtubule dynamics by drags:a paradigm for the actions of cellular regulators. Cell Stmct. Funct.,24(5):329-335.
    Wittmann T, Bokoch GM, Waterman-Storer CM.2004. Regulation of microtubule destabilizing activity of Opl8/stathmi n downstream of Rael. J.Biol. Chem.,279(7):6196-6203.
    Zheng YX, Wong ML, Alberts B, et al.1995. Nucleation of microtubule assembly by a γ-tubulin-containing ring complexl. Nature,378(6557):578-583.
    Horio T.2007. Role of microtubules in tip growth of fungi. J. Plant Res.,12:53-60.
    Akashi T, Kanbe T, Tanaka K.1994. The role of the cytoskeleton in the polarized growth of the germ tube in Candida albicans. Microbiology,140:271-80.
    Alstrom H, Sorri O, Raudaskoski M.1995. Role of microtubules in the movement of the vegetative nucleus and generative cell in tobacco pollen tubes. Sex Plant Reprod.,8:61-69.
    Anderhag P, Hepler PK, Lazzaro MD.2000. Microtubules and microfilaments are both responsible for pollen tube elongation in the conifer Picea abies (Norway spruce). Protoplasma,214:141-157.
    Bibikova TN, Blancaflor EB, Gilroy S.1999. Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. Plant J.,17:657-665.
    Chang F, Peter M.2003. Yeasts make their mark. Nat. Cell Biol.,5:294-299.
    Chant J.1996. Generation of cell polarity in yeast. Curr. Opin. Cell Biol.,8:557-565.
    Chant J.1999. Cell polarity in yeast. Annu.Rev. Cell Dev. Biol.,15:365-391.
    Clutterbuck AJ.1969. Cell volume per nucleus in haploid and diploid strains of Aspergillus nidulans. J. Gen Microbiol.,55:291-299.
    Clutterbuck AJ.1970. Synchronous nuclear division and septation in Aspergillus nidulans. J. Gen. Microbiol.,60:133-135.
    Dent EW, Gertler FB.2003. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron.,40:209-227.
    Doonan JH.1992. Cell division in Aspergillus. J. Cell Sci.,103:599-611.
    Etienne-Manneville S.2004. Actin and microtubules in cell motility:which one is in control? Traffic., 5:470-477.
    Feierbach B, Verde F, Chang F.2004. Regulation of a forming complex by the microtubule plus end protein teal p. J. Cell Biol.,165:697-707.
    Fiddy C, Trinci AP.1976. Mitosis, septation, branching and the duplication cycle in Aspergillus nidulans. J. Gen. Microbiol.,97:169-184.
    Galagan JE, Calvo SE, Cuomo C, et al.2005. Sequencing of Aspergillus nidulans and comparative analysis with A.fumigatus and A. oryzae. Nature,438:1105-1115.
    Glynn JM, Lustig RJ, Berlin A, Chang F.2001. Role of bud6p and tealp in the interaction between actin and microtubules for the establishment of cell polarity in fission yeast. Curr. Biol.,11:836-845.
    Hamada T, Shimmen T, Sonobe S.2007. Microtubule associated proteins in plants. J. Plant Res., 12:79-98.
    Harris SD, Momany M.2004. Polarity in filamentous fungi:moving beyond the yeast paradigm. Fungal Genet. Biol.,41:391-400.
    Harris SD, Hofmann AF, Tedford HW, Lee MP.1999. Identification and characterization of genes required for hyphal morphogenesis in the filamentous fungus Aspergillus nidulans. Genetics, 151:1015-1025.
    Harris SD, Read ND, Roberson RW, Shaw B, Seiler S, Plamann M, Momany M.2005. Polarisome meets spitzenkorper:microscopy, genetics, and genomics converge. Eukaryot Cell,4:225-229.
    Heath IB.1990. The role of actin in tip growth. Int. Rev. Cytol.,123:95-127.
    Heath IB.1994. The cytoskeleton in hyphal growth, organelle movement. Springer, Berlin Heidelberg New York, pp 43-65.
    Heath IB, Gupta G, Bai S.2000. Plasma membrane-adjacent actin filaments, but not microtubules, are essential for both polarization and hyphal tip morphogenesis in Saprolegnia ferax and Neurospora crassa. Fungal Genet. Biol.,30:45-62.
    Heath IB, Bonham M, Akram A, Gupta GD.2003. The interrelationships of actin and hyphal tip growth in the ascomycete Geotrichum candidum. Fungal Genet. Biol.,38:85-97.
    Heslop-Harrison J, Heslop-Harrison Y, Cresti M, Tiezzi A, Moscatelli A.1988. Cytoskeletal elements, cell shaping and movement in the angiosperm pollen tube. J. Cell Sci.,91:49-60.
    Horio T, Oakley BR.2005. The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol. Biol. Cell,16:918-926.
    Howard RJ, Aist JR.1977. Effects of MBC on hyphal tip organization, growth, and mitosis of Fusarum acuminatum, and their antagonism by D2O. Protoplasma,92:195-210.
    Hwang E, Kusch J, Barral Y, Huffaker TC.2003. Spindle orientation in Saccharomyces cerevisiae depends on the transport of microtubule ends along polarized actin cables. J. Cell Biol., 161:483-488.
    Ishida T, Thitamadee S, Hashimoto T.2007. Twisted growth and organization of cortical microtubules. J. Plant Res.,12:71.
    Iwai S, Ishiji A, Mabuchi I, Sutoh K.2004. A novel actinbundling kinesin-related protein from Dictyostelium discoideum. J. Biol. Chem.,279:4696-4704.
    Jung MK, Prigozhina N, Oakley CE, Nogales E, Oakley BR.2001. Alanine-scanning mutagenesis of Aspergillus gamma-tubulin yields diverse and novel phenotypes. Mol. Biol. Cell,12:2119-2136.
    Justus CD, Anderhag P, Goins JL, Lazzaro MD.2004. Microtubules and microfilaments coordinate to direct a fountain streaming pattern in elongating conifer pollen tube tips. Planta,219:103-109.
    Ketelaar T, de Ruijter NC, Emons AM.2003. Unstable F-actin specifies the area and microtubule direction of cell expansion in Arabidopsis root hairs. Plant Cell,15:285-292.
    Lazzaro MD.1999. Microtubule organization in germinated pollen of the conifer Picea abies (Norway spruce, Pinaceae). Am. J. Bot.,86:759.
    McGoldrick CA, Gruver C, May GS.1995. myoA of Aspergillus nidulans encodes an essential myosin I required for secretion and polarized growth. J. Cell Biol.,128:577-587.
    Miller RK, Rose MD.1998. Kar9p is a novel cortical protein required for cytoplasmic microtubule orientation in yeast. J. Cell Biol.,140:377-390.
    Miller RK, Matheos D, Rose MD.1999. The cortical localization of the microtubule orientation protein, Kar9p, is dependent upon actin and proteins required for polarization. J. Cell Biol.,144:963-975.
    Miller RK, Cheng SC, Rose MD.2000. Bimlp/Yeblp mediates the Kar9p-dependent cortical attachment of cytoplasmic microtubules. Mol. Biol. Cell,11:2949-2959.
    Mineyuki Y.2007. Plant microtubule study:past and present. J. Plant Res.,12:45-51
    Momany M.2002. Polarity in filamentous fungi:establishment, maintenance and new axes. Curr. Opin. Microbiol.,5:580-585.
    Murata T, Hasebe M.2007. Microtubule-dependent microtubule nucleation in plant cells. J. Plant Res., 12:73-78.
    Oakley BR, Morris NR.1980. Nuclear movement is beta-tubulin-dependent in Aspergillus nidulans. Cell,19:255-262.
    Oakley BR, Oakley CE, Yoon Y, Jung MK.1990. Gamma-tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell,61:1289-1301.
    Ovechkina Y, Maddox P, Oakley CE, Xiang X, Osmani SA, Salmon ED, Oakley BR.2003. Spindle formation in Aspergillus is coupled to tubulin movement into the nucleus. Mol. Biol. Cell, 14:2192-2200.
    Pedregosa AM, Riso A, Monistrol IF, Laborda F.1995. Effect of the microtubule inhibitor methyl benzimidazol-2-yl carbamate (MBC) on protein secretion and microtubule distribution in Cladosporium cucumerinum. Mycol. Res.,99:43-48.
    Preuss ML, Kovar DR, Lee YR, Staiger CJ, Delmer DP, Liu B.2004. A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers. Plant Physiol., 136:3945-3955.
    Raudaskoski M, Mao WZ, Yli-Mattila T.1994. Microtubule cytoskeleton in hyphal growth Response to nocodazole in a sensitive and a tolerant strain of the homobasidiomycete Schizophyllum commune. Eur.J. Cell Biol.,64:131-141.
    Riquelme M, Fischer R, Bartnicki-Garcia S.2003. Apical growth and mitosis are independent processes in Aspergillus nidulans. Protoplasma,222:211-215.
    Rischitor PE, Konzack S, Fischer R (2004) The Kip3-like kinesin KipB moves along microtubules and determines spindle position during synchronized mitoses in Aspergillus nidulans hyphae. Eukaryot. Cell,3:632-645.
    Rupes I, Mao WZ, A strom H, Raudaskoski M.1995. Effects of nocodazole and brefeldin A on microtubule cytoskeleton and membrane organization in the homobasidiomycete Schizophyllum commune. Protoplasma,185:212-221.
    Schuchardt I, Assmann D, Thines E, Schuberth C, Steinberg G.2005. Myosin-V, Kinesin-1, and Kinesin-3 cooperate in hyphal growth of the fungus Ustilago maydis. Mol. Biol. Cell, 16:5191-5201.
    Schuyler SC, Pellman D.2001. Search, capture and signal:games microtubules and centrosomes play. J. Cell Sci.,114:247-255.
    Sieberer BJ, Ketelaar T, Esseling JJ, Emons AM.2005. Microtubules guide root hair tip growth. New. Phytol.,167:711-719.
    Temperli E, Roos UP, Hohl HR.1990. Actin and tubulin cytoskeletons in germlings of the oomycete fungus Phytophthora infestans. Eur. J. Cell Biol.,53:75-88.
    That TC, Rossier C, Barja F, Turian G, Roos UP.1988. Induction of multiple germ tubes in Neurospora crassa by antitubulin agents. Eur. J. Cell Biol.,46:68-79.
    Torralba S, Raudaskoski M, Pedregosa AM.1998a. Effect of methyl benzimidazole-2-yl carbamate on microtubule and actin cytoskeleton in Aspergillus nidulans. Protoplasma,202:54-64.
    Torralba S, Raudaskoski M, Pedregosa AM, Laborda F.1998b. Effect of cytochalasin A on apical growth, actin cytoskeleton organization and enzyme secretion in Aspergillus nidulans. Microbiology,144:45-53.
    Xiang X, Beckwith SM, Morris NR.1994. Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc. Natl. Acad. Sci.,91:2100-2104.
    Yarm F, Sagot I, Pellman D.2001. The social life of actin and microtubules:interaction versus cooperation. Curr. Opin. Microbiol.,4:696-702.
    Yin H, Pruyne D, Huffaker TC, Bretscher A.2000. Myosin V orientates the mitotic spindle in yeast. Nature,406:1013-1015.
    Amos LA, Lowe J.1999. How taxoI stabilises mierotubule structure. Chem. Biol.,6:65-69.
    Bai R, Pei XF, Boye O, et al.1996.Identification of cvsteine 354 of beta-tubulin as part of the binding site for the A ring of colchicines. J. Biol. Chem.,271:12639-12645.
    Bather G, Nickel B, Emig P, et al.2001. D-24851, a novel synthetic microtubule inhibitor, exerts curative antitumoral activity in vivo, shows eficacy toward multidrug-resistant tumor cells, and lacks neurotoxicity. Cancer Res.,61:392-399.
    Batra J K, Jurd L, Hamel E.1985. Structure-function studies with dervatives of 6-benzyl-1, 3-benzodioxols, a new class of synthetic compounds which inhibit tubulin polymerization and mitosis. Mol. Pharmcol.,27:94-99.
    Beckers T, Reissmann T, Schmidt M, et al.2002.2-Aroylindoles, a novel class of potent, orally active small molecule tubulin inhibitors. Cancer Res.,62:3113-3119.
    Boye O, Brossi A.1992. Tropolonic colchicum alkaloids and allocongeners in the alkaloids. Znc. Acodemic Press, p25-136.
    Chou TC, Zhang XG, Harris CR, et al.1998. Desoxyepothilone B is curative against human tumor xenografts that are refractory to paclitaxel. Proc. Natl. Acad. Sci. USA,95:15798-15802.
    Drukman S, Kavallaris M.2002. Micmtubule alterations and resistance to tubulin-binding agents(review). Int. J. Oncol.,21:621-628.
    Edwards ML, Stemerick DM, Sunkara PS.1990. Chalcones:a new class of antimitotic agents. J. Med. Chem.,33:1948-1954.
    Gerwick WH,Proteau PJ,Nagle DG,et al.1994. Structure of curacin A, a novel antimitotic, antiproliferative and brine shrimp toxic natural product from the marine cyanobacterium Lyngbya majuscula. J. Org. Chem.,59:1243-1245.
    Giannakakou P, Gussio R, Nogales E, et al.2000. A common pharmacophorefor epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proc. Nat. Acad. Sci. USA,97:2904-2909.
    Haar ET, Kowalski RJ, Hamel E, et al.1996. Discodermlide A cytotoxic marine agent that stabilizes microtubles more potently than taxol. Biochemistry,35:243-250.
    Jiang JD, Roboz J, Weisz I.1998. Synthsis, cancericidal and antimicrtmdmle activities of 3-(haloacetamido)-bemoylureas.Anticancer Drug. Des.,13:735-747.
    Jordan MA.2002. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curt. Med. Chem. Anti-Canc. Agents,2:1-17.
    Kato Y, Ogawa Y, Kobyashi T, et al.1991. Studies on macrocyclic lactone antibiotics derivatives synthesis of a photoaffinity derivative. J. Antibiotics,44:66-68.
    Koiso Y, Nator M, Iwasaki S, et al.1992. Ustiloxin:aphytotoxin and a mycotoxyn fromfalse smut balls on rice paniclea. Tetrahedron Lett.,33:4157-4159.
    Krishnamurthy G, Cheng W, Lo MC, et al.2003. Biophysical characterization of the interactions of HTI-286 With tubulin heterodimerand micmtubules. Biochemistry,42:13484-13495.
    Kupchan SM,Britton RW, Ziegler MF, et al.1973. Steganacin and steganangin, novel antileukemic lignan lactones from stegano taenia araliacea. J. Am. Chem. Soc.,95:1335-1338.
    Li Y, Kubayaashi H, Tokiwa Y, et al.1992. Interaction of phomopsin A with porcine brain tubulin:inhibition of tubulin polymerization and binding at a rhizoxin binding site. Biochem. Pharmacol,43:214-217.
    Okada H, Kato M, Koyanagi T, et al.1999. Synthesis and anti-tumor activities of water-soluble benzoylphenylureasl. J.Chem.Pharm Bull (Tokyo),47:430-433.
    Okada H, Koyanagi T, Yamada N, et al.1991. Synthesis and anfitumor activities of no vel benzoylphenylurea derivatives. Chem. Pharm. Bull. (Tokyo),39:2308-2315.
    Panda D, Miller HP, Islam K, et al.1997. Stabilization of mierotubule dynamics by estramustlne by binding to a novel site in tubulin:a possible mechanistic basis for its antitum or action. Proc. Natl. Acad. Sci. USA,94:10560-10564.
    Pettit GR, Tan R, Gao F, et al.1993. Isolation and structure of halistatin 1 from the Indian ocean marine sponge Phakellia carteri. J. Org. Chem.,58:2538-2543.
    Pettit GR,Cragg GM,Herald DL,et al.1982. Isolation and structure of combretastatin. Can. J. Chem., 60:1374-1378.
    Pryor DE, O'Brate A, Bticer G, et al.2002. The microtubule stabilizing agent laulimalide does not bind in the taxoid site, kills cells resistant to paclitaxel and epothilones, and may not require its epoxide moiety for activity. Biochemistry,41:9109-9115.
    Rai SS, Wolf J.1996. Localization of the vinblastine-binding site on β-tubulin. J. Biol. Chem., 271:14707-14711.
    Rao S, Orr GA, Chaudhary AG, et al.1995. Characterization of the taxol binding site on the microtubule. J. Biol. Chem.,270:20235-20238.
    Remillard S, Rebhun LI, Howie GA, et al.1975. Antimitotic activity of the potent tumor inhibitor maytansine. Science,189:1002-1006.
    Singer WD, Himes RH.1992. Cellular uptake and tubulin binding properties of four vinca alkaloids. Biochem. Pharmacol,43:545-549.
    Song YN,Zhang HL,Chang CJ,et al.1994. Cytotoxic:cyclolignans from Koelreuteria heryi. J. Natural Products,57:1670-1672.
    Uppulufi S,Knipling L,Sackett DL,et al.1993. Localization of the colchicines-binding site of tubulin. Proc. Natl. Acad. Sci.,90:11598-11602.
    Wheder GP, Bowdon BJ, Temple CJ, et al.1983. Biological efects and structure-activity relationships of 1,2-dihydropyrido[3,4-b]pyrazines. Cancer Res.,43:3567-3575.
    Yan K, Dickman MB.1996. Isolation of a β-tubulin gene from Fusarium moniliforme that confers cold-sensitive benomyl resistance. Applied and Enviromental Microbilogy,62:3053-3056.
    周革,蔡宏荣.1990.细胞骨架:微管、分子细胞生物学.北京:北京医科大学出版社,252-275.
    Albertini C, Gredt M, Leroux P.1999. Mutations of the beta-tubulin gene associated with different phenotypes of benzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acutormis. Pestic. Biochem. Physiol.,64:17-23.
    Baraldi E, Mari M, Chierici E, Pondrelli M, Bertolini P, Pratella GC.2003. Studies on thiabendazole resistance of Penicillium expansum of pears, pathogenic fitness and genetic characterization. Plant Pathol,52:362-370.
    Beraha L, Garber ED.1980. A genetic study of resistance to thiabendazole and sodium o-phenylphenate in Penicillium italicum by the parasexual cycle. Bot.Gaz.,141:204-209
    Bollen GJ, Scholten G 1971. Acquired resistance to benomyl and some other systemic fungicides in a strain of Botrytis cinerea in cyclamen. Netherlands Journal of Plant Pathology,77:83-90.
    Butters JA, Hollomon DW.1999. Resistance to benzimidazole can be caused by changes in β-tubulin isoforms. Pesticide Science,55:501-503.
    Campbell AG, Sinclair DP.1968. Control of facial eczemain lambs by use of fungicides. Proc. Ruakura Farmers'Conf. Week. N. Z., p3-12.
    Clemons GP, Sisler HD.1971. Localization of the site of action of a fungitoxic benomyl derivative. Pestic. Biochem. Physiol.,1:32-43.
    Cleveland DW, Sullivan KF.1985. Molecular biology and genetics of tubulin. Ann. Rev. Biochem., 54:331-365.
    Cunha, MG, Rizzo DM.2003. Development of fungicide cross resistance in Helminthosporium solani population from California. Plant Dis.,87:798-803.
    Davidse LC.1987. Biochemical aspects of benzimidazole fungicides action and resistance. In:Lyr H eds.Modern selective fungicides-properties, applications, mechanisms of action.London:Longman Group UK, p245-257.
    Davidse LC.1986. Benzimidazole fungicides:mechanism of action and biological impact. Ann. Rev. Phytoathol.,24:43-65.
    Davidse LC, Flach W.1978. Interaction of thiabendazole with fungal tubulin. Biochim. Biophys. Acta., 543:82-90.
    Davidse LC, Flach W.1977. Differential binding of methyl benzimidazol-2-yl carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans. J. Cell. Biol.,72:174-193.
    Davidse LC.1976. Metabolic conversion of methyl-benzimidazol-2-yl carbamate (MBC) in Aspergillus nidulans. Pestic. Biochem. Physiol.,6:538-546.
    Davidse LC.1973. Antimitotic activity of methyl benzimidazole-2-yl carbamate (MBC) in Aspergillus nidulans. Pestic. Biochem. Physiol.,3:317-325.
    De Brabander M J, Van de Veire RML, Aerts FEM, Borgers M, Janssen PAJ.1976. The effects of methyl [5-(2-thienyl-carbonyl)-1H-benzimidazol-2-yl]-carbamate (R17934; NSC 238159), a new synthetic antitumoral drug interfering with microtubules, on mammalian cells cultured in vitro. Cancer Res.,36:1011-1018.
    Delp CJ.1980. Coping with resistance to plant disease control agents. Plant Disease,64:651-657.
    Eald Y, Yunis H, Katan T.1992. Multiple fungicide resistance to benzimidazoles, dicarboximides and diethofencarb in field isolates of Botrytis cinerea in Israel. Plant Pathology,41:41-46.
    Faretra F, Pollastro S.1991. Genetic basis of resistance to benzimidazole and dicarboximide fungicides in Botryotinia fuckeliana(Botrytis cinerea). Mycol. Res.,95:943-951.
    Faretra F, Pollastro KS, Ditonno AP.1989.New natural variants of Botryotinia fuckeliana(Botrytis cinerea) couling benzimidazole-resistance to insensitivity toward the N-phenylcarbamate diethofencarb. Phytopathol. Mediterr.,28:98-104.
    Fling M E, Kopf J, Tamarkin A, Gorman JA, Smith HA, Koltin Y.1991. Analysis of a Candida albicans gene that encodes a novel mechanism for resistance to benomyl and methotrexate. Mol.Gen.Genet., 227:318-329.
    Fujimura M, Kanakura T, Yamaguchi I.1992. Action mechanism of diethofencarb to a benzimidazole-resistant mutant in Neurospora crassa. J. Pesti.Sci.,17:237-242.
    Fujimura M.1994. Model action of deethofencarb to benzimidazole-resistance strains in Neuropora crassa. J.Pesticide Sci.,19:333-334.
    Gafur A, Tanaka C, Shimizu K, Ouchi S, Tsuda M.1998. Molecular analysis and characterization of the Cochliobolus heterostrophus beta-tubulin gene and its possible role in conferring resistance to benomyl.J. Gen. Appl. Microbiol.,44:217-223.
    Hammerschlag RS, Sisler HD.1973. Benomyl and methyl-2-benzimidazole carbamate (MBC): Biochemical, cytological and chemical aspects of toxicity to Ustilago maydis and Saccharomyces cerevisiae. Pesti. Biochem. Physiol.,3:42-54.
    Hastie AC.1970. Benlate-induced instability of Aspergillus diploids. Nature,226:771-774.
    Heath IB.1982. The effect of nocodazole on the growth and ultrastructure of the fungus, Saprolegnia ferax:Evidence against a simple mode of action. In:Cappuccinelli P, Morris NR, ed. Microtubules in Microorganisms. New York:Dekker, p275-311.
    Hoebeke RJ, Van Nyen G, De Brabander M.1976. Interaction of oncodazole (R17934), a new antitumoral drug, with rat brain tubulin. Biochem. Biophys. Res. Commun.,69:319-324.
    Howard RJ, Aist JR.1980. Cytoplasmic microtubules and fungal morphogenesis:Ultrastructural effects of methyl benzimidazol-2-yl carbamate determined by freeze-substitution of hyphal tip cells. J. Cell Biol.,87:55-64.
    Howard RJ, Aist JR.1977. Effects of MBC on hyphal tip organization, growth, and mitosis of Fusarium acuminatum, and their antagonism by D2O. Protoplasm,92:195-210.
    Ishii H, van Raak M.1988. Inheritance of increased sensitivity to N-phenylcarbamates in benzimidazole-resistant Veuturia nashicola. Phytopathology,78:695-698.
    Ishii H, Davidse LC.1986. Decreased binding of carbendazim to cellular protein from Venturia nashicola and its involvement in benzimidazole resistance. Proceeding of the British Crop Protection Conference-Pests and Disease,567-573.
    Jones AL, Shabi E, Ehret GR.1987. Genetics of negatively correlated cross-resistance to a N-phenylcarbamate in benomyl-resistant Venturia inaequalis. Canadian Journal of Plant Pathology,9:195-199.
    Josepovits G, Gasztonyi M, Mikite G.1992. Negative cross-resistance to N-phenylanilines in benzimidazole-resistant strains of Botrytis cinerea, Venturia nashicola and Venturia inaequalis. Pesticide Science,35:237-242.
    Jung MK.1992. Amino aid alterations in the benA gene of Aspergillus nidulans that confer benomyl resistance. Cell Motility and Cytoskeleton,22:170-174.
    Jung MK, Oakly BR.1990. Identification of an amino acid substitution in benA, β-tubulin gene of Aspergillus nidulans that confers thiabendazole resistance and benomyl supersensity. Cell Motility and the Cytoskeleton,17:87-94.
    Kato T.1988. Negative cross-resistance activity of MDPC and diethofencarb against benzimidazole-resistant fungi. In:Fungicide resistance in north America, Delp CJ ed. Minnesota: APS Press, p40.
    Kato T, Suzuki D, Takahashi J, Kamoshita K.1984. Negatively correlated cross-resistance between benzimidazole fungicides and methyl N-(3,4-dichlorophenyl)-carbamate. J. Pesticide Scienc, 9:485-495.
    Kawchuk LM, Hutcgison LJ, Vergaegh CA, et al.2002. Isolation of the (3-tubulin gene and characterization of thiabendazole resistancein Gibberella pulicaris. Can. J. Plant Pathol., 24:233-238.
    Kendall S, Hollomon DW, Ishii H, Heaney SP.1993. Characterisation of benzimidazole resistant strains of Rhynchosporium secalis. Pesticide Science,40:175-181.
    Koeneaadt H, Jones AL.1993. Resistance to benomyl conferred by mutions in codon 198 or 200 in the beta-tubulin gene of Neurospora crassa and sensitivity to diethofencarb conferred by codon 198. Photopathology,83:850-854.
    Koenraadt H, Somerville SC, Jones AL.1992. Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi. Phytopathology,82:1348-1354.
    Kunkel W.1980. Antimitotische Aktivitat von Methylbenzimidazol-2-yl carbamat (MBC). I. Licht-, elektronenmikroskopische und physiologische Untersuchungen an keimenden Konidienvon Aspergillus nidulans.Z Allg. Mikrobiol.,20:113-120.
    Leroux P, Gredt M.1979. Effects du barbane, chloryelAme, du chlorpropham et du prophame sur diverses souches de Botrytis cinerea Pers. Et de Penicillium expansum Link sensibles ou resistantes au carbendazime et au thiabendazole. C. R. Acad. Sci.Paris.,289:691-693.
    Locke T.1986. Current incidence in the UK of fungicide resistance in pathogens of cereals. Proceedings 1986 British Crop Protection Conference, p781-786.
    Luck JE, Gillings MR.1995. Rapid identification of benomyl resistant strains of Botrytis cinerea using the polymerase chain reaction. Mycol. Res.,99:1483-1488.
    Nakata A, Snao S, Hashimoto S, Hayakawa K, Nishikawa H, Yasuda Y.1987. Negatively correlated cross-resistant to N-phylformamidoximes in benzimidazole-resistant phyto-pathogenic fungi. Annals of the Phytopathological Society of Japan,53:659-662.
    Ma Z, Michailides JT.2005. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection, 24:853-863.
    Ma Z, Yoshimura M, Michailides TJ.2003. Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in California. Appl. Environ. Microbiol., 69:7145-7152.
    Ma Z, Yoshimura M, Holtz BA, Michailides TJ.2005. Characterization and PCR-based detection of benzimidazoleresistant isolates of Monilinia laxa in California. Pest. Manag. Sci.,61(5):449-57.
    McKay GJ, Cooke LR.1997. A PCR-based method to characterize and identify benzimidazole resistance in Helminthosporium solani. FEMSMicrobiol. Lett.,152:371-378.
    McKay GJ, Egan D, Morris E, Brown AE.1998. Identification of benzimidazole resistance in Cladobotryum dendroides using a PCR-based method. Mycol. Res.,102:671-676.
    Molnar A, Hornok L, Miklos P.1985. The high level of benomyl tolerance in Fusarium oxysporum is determined by the synergistic interaction of two genes. Experimental Mycology,9:326-333.
    Rosenberger DA, Meyer FW.1985. Negatively correlated cross-resistance to diphenylamine in benomyl-resistant Penicillium expansum. Phytopathol,75:74-79.
    Schroeder WT, Prowidenti R.1969. Resistance to benomyl in powdery mildew of cucurbits. Plant Disease Reporter,53:271-275.
    Shabi E, Katan T, Marton K.1983. Inheritance of resistance to benomyl in isolates of Venturia inaequalis from Israel. Plant Pathology,32:207-211.
    Shabi E, Katan T.1980. Fitness of Venturia pirina isolates resistant to benzimidazole fungicides. Phytopathology,70:1172-1174.
    Stover RH.1977. Extranuclear inherited tolerance to benomyl in Mycosphaerella fijiensis var. difformis. Trans. Br. Mycol. Soc.,68:122-125.
    Takeuchi T.1987. Studies of the epidemiology of fungicide resistant gray mold strains. Special Bulletion of the Chiba-Ken Agricultural Experiment Station,14:1-75.
    Vonk JW, Sijpesteijn AK.1971. Methyl benzimidazole-2-ylcarbamate, the fungitoxic principle of thiophanate-methyl. Pesticide Science,2:160-164.
    Wicks T.1974. Tolerance of the apple scab fungus to benzimidazole fungicides. Plant Disease Reporter, 58:886-889.
    Yarden O, Katan T.1993. Mutations leading to substitutions at amino acids 198 and 200 oh beta-tubulin that correlate with benomyl resistance phenotypes of field strains of Botrytis cinerea. Phytopathology,83:1478-1483.
    陈长军博士论文.禾谷镰孢菌(Fusarium graminearum)多菌灵抗性抗性基因的克隆.南京农业大,2004.
    李红霞,陆悦健,王建新,周明国.2003.禾谷镰孢菌β-微管蛋白基因克隆及其与多菌灵抗药性关系的分析.微生物学报,43:424-4291.
    陆悦健,周明国,叶钟音,王建新.2000.抗苯并咪唑的小麦赤霉病菌β-tubulin基因序列分析与特性研究.植物病理学报,30:30-34.
    周明国,王建新.2001.禾谷镰孢霉对多菌灵的敏感性基线及抗药性菌株生物学性质的研究.植物病理学报,31:365-370.
    周明国,叶钟音,刘经芬.1994.杀菌剂抗药性研究进展.南京农业大学学报,17(3):33-41。
    周明国,叶钟音.1987.植物病原菌对苯并咪唑类及相关杀菌剂的抗药性.植物保护,13(2):31-33。
    陈长军,王建新,周明国.2005a.禾谷镰孢菌γ-微管蛋白基因克隆及其与多菌灵抗药性关系分析.植物病理学报,35:161-167.
    陈长军,李俊,祁之秋,等.2005b.禾谷镰孢菌α-微管蛋白基因克隆及其与多菌灵抗药性关系分析.微生物学报,45:288-291.
    顾宝根,刘经芬.1990.小麦赤霉病菌对多菌灵抗药性的研究.Ⅱ.抗性检测和诱导.南京农业大学学报,13(1):57-61.
    李红霞,陆悦健,王建新,周明国.2003.禾谷镰孢菌β-微管蛋白基因克隆及其与多菌灵抗药性关系的分析.微生物学报,43:424-4291.
    陆悦健,周明国,叶钟音,王建新.2000.抗苯并咪唑的小麦赤霉病菌β-tubulin基因序列分析与特性研究.植物病理学报,30(1):30-34.
    陆悦健.1998.小麦赤霉病菌对多菌灵抗药性分子机制初探.见:周明国主编.中国植物病害化学防治研究(第一卷).北京:中国农业科技出版社,150-153.
    潘洪玉,杜红军,郭金鹏,刘友良,朱玉奎.2002.东北春麦区小麦赤霉病菌对多菌灵敏感性的测定.吉林农业科学,27(增刊):44-45
    童蕴慧,徐敬友等.1998.施保克对稻麦重要真菌的毒力及病害的防效.见:周明国主编.中国植物病害化学防治研究.北京:中国农业科技出版社,325-328.
    王建新,周明国,陆悦健,叶钟音.2002a.小麦赤霉病菌抗药性群体动态及其治理药剂.南京农业大学学报,25(1):43-47.
    王建新,周明国.2002b.小麦赤霉病对多菌灵抗药性监测技术研究.植物保护学报,29(1):73-77.
    王建新.2000.禾谷镰孢霉对多菌灵抗药性研究.南京农业大学植物保护学院硕士学位论文.
    王建新,周明国.1998.禾谷镰刀菌对多菌灵抗药性的快速监测技术研究.见:周明国主编.中国植物病害化学防治研究(第一卷).北京:中国农业科技出版社,325-328.
    周明国,王建新.2001.禾谷镰孢霉对多菌灵的敏感基线及抗药菌株生物学性质研究.植物病理学报,31(4):365-370.
    周明国.1999.我国几种植物病害的抗药性监测情况.农药科学与管理,20(3):39-40.
    周明国,叶钟音,王建新.1998.禾谷镰刀菌对多菌灵的抗药性研究.见:刘仪主编.植物病理学研究进展.北京:中国农业科技出版社,158-163.
    周明国,王建新,叶钟音.1996.抗菌灵对小麦赤霉病和白粉病的防效及抗性治理研究.南京农业大学学报,19(增):42-47.
    周明国,王建新,陆悦健,鞠理红,叶钟音.1994a.小麦赤霉病菌对多菌灵抗药性变异研究.南京 农业大学学报,17(增刊):106-112
    周明国,叶钟音,刘经芬.1994b.杀菌剂抗性研究进展.南京农业大学学报,17(3):33-41.
    叶钟音,周明国.1985.江淮地区小麦赤霉病菌对多菌灵耐药性的测定.植物保护学报,12(3):188-189.
    袁善奎,周明国.2003.禾谷镰孢茵(Gibberella zeae)对多菌灵的抗药性遗传.遗传学报,30(5):474-478.
    袁善奎博士论文.禾谷镰孢菌(Gibberella zeae)对多菌灵抗药性遗传研究.南京农业大,2003.
    袁善奎,周明国.2002.禾谷镰孢菌(Gibberella zeae) nit突变体的诱导及其生物学特性研究.菌物系统,21(1):71-76.
    Aist JR, and Bayles CJ.1991a Ultrastructural basis of mitosis in the fungus Nectria haematococca (sexual stage of Fusarium solani) Ⅰ.Asters. Protoplasma,161:111-122.
    Aist JR, and Bayles CJ.1991b. Ultrastructural basis of mitosis in the fungus Nectria haematococca (sexual stage of Fusarium solani) Ⅱ.Spindles. Protoplasma,161:123-136.
    Aist JR, and Bayles CJ.1991c. Ultrastructural basis of mitosis in the fungus Nectria haematococca (sexual stage of Fusarium solani) Ⅲ. Intermicrotubule bridges. Protoplasma,161:111-122.
    Aist JR.1969. The mitotic apparatus in fungi, Ceratocystis fagacearum and Fusarium oxysporum. The Journal of Cell Biology,40:120-135.
    Aist JR, and Williams PH.1972. Ultrastructure and time course of mitosis in the fungus Fusarium oxysporum. The Journal of Cell Biology,55:368-389.
    Chen CJ, Wang JX, Luo QQ, Yuan SK, Zhou MG 2007. Characterization and fitness of carbendazim-resistant strains of Fusarium graminearum. Pest Management Science, 63:1201-1207.
    Cormark MW.1951. Variation in the cultural characteristics and pathogenicity of Fusarium avenaceum and F. arthrosporioides. Canadia Journal of Botany,29:32-45
    Davidse LC.1973. Antimitotic activity of methyl benzimidazol-2-yl carbamate (MBC) in Aspergillus nidulans. Pesticide Biochemistry and Physiology,3:317-325.
    Gale LR, Bryant JD, Calvo S, Giese H, Katan T, O'Donnell K, Ward TJ, Suga H, Taga M, Usgaard TR, Kistler HC.2005. Chromosome complement of the fungal plant pathogen Fusarium graminearum. Genetics,171:985-1001.
    Goddard M.1939. Studies on variation in Gibberella saubinetii (Fusarium graninearum). Annals of Missouri Botanical Garden,26:99-164.
    Kiso T, Fujita K, Ping X, Tanaka T, Taniguchi M.2004. Screening for microtubule-disrupting antifungal agents by using a mitotic-arrest mutant of Aspergillus nidulans and novel action of phenylalanine derivatives accompanying tutbulin loss. Antimicrobial Agents and Chemotherapy,48:1739-1748.
    Knox-Davies PS.1966. Nuclear division in the developing pycnospores of Macrophomina phaseoli. America Journal of Botany,53:220-224.
    Knox-Davies PS.1967. Mitosis and aneuploidy in the vegetative hyphae of Macrophomina phaseoli. America Journal of Botany,54:1290-1295.
    Miller JJ.1945. Studies on the Fusarium of muskmelon wilt Ⅰ.Pathogenic and cultural studies with particular reference to the cause and nature of variation in the causal organism. Canadian Journal of Research,23:16-43.
    Punithalingam F.1976. Cytology of some Fusarium species. Review of Palaeobotany and Palynology, 55:584-602.
    Richmond DV, Philips A.1975. The effect of benomyl and carbendazim on mitosis in hyphae of Botrytis cinerea Pers. ex Fr. and roots of Allium cepa L. Pesticide Biochemistry and Physiology, 5:367-379.
    Robinow CF, Caten CE.1969. Mitosis in Aspergillus nidulans. Journal of Cell Science,5:403-431.
    Shi RC, Shang HS, Zhang JZ.2007. Nucleus number of Rhizoctonia mycelium cell from turf-grasses in China. Mycosystema,26:221-225. (in Chinese)
    Xu JY.1984. Studies in variability of Gibberella zeae (Schwein.) Petch from wheat. MS thesis. Nanjing Agricultural University, Nanjing, China, (in Chinese)
    Xu ZY, Lin FX, Xiong J, Ma L, Ling FC.2007. Studies on nuclear phase and genetic attribute of the basidiospores of Flammulina velutipes. Mycosystema,26:369-375. (in Chinese)
    石仁才,商鸿生,张敬泽.2007.草坪禾生丝核菌的核相研究.菌物学报,26:221-225.
    徐敬友.1984.玉蜀黍赤霉Gibberella zeae变异的研究.南京农业大学硕士学位论文.
    许智勇,林范学,熊杰,马丽,林芳灿.2007.金针菇担孢子核相及遗传属性的研究.菌物学报,26:369-375.
    Albertini C, Grend M, Leroux P.1999. Mutations of the b-tubulin gene associated with different phenotypes of benzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acuformis. Pestic. Biochem. Physiol.,64:17-31.
    Bergen LG, and Morris NR.1983. Kinetics of the nuclear division cycle of Aspergillus nidulans. J. Bacteriol.,156:155-160.
    Bollen GJ, and Scholten G.1971. Acquired resistance to benomyl and some other systemic fungicides in a strain of Botrytis cinerea in cyclamen. Neth. J. Plant Pathol,77:83-90.
    Chen CJ, Wang JX, Luo QQ, Yuan SK, Zhou MG.2007. Characterization and fitness of carbendazim-resistant strains of Fusarium graminearum. Pest Management Science, 63:1201-1207.
    Clemons GP, and Sisler HD.1971. Localization of the site of action of a fungitoxic benomyl derivative. Pesticide Biochemistry and Physiology,1:32-43.
    Davidse LC.1986. Benzimidazole fungicides:mechanism of action and biological impact. Annu Rev Phytopathol,24:43-65.
    Davidse LC.1973. Antimitotic activity of methyl benzimidazol-2-yl carbamate (MBC) in Aspergillus nidulans. Pesticide Biochemistry and Physiology,3:317-325.
    Davidse LC, and Flach W.1977. Differential binding of methyl benzimidazol-2-yl carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans. J. Cell. Biol,72:174-193.
    Desjardins AE, Brown DW, Yun S-H, Proctor RH, Lee T, Plattner RD, Lu S-W, and Turgeon BG.2004. Deletion and complementation of the mating type (MAT) locus of the wheat head blight pathogen Gibberella zeae. Applied and Environment Microbiology,70:2437-2444.
    Desjardins AE, Proctor R H, Bai GH, McCormick SP, Shaner G, Buechley G, and Hohn TM.1996. Reduced virulence of trichothecene-nonproducing mutants of Gibberella zeae in wheat field tests. Mol. Plant-Microbe Interact.,9:775-781.
    Goswami RS, and Kistler HC.2004. Heading for disaster:Fusarium graminearum on cereal crops. Molecular Plant Pathology,5:515-525.
    van Egmond H P.2002. Worldwide regulations for mycotoxins. Adv. Exp. Med. Biol.,504:257-269.
    Hammerschlag RS, and Sisler HD.1974. Benomyl and methyl benzimidazol-2-yl carbendazim (MBC): biochemical, cytological and chemical aspects of toxicity to Ustilago maydis and Saccharomyces cervisiae. Pestic. Biochemistry And Physiology,3:42-54.
    Howard RJ, Aist JR.1977. Effects of MBC on hyphal tip organization, growth, and mitosis of Fusarium acuminatum, and their antagonism by D2O. Protoplasm,92:195-210.
    Howard RJ, and Aist JR.1980. Cytoplasmic microtubules and fungal morphogenesis:Ultrastructural effects of methyl benzimidazole-2-ylcarbamate determined by freeze-substitution of hyphal tip cells. Journal of Cell Biology,87:55-64.
    Koenraadt H, Somerville SC, Jones L.1992. Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi. Phytopathology,82:1348-1354.
    Kiinkel, W.1980. Antimitotische Aktivitat von Methylbenzimidazol-2-yl carbamat (MBC). I.Licht-, elektronenmikroskopische und physiologische Untersuchungen an keimenden Konidien von Aspergillus nidulans. Z.Allg.Mikrobiol.,20:113-120.
    Li HX, Zhou MG, and Lu YJ.2003. Cloning β-tubulin gene from Gibberella zeae and its relationship with carbendazim resistance. Acta Microbiologia Sinica.,43:424-4291.(In Chinases)
    Ma Z, Michailides TJ.2005. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection, 24:853-863.
    McKay GJ, Egan D, Morris E, Brown AE.1998. Identification of benzimidazole resistance in Cladobotryum dendroides using a PCR based method. Mycol Res.,102:671-676.
    Ovechkina YY, Pettit RK, Cichacz ZA, Pettit GR, and Oakley BR.1999. Unusual antimicrotubule activity of the antifungal agent spongistatin 1. Antimicrob Agents Chemother,.43:1993-1999.
    Richmond DV, and Philips A.1975. The effect of benomyl and carbendazim on mitosis in hyphae of Botrytis cinerea Pers. ex Fr. And Roots of Allium cepa L. Pesticide Biochemistry and Physiology, 5:367-379.
    Schroeder WT, and Prowidenti R.1969. Resistance to benomyl in powdery mildew of cucurbits. Plant Dis. Rep.,53:271-275.
    Ye ZY, and Zhou MG.1985. Determination of tolerance to methyl-2-benzimi-dazole carbamate (MBC) in wheat scab (Fusarium graminearum) in Jiang Huai area of China. Acta Phytophylacica Sin.,12: 188-189.(In Chinases)
    Yuan SK, and Zhou MG.2005. A major gene for resistance to carbendazim, in field isolates of Gibberella zeae. Canadian Journal of Plant Pathology,27:58-63.
    Wicks T.1974. Tolerance of the apple scab fungus to benzimidazole fungicides. Plant Dis. Rep.58: 886-889.
    Zhou MG, Ye ZY, and Liu JF.1994. Progress in fungicide resistance research. J.Nanjing Agri.Univ., 17:33-41. (In Chinases)
    李红霞,周明国,陆悦建.2003.禾谷镰孢菌p-微管蛋白基因克隆及其与多菌灵抗药性关系的分析.微生物学报.43:424-4291.
    叶钟音,周明国.1985.中国江淮地区小麦赤霉病菌对多菌灵的敏感性测定.植物病理学报.12:188-189.
    周明国,叶钟音,刘经芬.1994.杀菌剂抗性研究进展.南京农业大学学报.17:33-41.
    Albertini C, Grend M, and Leroux P.1999. Mutations of the beta-tubulin gene associated with different phenotypes of benzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acuformis. Pestic. Biochem. Physiol.,64:17-31.
    Banerjee Aand Luduena RF.1992. Kinetics of colchicine binding to purified beta-tubulin isotypes from bovine brain. J. Biol. Chem.,267:13335-13339.
    Banerjee A, Roach MC, Trcka P, and Luduena RF.1992. Preparation of a monoclonal antibody specific for the class Ⅳ isotype of beta-tubulin:Purification and assembly of alpha beta Ⅱ, alpha beta Ⅲ, and alpha beta Ⅳ tubulin dimers from bovine brain. J. Biol. Chem.,267:5625-5630.
    Bartnicki-Garcia S.2002. Hyphal tip growth:outstanding questions. In:Osiewacz, H.D. (Ed.), Molecular Biology of Fungal Development. Marcel Dekker, Inc New York, pp.29-58.
    Bourett TM, Sweigard JA, Czymmek KJ, Carroll A, and Howard RJ.2002. Reef coral fluorescent proteins for visualizing fungal pathogens. Fungal Genet. Biol.37,211-220.
    Bowden RL and Leslie JF.1999. Sexual recombination in Gibberella zeae. Phytopathology,89: 182-188.
    Brandizzi F, Fricker M, and Hawes C.2002. A greener world:the revolution in plant bioimaging. Nat. Rev. Mol. Cell Biol.,3:520-530.
    Brown HD, Matzuk AR, Ilves IR, Peterson LH, Harris SA, Sarett LH, Egerton JR, Yakstis JJ, Campbell WC, and Cuckler AC.1961. Antiparasitic drugs Ⅳ:2-(4'-thiazolyl)-benzimidazole, a new antihelmintic. Journal of the American Chemical Society,83:1764-1765.
    Cargo CA and Dewey DH.1970. Thiabendazole and benomyl for the control of postharvest decay of apples. Hortscience,5:259-260.
    Chalfie M, Tu Y, Euskirchen G, Ward WW, and Prasher DC.1994. Green fluorescent protein as a marker for gene expression. Science,263:802-805.
    Chen CJ, Wang JX, Luo QQ, Yuan SK, and Zhou MG.2007. Characterization and fitness of carbendazim-resistant strains of Fusarium graminearum. Pest Management Science,63: 1201-1207.
    Clemons GP and Sisler HD.1971. Localization of the site of action of a fungitoxic benomyl derivative. Pesticide Biochemistry and Physiology,1:32-43.
    Cleveland DW and Havercroft JC.1983. Is apparent autoregulatory control of tubulin synthesis nontranscriptionally regulated? J. Cell. Bio.,97:919-924.
    Cleveland DW, Lopata MA, Sherline P, and Kirschner M W.1981. Unpolymerized tubulin modulates the level of tubulin mRNAs. Cell,25:537-546.
    Cruz MC and Edlind T.1997. β-tubulin genes and the basis for benzimidazole sensitivity of the opportunistic fungus Cryptococcus neoformans. Microbiology,143:2003-2008.
    Cuomo CA, Guldener U, Xu JR, et al.2007. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science,317:1400-1402.
    Czymmek KJ, Bourett TM, Shao Y, DeZwaan, TM, Sweigard JA, and oward, RJ.2005. Live-cell imaging of tubulin in the filamentous fungus Magnaporthe grisea with anti-microtubule and anti-microfilament agents. Protoplasma,225:23-32.
    Czymmek KJ, Bourett TM, Sweigard JA, Carroll A, and Howard, RJ.2002. Utility of cytoplasmic fluorescent proteins for live-cell imaging of Magnaporthe grisea in planta. Mycologia,94: 280-289.
    Davidse LC.1973. Antimitotic activity of methyl benzimidazol-2-yl carbamate (MBC) in Aspergillus nidulans. Pesticide Biochemistry and Physiology,3:317-325.
    De Brabander MJ, Van de Veire RM, Aerts FE, Borgers M, and Janssen PA.1976. The effects of methyl (5-(2-thienylcarbonyl)-1H-benzimidazol-2-yl) carbamate, (R 17934; NSC 238159), a new synthetic antitumoral drug interfering with microtubules, on mammalian cells cultured in vitro. Cancer Research,36:905-916.
    Desjardins AE, Proctor RH., Bai GH, McCormick SP, Shaner G, Buechley G, and Hohn TM.1996. Reduced virulence of trichothecene-nonproducing mutants of Gibberella zeae in wheat field tests. Mol. Plant-Microbe Interact.,9:775-781.
    Ding DQ, Chikashige Y, Haraguchi T, and Hiroaka Y.1998. Oscillatory nuclear movement in fission yeast meiotic prophase is driven by astral microtubules, as revealed by continuous observation of chromosomes and microtubules in living cells. J. Cell Sci.,111:701-712.
    Doyle T and Botstein D.1996. Movement of yeast cortical actin cytoskeleton visualized in vivo. Proc Nat.l Acad. Sci. USA,93:3886-3891.
    Eaton LG, Siegmund OH, Rankin AD, and Bramel RG.1969. The veterinary uses of thiabendazole. Texas Reports on Biology and Medicine,27:693.
    Fernandez-Abalos JM, Fox H, Pitt C, Wells B, and Doonan JH.1998. Plant-adapted green fluorescent protein is a versatile vital reporter for gene expression, protein localization and mitosis in the filamentous fungus, Aspergillus nidulans. Mol. Microbiol.,21:121-130.
    Freitag M, Hickey PC, Khlafallah TK, Read ND, and Selker EU.2004. HP1 is essential for DNA methylation in Neurospora. Mol. Cell,13:427-434.
    Freitag M, Hickey PC, Raju NB, Selker EU, and Read ND.2004. GFP as a tool to analyze the organization, dynamics, and function of nuclei, and microtubules in Neurospora crassa. Fungal Genet. Biol.,41:897-910.
    Fuchs F, Prokisch H, Neupert W, and Westermann B.2002. Interactions of mitochondria with microtubules in the filamentous fungus Neurospora crassa. J. Cell Sci.,115,1931-1937.
    Gaffoor I, Brown DW, Plattner R, Proctor RH, Qi WH, and Trail F.2005. Functional Analysis of the Polyketide Synthase Genes in the Filamentous Fungus Gibberella zeae (Anamorph Fusarium graminearum). Eukaryotic Cell,4(11):1926-1933.
    Han G, Liu B, Zhang J, Zuo W, Morris NR, and Xiang X.2001. The Aspergillus cytoplasmic dynein heavy chain and NUDF localize to microtubule ends and affect microtubule dynamics. Curr. Biol., 11:719-724.
    Han YK, Lee T, Han KH, Yun SH, and Lee YW.2004. Functional analysis of the homoserine O-acetyltransferase gene and its identification as a selectable marker in Gibberella zeae. Curr. Genet.,46:205-212.
    Heun P, Taddei A, and Gasser SM.2001. From snapshots to moving pictures:new perspectives on nuclear organization. Trends Cell Biol.,11:519-525.
    Horio T and Oakley BR.2005. The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol. Biol. Cell,16:918-926.
    Howard RJ and Aist JR.1977. Effects of MBC on hyphal tip organization, growth, and mitosis of Fusarium acuminatum, and their antagonism by D2O. Protoplasma,92:195-210.
    Jurgenson JE, Bowden RL, Zeller KA, Leslie JF, Alexander NJ, and Plattner RD.2002. A Genetic Map of Gibberella zeae (Fusarium graminearum). Genetics,160:1451-1460.
    Koenraadt H, Somerville SC, and Jones L.1992. Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi. Phytopathology,82:1348-1354.
    Lee J, Lee T, Lee YW, Yun SH, and Turgeon BG.2003. Shifting fungal reproductive mode by manipulation of mating type genes:obligatory heterothallism of Gibberella zeae. Molecular Microbiology,50(1):145-152.
    Lippincott-Schwartz, J, Altan-Bonnet, N, and Patterson, GH.2003. Photobleaching and photoactivation: following protein dynamics in living cells. Nat. Cell Biol.,5:S7-S14.
    Lorang JM, Tuori RP, Martinez JP, Sawyer TL, Redman RS, Rollins JA, Wolpert TJ, Johnson KB, Rodriguez, RJ, Dickman MB, and Ciuffetti LM.2001. Green fluorescent protein is lighting up fungal biology. Appl. Environ. Microbiol.67,1987-1994.
    Ma Z, Yoshimura M, Holtz BA, and Michailides TJ.2005. Characterization and PCR-based detection of benzimidazoleresistant isolates of Monilinia laxa in California. Pest. Manag. Sci.,61 (5): 449-457.
    Maier FJ, Malz S, Losch AP, Lacour T, and Schafer W.2005. Development of a highly efficient gene targeting system for Fusarium graminearum using the disruption of a polyketide synthase gene as a visible marker. FEMS Yeast Research,5:653-662.
    McDaniel DP and Roberson RW.2000. Microtubules are required for motility and positioning of vesicles and mitochondria in hyphal tip cells of Allomyces macrogynus. Fungal Genet. Biol.,31: 233-244.
    McKay GJ, Egan D, Morris E, and Brown AE.1998. Identification of benzimidazole resistance in Cladobotryum dendroides using a PCR based method. Mycol Res.,102:671-676.
    Mishra NC and Tatum EL.1973. Non-Mendelian inheritance of DNA-mediated inositol independence in Neurospora. Proc Natl Acad Sci USA,70:3875-3879.
    Miyawaki, A.2003. Fluorescence imaging of physiological activity in complex systems using GFP-based probes. Curr. Opin. Neurobiol.,13:591-596.
    Mourino-Perez RR, Roberson RW, and Bartnicki-Garcia S.2006. Microtubule dynamics and organization during hyphal branching in Neurospora crassa. Fungal Genet. Biol.,43:389-400.
    Oakely BR and Morris NR.1980. Nuclear movement is beta-tubulin dependent in Aspergillus nidulans. Cell,19:255-262.
    Orbach MJ, Porro EB, and Yanofsky C.1986. Cloning and characterization of the gene for beta-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker. Molecular and Cellular Biology,6:2452-2461.
    Panda D, Miller HP, Banerjee A, Luduena RF, and Wilson L.1994. Microtubule dynamics in vitro are regulated by the tubulin isotype composition. Proc Natl Acad Sci,91:11358-11362.
    Park YS, Choi ID, Kang CM, Ham MS, Kim JH, Kim TH, Yun SH, Lee YW, Chang HI, Sung HC, and Yun CW.2006. Functional identification of high-affinity iron permeases from Fusarium graminearum. Fungal Genetics and Biology,43:273-282.
    Plamann M, Minke PF, Tinsley JH, and Bruno KS.1994. Cytoplamic dynein and actin-related protein Arpl are required for normal nuclear distribution in filamentous fungi. J. Cell Biol.,127:139-149.
    Proctor RH, Hohn TM, and McCormick SP.1995. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol. Plant-Microbe Interact.,8:593-601.
    Proctor RH, Thomas Hohn M, and McCormick SP.1997. Restoration of wild-type virulence to Tri5 disruption mutants of Gibberella zeae via gene reversion and mutant complementation. Microbiology,143:2583-2591.
    Read ND and Hickey PC 2001. The vesicle trafficking network and tip growth in fungal hyphae. In: Geitmann A, Cresti M, Hexath BI (Eds.), Cell Biology of Plant and Fungal Tip Growth. IOS, Oxford, pp.137-148.
    Riquelme M, Gerhard G, and Bartnicki-Garcia S.2000. Dynein and dynactin deficiencies affect the formation and function of the Spitzenkorper and distort hyphal morphogenesis of Neurospora crassa. Microbiol.,146:1743-1752.
    Riquelme M, Roberson RW, McDaniel DP, and Bartnicki-Garcia S.2002. The effects of ropy-1 mutation on cytoplasmic organization and intracellular motility in mature hyphae of Neurospora crassa. Fungal Genet. Biol.,37:171-179.
    Robinett CC, Straight A, Li G, Wilhelm C, Sudlow G, Murray A, and Belmont AS.2001. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using Lac operator/repressor recognition. J. Cell Biol.,135:1685-1700.
    Robinsona MW, McFerranb N, Trudgettc A, Hoeyc L, and Fairweather I.2004. A possible model of benzimidazole binding to P-tubulin disclosed by invoking an inter-domain movement. Journal of Molecular Graphics and Modelling,23:275-284.
    Roos MH, Kwa MSG, and Grant WN.1995. New genetic and practical implications of selection for anthelmintic resistance in parasitic nematodes. Parasitol. Today,11:148-150.
    Rupes I, Mao WZ, Astrom H, and Raudaskoski M.1995. Effects of nocodazole and brefeldin A on microtubule cytoskeleton and membrane organization in the homo-basidiomycete Schizophyllum commune. Protoplasma,185:212-221.
    Sampson K and Heath IB.2005. The dynamic behaviour of microtubules and their contributions to hyphal tip growth in Aspergillus nidulans. Microbiol.,151:1543-1555.
    Schatz PJ, Pillus L, Grisafi P, Solomon F, and Botstein D.1986a. Two functional alpha-tubulin genes of the yeast Saccharomyces cerevisiae encode divergent proteins. Mol. Cell Biol.,6:3711-3721.
    Schatz PJ, Solomon F, and Botstein D.1986b. Genetically essential and nonessential alpha-tubulin genes specify functionally interchangeable proteins. Mol. Cell Biol.,6:3722-3733.
    Seiler S, Nargang FE, Steinberg G, and Schliwa M.1997. Kinesin is essential for cell morphogenesis and polarized secretion in Neurospora crassa. EMBO J.16:3025-3034.
    Seong KY, Zhao X, Xu JR, Guldener U, Kistler H C.2008. Conidial germination in the filamentous fungus Fusarium graminearum. Fungal Genetics and Biology,45:389-399.
    Skadsena RW, and Hohnb TM.2004. Use of Fusarium graminearum transformed with gfp to follow infection patterns in barley and Arabidopsis. Physiological and Molecular Plant Pathology,64: 45-53.
    Steinberg G, Wedlich-Soldner R, Brill M, and Schulz I.2001. Microtubules in the fungal pathogen Ustilago maydis are highly dynamic and determine cell polarity. J. Cell Sci.,114:609-622.
    Toda T, Umesono K, Hirata A, and Yanagida M.1983. Cold-sensitive nuclear division arrest mutants of the fission yeast Schizosaccharomyces pombe, J. Mol. Biol.,168:251.
    Takano Y, Oshiro E, and Okuno T.2001. Microtubule dynamics during infection-related morphogenesis of Colletotrichum lagenariium. Fungal Genet Biol.,34:107-121.
    Tatebe H, Goshima G, Takeda K, Nakagawa T, Kinoshital K, and Yanagida M.2001. Fission yeast living mitosis visualized by GFP-tagged gene products. Micron.,32:67-74.
    Theodorakis NG and Cleveland DW.1992. Physical evidence for cotranslational regulation of P-tubulin mRNA degradation. Mol. Cell. Biol.,12:791-799.
    Thomas JH, Neff NF, and Botstein D.1985. Isolation and characterization of mutations in the beta-tubulin gene of Saccharomyces cerevisiae. Genetics,111:715-734.
    Trail F, Xu JR, San Migue P, Halgren RG, and Kistler HC.2003. Analysis of expressed sequence tags from Gibberella zeae (anamorph Fusarium graminearum). Fungal Genet. Biol.,38:187-197.
    Tsien RY.1998. The green fluorescent protein. Ann. Rev. Biochem.,67:509-544.
    Uchida M, Roberson RW, Chun SJ, and Kim DS.2005. In vivo effects of the fungicide ethaboxam on microtubule integrity in Phytophthora infestans. Pest Manag. Sci.,61:787-792.
    van Egmond HP.2002. Worldwide regulations for mycotoxins. Adv. Exp. Med. Biol.,504:257-269.
    Weinstein B and Solomon F.1990. Phenotypic consequences of tubulin overproduction in Saccharomyces cerevisiae: differences between alphatubulin and beta-tubulin. Mol. Cell Biol.,10: 5295-5304.
    Wu Q, Sandrock TM, Turgeon BG, Yoder OC, Wirsel SG, and Aist JR.1998. A fungal kinesin required for organelle motility, hyphal growth, and morphogenesis. Mol. Bio. Cell,9:89-101.
    Wymelenberg AJV, Cullen D, Spearl RN, Schoenike B, and Andrews JH.1997. Expression of green fluorescent protein in Aureobasidium pullulans and quantification of the fungus on leaf surfaces. BioTechniques,23:686-690.
    Xiang X, Zuo W, Efimov VP, and Morris NR.1999. Isolation of a new set of Aspergillus nidulans mutants defective in nuclear migration. Curr. Genet.,35:626-630
    Yang L, Ukil L, Osmani A, Nahm F, Davies J, De Souza CPC., Dou XW, Perez-Balaguer A, and Osmani SA.2004. Rapid production of gene replacement constructs and generation of a green fluorescent protein-tagged centromeric marker in Aspergillus nidulans. Eukaryotic Cell,3 (5): 1359-1362.
    Yarden O and Katan T.1993. Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field isolates of Botrytis cinerea. Phytopathology,83:1478-1483.
    Yu JH, Hamari ZH, Han KH, Seo JA, Reyes-Dominguez Y, and Scazzocchio C.2004. Double-joint PCR:a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genetics and Biology,41:973-981.
    Zhang J, Campbell RE, Ting AY, and Tsien RY.2002. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell. Biol.,3:906-918.
    Zeev BA, Farmer S R, and Penman S.1979. Mechanisms of regulating tubulin synthesis in cultured mammalian cells. Cell,17:319-325.
    Zimmer M.2002. Green fluorescent protein (GFP):applications, structure, and related photophysical behavior. Chem. Rev.,102:759-781.
    李红霞,陆悦健,王建新,周明国.2003.禾谷镰孢菌β-微管蛋白基因克隆及其与多菌灵抗药性关系的分析.微生物学报,43:424-429.
    陆悦健,周明国,叶钟音,王建新.2000.抗苯并咪唑的小麦赤霉病菌β-tubulin基因序列分析与特性研究.植物病理学报,30:30-34.
    石志琦,史建荣,陈怀谷,林玲,王裕中.2000.小麦赤霉病菌对多菌灵的抗药性研究.农药学学报,2:22-27.
    周明国,王建新.2001.禾谷镰孢菌对多菌灵的敏感性基线及抗药性菌株生物学性质研究.植物病理学报,31:365-370.
    Adachi Y, Toda T, Niwa O, and Yanagida M.1986. Differential expression of essential and nonessential a-tubulin genes in Schizosaccharomyces pombe. Mol. Cell Biol.,6:2168-2178.
    Bond J F, Fridovich-Keil IL, Pillus L, Mulligan RC, and Solomon F.1986. A chicken-yeast chimeric P-tubulin protein is incorporated into mouse microtubules in vivo. Cell.,44:461-468.
    Cleveland DW.1987. The muititubulin hypothesis revisited:what have we learned? J. Cell Biol.,104: 381-383.
    Dutcher SK.2001. Motile organelles:The importance of specific tubulin isoforms. Curr. Biol.,11: R419-R422.
    Gard DL and Kirsebner MW.1985. A polymer dependent increase in the phosphorylatioo of β-tubulin accompanies differentiation of a mouse neuroblastoma cell line. J. Cell Biol.,100:764-774.
    Gasch A, Hinz U, Leiss D, and Renkawitz-Pohl R.1988. The expression of β1 and β3 tubulin genes of Drosophila melanogaster is spatially regulated during embryonganesis. Mol.& Gen. Genet.,211:8-16.
    Gu W, Lewis SA, and Cowan N J.1988. Generation of antisera that discriminate among mammalian P-tubulins:introduction of specialized isotypes into cultured cells results in their coassembly without disruption of normal microtubule functions. J. Cell Biol.,106:2011-2022.
    Gunderson OG, Kalnoski MH, and BulJnski JC.1984. Distinct populations of microtubules:tyrosinated and nontyrosinated P-tubulins are distributed differently in vivo. Celt.,38:779-789.
    Howard J and Hyman AA.2003. Dynamics and mechanics of the microtubule plus end. Nature,422: 753-758.
    Huber G and Matus A.1984. Diftereoces in the cellular distribution of two microtubule-associated proteins, MAPI and MAP2, in rat brain. Neurosci.,4:151-160.
    Inclan YF and Nogales E.2001. Structural models for the self-assembly and microtubule interactions of gamma-, delta-and epsilon-tubulin. J. Cell Sci.,114:413-422.
    Kimble M, Incardona JR, and Raft EC.1989. A variant β-tubulin isoform of Drosophila melanogaster (β3) is expressed primarily in tissues of mesodermai origin in embryos and pupal, and is utilized in populations of transient microtubules. Dev. Biol.,131:415-429.
    Lewis SA, Go W, and Cowan NJ.1987. Free intermingling of mammalian β-tubulin isotypes among functionally distinct microtubules. Cell.,49:539-548.
    L'Hernault SW and Rosenhaum RL.1985. Reversal of posttranslational modification on
    Chtamydomonas flagellar a-tubulin occurs during flagellar resorption. J. Cell Biol.,100:457-462.
    Luduena RF.1998. Multiple forms of tubulin:different gene forms and covalent modifications. Int. Rev. Cytol.,178:207-275.
    Lugones LG, Scholtmeijer K, Klootwijk R, and Wessels JGH.1999. Introns are necessary for mRNA accumulation in Schizophyllum commune. Mol. Microbiol.,32:681-689.
    May GS.1989. The highly divergent β-tubulins of Aspergillus nidulans are functionally interchangeable. J. Cell Biol.,109:2267-2274.
    McKean PG, Vaughan S, and Gull K.2001. The extended tubulin superfamily. J Cell Sci.,114: 2723-2733.
    Monnat J, Perez RO, and Turian G.1997. Molecular cloning and expression studies of two divergent a-tubulin genes in Neurospora crassa. FEMS Microbiology Letters,150:33-41.
    Nogales E, Wolf S G, and Downing KH.1998. Structure of the alpha/beta tubulin dimer by electron crystallography. Nature.,391:199-203.
    Paluh JL, Nogales E, Oakley BR, et al.2000. A mutation in gamma-tubulin alters microtubule dynamics and organization and is synthetically lethal with the kinesin-like protein pkllp. Mol. Biol. Cell.,11: 1225-1239.
    Raft EC, Diaz HB, Hoyle HD, Hutchens J A, Kimble M, Raft RA, Rudolph JE, and Sublet MA.1987. Origins of multiple gene families:are these both functional and regulatory constraints? In Development as an Evolutionary Process. R. A. Raft and E. C. Raft, editors.203-238. Alan R. Liss, Inc., New York.
    Romfo CM, Alvarez CJ, van Heeckeren WJ, Webb CJ, and Wise JA.2000. Evidence for splice site pairing via intron definition in Schizosaccharomyces pombe. Mol. Cell Biol.,20:7955-7970.
    Rosenbaum J.2000. Functions for tubulin modifications at last. Curr. Biol.,10:R801-R803.
    Ruiz F, Dupuis-Williams P, Klotz C, et al.2004. Genetic evidence for interaction between η-and β-tubulins. Eukaryot. Cell,3:212-220.
    Shatz PJ, Soloman F, and Botstein D.1986. Genetically essential and nonessential β-tubulin genes specify functionally interchangeable proteins. Mol, Cell Biol.,6:3722-3733.
    Weatherbee JA, May GS, Gambino J, and Morris NR.1985. Involvement of a particular species of beta-tubulin (beta 3) in conidial development in Aspergillus nidulans. J. Cell Biol.,101:706-711.
    Zheng YX, Wong ML, Alberts B, et al.1995. Nucleation of microtubule assembly by a y-tubulin-containing ring complexl. Nature,378 (6557):578-583.
    徐雍皋,陈利锋.1993.小麦赤霉病防治理论与实践.江苏科学技术出版社P18
    王裕中,1982.小麦赤霉病抗性鉴定技术的改进及其抗源的开拓.中国农业科学,4:26-29.
    Albertini C, Gredt M, and Leroux P.1999. Mutations of the β-tubulin gene associated with different phenotypes of benzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acutormis. Pestic. Biochem. Physiol.,64:17-31.
    Baraldi E, Mari M, Chierici E, Pondrelli M, Bertolini P, and Pratella GC.2003. Studies on thiabendazole resistance of Penicillium expansum of pears, pathogenic fitness and genetic characterization. Plant Pathol.,52:362-370.
    Beech RN, Prichard RK, and Scott ME.1994. Genetic variability of the beta-tubulin genes in benzimidazole-susceptible and -resistant strains of Haemonchus contortus. Genetics,138: 103-110.
    Bolay A, Crettenand J, Gnaegi F, and Schopfer JF.1974. The control of grey rot of grapes. Revue Suisse de Viticulture Arboriculture Horticulture,6:91-97.
    Bollen GJ and Scholten G.1971. Acquired resistance to benomyl and some other systemic fungicides in a strain of Botrytis cinerea in cyclamen. Neth. J. Plant Pathol.,77:83-90.
    Brown HD, Matzuk AR, Ilves IR, Peterson LH, Harris SA, Sarett LH, Egerton JR, Yakstis JJ, Campbell WC, and Cuckler AC.1961. Antiparasitic drugs, Ⅳ:2-(4'-thiazolyl)-benzimidazole, a new antihelmintic. Journal of the American Chemical Society,83:1764-1765.
    Bryk H.1997. Appearance and stability of Pezicula alba Gunth resistant to benzimidazole fungicides. Journal of Fruit and Ornamental Plant Research,5:77-87.
    Butters JA and Hollomon DW.1999. Resistance to benzimidazole can be caused by changes in β-tubulin isoforms. Pesticide Science,55:501-503
    Cargo CA and Dewey DH.1970. Thiabendazole and benomyl for the control of postharvest decay of apples. Hortscience,5:259-260.
    Chen CJ, Wang JX, Luo QQ, Yuan SK, and Zhou MG.2007. Characterization and fitness of carbendazim-resistant strains of Fusarium graminearum. Pest Management Science,63: 1201-1207.
    Clemons GP and Sisler HD.1971. Localization of the site of action of a fungitoxic benomyl derivative. Pesticide Biochemistry and Physiology,1:32-43.
    Cleveland DW, and Havercroft JC.1983. Is apparent autoregulatory control of tubulin synthesis nontranscriptionally regulated? J. Cell. Bio.,97:919-924.
    Cleveland DW, Lopata MA, Sherline P, and Kirschner MW.1981. Unpolymerized tubulin modulates the level of tubulin mRNAs. Cell,25:537-546.
    Cruz MC and Edlind T.1997. β-tubulin genes and the basis for benzimidazole sensitivity of the opportunistic fungus Cryptococcus neoformans. Microbiology,143:2003-2008.
    Cunha MG and Rizzo DM.2003. Development of fungicide cross resistance in Helminthosporium solani population from California, Plant Dis.,87:798-803.
    Davidse LC and Flach W.1977. Differential binding of methyl benzimidazol-2-yl carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans. J. Cell. Biol.,72:174-193.
    Davidse LC.1973. Antimitotic activity of methyl benzimidazol-2-yl carbamate (MBC) in Aspergillus nidulans. Pesticide Biochemistry and Physiology,3:317-325.
    De Brabander MJ, Van de Veire RM, Aerts FE, Borgers M, and Janssen PA.1976. The effects of methyl (5-(2-thienylcarbonyl)-1H-benzimidazol-2-yl) carbamate, (R 17934; NSC 238159), a new synthetic antitumoral drug interfering with microtubules, on mammalian cells cultured in vitro. Cancer Research,36:905-916.
    Desjardins AE, Proctor RH, Bai GH, McCormick SP, Shaner G, Buechley G, and Hohn TM.1996. Reduced virulence of trichothecene-nonproducing mutants of Gibberella zeae in wheat field tests. Mol. Plant-Microbe Interact.,9:775-781.
    Eaton LG, Siegmund OH, Rankin AD, and Bramel RG.1969. The veterinary uses of thiabendazole. Texas Reports on Biology and Medicine,27:693.
    Gafur A, Tanaka C, Shimizu K, Ouchi S, and Tsuda M.1998. Molecular analysis and characterization of the Cochliobolus heterostrophus beta-tubulin gene and its possible role in conferring resistance to benomyl. J. Gen. Appl. Microbiol.,44:217-223.
    Hastie AC and Georgopoulos SG.1971. Mutational resistance to fungitoxic derivative in Aspergillus nidulans. Journal of General Microbiology,67:371-373.
    Hodgkinson JE, Clark HJ, Kaplan RM, Lake SL, and Matthews JB.2008. The role of polymorphisms at beta-tubulin isotype 1 codons 167 and 200 in benzimidazole resistance in cyathostomins. International Journal for Parasitology,38:1149-1160
    Koenraadt H, Somerville SC, and Jones AL.1992. Characterization of mutations in the beta-tubulin gene of benomyl-resistant field isolates of Venturia inaequalis and other plant pathogenic fungi. Phytopathology,82:1348-1354.
    Kwa MSG, Kooyman FNJ, Boersema JH, and Roos MH.1993. Effect of selection for benzimidazole resistance in Haemonchus contortus on beta-tubulin isotype Ⅰ and isotype Ⅱ genes. Biochem. Biophys. Res. Commun.,191:413-419.
    Kwa, MSG, Veenstra JG, Van Dijk M, and Roos MH.1995. Beta-tubulin genes from the parasitic nematode Haemonchus contortus modulate drug resistance in Caenorhabditis elegans. J. Mol. Biol.,246:500-510.
    Lacey E and Gill JH.1994. Biochemistry of benzimidazole resistance. Acta Trop.,56:245-262.
    Lubega GW and Pritchard RK.1990. Specific interaction of benzimidazole anthelmintics with tubulin: high-affinity binding and benzimidazole resistance in H. contortus. Mol. Biochem. Parasitol.,38: 221-232.
    Luck JE and Gillings MR.1995. Rapid identification of benomyl resistant strains of Botrytis cinerea using the polymerase chain reaction. Mycol. Res.,99:1483-1488.
    Ma Z and Michailides JT.2005. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection,24:853-863.
    Ma Z, Yoshimura M, and Michailides TJ.2003. Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in California. Appl. Environ. Microbiol.,69:7145-7152.
    Ma Z, Yoshimura M, Holtz BA, and Michailides TJ.2005. Characterization and PCR-based detection of benzimidazole-resistant isolates of Monilinia laxa in California. Pest. Manag. Sci.,61 (5): 449-457.
    McKay GJ and Cooke LR.1997. A PCR-based method to characterize and identify benzimidazole resistance in Helminthosporium solani. FEMS Microbiol. Lett.,152:371-378.
    Orbach MJ, Porro EB, and Yanofsky C.1986. Cloning and characterization of the gene for beta-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker. Mol. Cell. Biol.,6:2452-2461.
    Prichard R.2001. Genetic variability following selection of Haemonchus contortus with anthelmintics. Trends Parasitol.,17:445-453.
    Robinsona MW, McFerranb N, Trudgettc A, Hoeyc L, and Fairweather I.2004. A possible model of benzimidazole binding to β-tubulin disclosed by invoking an inter-domain movement. Journal of Molecular Graphics and Modelling,23:275-284.
    Roos MH, Kwa MSG, and Grant WN.1995. New genetic and practical implications of selection for anthelmintic resistance in parasitic nematodes. Parasitol. Today,11:148-150.
    Schroeder WT, and Prowidenti R.1969. Resistance to benomyl in powdery mildew of cucurbits. Plant Dis. Rep.,53:271-275.
    Silvestre A and Cabaret J.2002. Mutation in position 167 of isotype 1 beta-tubulin gene of trichostrongylid nematodes:role in benzimidazole resistance. Mol. Biochem. Parasitol.,120: 297-300.
    Taylor MA, Hunt KR, and Goodyear KL.2002. The effects of stage specific selection on the development of benzimidazole resistance in Haemonchus contortus in sheep. Vet. Parasitol.,109: 29-43.
    Theodorakis NG, and Cleveland DW.1992. Physical evidence for cotranslational regulation of β-tubulin mRNA degradation, Mol. Cell. Biol.,12:791-799.
    Thomas JH, Neff NF, and Botstein D.1985. Isolation and characterization of mutations in the beta-tubulin gene of Saccharomyces cerevisiae. Genetics,111:715-734.
    van Egmond HP.2002. Worldwide regulations for mycotoxins. Adv. Exp. Med. Biol.,504:257-269.
    Wicks T.1974. Tolerance of the apple scab fungus to benzimidazole fungicides. Plant Dis. Rep.,58: 886-889.
    Yarden O and Katan T.1993. Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field isolates of Botrytis cinerea. Phytopathology,83:1478-1483.
    Zeev B, A, Farmer S R, and Penman S.1979. Mechanisms of regulating tubulin synthesis in cultured mammalian cells. Cell,17:319-325.
    李红霞,陆悦健,王建新,周明国.2003.禾谷镰孢菌β-微管蛋白基因克隆及其与多菌灵抗药性关系的分析.微生物学报,43:424-429.
    陆悦健,周明国,叶钟音,王建新.2000.抗苯并咪唑的小麦赤霉病菌β-tubulin基因序列分析与特性研究.植物病理学报,30(1):30-34.
    叶钟音,周明国.1985.中国江淮地区小麦赤霉病菌对多菌灵的敏感性测定.植物病理学报,12:188-189.
    周明国,叶钟音,刘经芬.1994.杀菌剂抗性研究进展.南京农业大学学报,17:33-41.
    周明国,叶钟音.1987.植物病原菌对苯并咪唑类及相关杀菌剂的抗药性.植物保护,13(2):31-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700