基于DNA环调控的rrnB P1嵌合启动子表达载体的构建及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表达载体的构建是实现高效表达的关键步骤,而作为表达载体组成元件之一的启动子是非常重要的。理想的启动子应具有以下特性:作用强,严格调控,易转导入其他E.coli以便筛选大量的用于生产蛋白的菌株,而且对其诱导是简便和廉价的。在大肠杆菌表达系统中,大部分表达载体采用诱导型启动子控制目的基因的表达。诱导型启动子能控制基因在特定时期、特定部位表达,这既避免了目的基因在宿主细胞内高表达对宿主细胞生长的影响,又可减少菌体蛋白酶对目标产物的降解。目前在外源基因表达中使用的大部分大肠杆菌启动子均来自相应操纵元,它们都带有可与阻遏蛋白特异性结合的操纵子区域。
     来源于大肠杆菌且有着超强能力的rRNA P1启动子是由包括-10区和-35区的核心启动子、一个顺式作用元件(UP元件)和3到5个反式作用转录因子(Fis)的结合位点组成的,但它们仍未被用于E.coli进行高水平表达,其主要原因是难以对其进行调控。本研究的意义就在于通过可行的方式实现对rRNA P1启动子的调控。
     本文首先利用大肠杆菌阿拉伯糖操纵元通过DNA环实现调控转录的特点,应用DNA重组技术构建嵌合启动子。以此启动子为基础构建了表达载体pRBB。以p-1,4-葡聚糖内切酶基因cel5G作为报告基因证实该重组表达载体可以接近pET系列商业化载体的效率进行表达。但宿主菌中的AraC调节蛋白不足以抑制启动子的转录,因此,另外构建了调节基因araC的重组质粒,通过双质粒共转化实现了对启动子的调控。
     同一宿主菌中的不相容性双质粒在传代中存在着分配上的不均一性,这在一定程度上影响了表达的稳定性。为了消除这一影响,同时为了更进一步验证DNA环的调控作用,我们利用大肠杆菌乳糖操纵元调控转录的特点,应用DNA重组技术构建两种嵌合启动子。其中一种是含rRNA rrnB P1启动子序列和两个lacO操纵子的嵌合启动子,分别位于核心启动子-10区下游和Fis结合位点上游,且两个lacO操纵子之间的距离是92 bp,当有阻遏蛋白(LacI)存在的情况下,它能同时与两个操纵子结合从而形成DNA环,以此来调控启动子的转录。另外一种是含rRNA rrnB P1启动子序列和一个位于核心启动子-10区下游的lacO操纵子的嵌合启动子,以此作为对照比较DNA环的调控作用。分别以这两个启动子为基础构建了不同的表达载体pRNP2和pRNP1。以本实验室克隆得到的β-1,4-葡聚糖内切酶基因cel5G作为报告基因,验证两种嵌合启动子的调控效果。结果发现只有一个lacO操纵子的嵌合启动子在没有诱导物(IPTG)的情况下已有很高的本底表达,而有两个lacO操纵子的嵌合启动子在没有诱导物存在的时候几乎没有表达外源蛋白,当加入IPTG后,外源基因可以很好地表达。另外还利用解淀粉芽孢杆菌FZB42的解淀粉芽孢杆菌核糖核酸酶barnase基因构建了pRNP2-barnase重组表达载体,再次验证了pRNP2载体在BL21(DE3)宿主菌中的严谨性。结果表明我们成功构建了基于rrnB P1启动子和DNA环调控元件的可控表达载体,此载体可以利用多种大肠杆菌作为宿主菌表达外源基因,并且在BL21(DE3)中的严谨性最佳,这对于表达有毒蛋白非常有用。
     同时根据载体的特性扩展了该表达载体在定向突变方面的应用。采用易错PCR体外定向进化技术,利用表达载体pRBB建立了来源于Flavobacterium sp.的去除信号肽的乙基对硫磷水解酶基因opd突变体库,并通过回复突变研究了突变位点与Oph结构间的关系。采用pRBB载体,PCR产物可直接与表达载体连接,进行目的基因的表达,省去了亚克隆的步骤,使筛选工作更加简便、快速。为了分析不同氨基酸位点对乙基对硫磷水解酶活性的影响,我们选取了2个活性丧失的突变体,每个突变体分别有3个不同的氨基酸突变位点,通过对酶分子结构的分析,发现大部分突变位点氨基酸残基位于结构表面且远离活性中心。
     通过重叠延伸PCR法分别构建了12种单位点和双位点回复突变酶。通过检测突变酶的活性发现,F216L和M293V的单个位点突变对乙基对硫磷水解酶活性没有影响,而当两个位点同时突变时酶活降低了50%。这一现象表明,在突变酶F216L和M293V中可能存在两个突变位点的协同叠加作用而降低了酶的催化效率,而不是单个氨基酸残基突变产生的作用。V316E的突变使酶活降低了约70%;E115G和R275H的单位点突变都使得酶活降低了近80%;198T的单突变以及R275H和V316E的双位点突变都使得酶活全部丧失。这些结果也揭示了处于非活性中心或非结合位点的突变位点可能通过改变整个酶分子的空间位阻、催化残基之间的氢键网络形成来改变酶的催化特性。本研究为采用定向进化的方法改造有机磷水解酶提供了有价值的理论参考。
The construction of an expression vector requires several elements whose configuration must be carefully considered to ensure the highest levels of protein synthesis. The value of expression vector based on useful promoter is well recognized in modern biotechnology. A useful promoter exhibits several desirable features:it is strong, has a low basal expression level, easily transferable to other E. coli strains to screen a large number of strains for yielding protein, and its induction is simple and cost-effective. In E. coli expression system, the expression of target gene was regulated by inducible promoters in most expression vectors. Inducible promoters can control gene expression at particular time and specific parts, which not only avoids effect on growth of host cells when target genes were expressed in them, but also reduces the proteolysis of the target products. At present, most E.coli promoter used in expression of heterologous gene are derived from the corresponding operon All of them harbor operon region, which could be binded specifically with repressor proteins.
     The high-activity rrnB P1 promoter derived from E. coli contains a core promoter, a cis-acting DNA sequence (the UP element), and 3-5 trans-acting transcription factor (Fis) binding sites. Although the extraordinary strength of the rRNA promoters P1 and P2 is well documented, these promoters have not been exploited for the high-level expression of proteins in E. coli, mainly because of their difficult regulation. The significance of this study is to achieve regulation of 16rRNA P1 promoter.
     In this study, based on loop-controlled regulation system of the arabinose operon and rRNA rrnB P1 promoter, one chimeric promoter was constructed using gene recombinant techniques. Based on the promoter, an expression vector pRBB was constructed. A recombinant expression vector pRBB-cel5G was constructed usingβ-1,4-glucanase gene cel5G as a reporter and transformed into E.coli TOP 10. Based on comparison of expression with or without induction of iducer (arabinose), we found that the AraC regulatory protein in host strains couldn't repress the transcription. Therefore, another recombinant expression plasmid harboring regulatory gene araC was also constructed. And we could regulate the promoter by co-transforming both of the two plasmids.
     In order to eliminate the effect of the instability of expression, and prove the regulation of DNA loop, based on loop-controlled regulation system of the lactose utilization operon and rRNA rrnB P1 promoter, two chimeric promoters were constructed using gene recombinant techniques. One chimeric promoter contains rRNA rrnB P1 promoter sequence and two lacO sites located 92bp apart, one of which was located downstream of the -10 site and the other was located upstream of the Fis site. When a tetrameric lac repressor (LacI) binds to two lacO sites without the presence of inducer (IPTG), a DNA loop is formed that could repress the transcription of the heterologous gene. There was only one lacO in another promoter which was located downstream of the -10 site and this promoter was designed as a control to compare the regulative effects of looping. Based on the two different promoters, two expression vectors were constructed and designated as pRNP2 and pRNP1 respectively. The efficiency of the rrnB P1 expression system was evaluated using the endo-β-1,4-glucanase gene as a reporter. The results indicated that the regulation of promoter by DNA looping significantly increased the repression level. DNA looping could eliminate most of the undesired basal transcription under non-inducing conditions. To verify the stringent regulation of promoter by the loop structure, we expressed ribonuclease barnase gene of Bacillus amyloliquefaciens in E. coli BL21 (DE3) using pRNP2-barnase expression vector. The results indicated that the barnase gene was stringently regulated in E. coli BL21 (DE3). All these results proved that we have developed a high-level expression system based on the rRNA rrnB P1 promoter and loop regulation strategy. The expression vector allowed a higher expression level of recombinant protein in different E. coli host strains. Furthermore, the vector was a tightly regulated expression vector, especially in the E. coli host strain BL21 (DE3). This feature might be useful for the expression of toxic proteins in E. coli.
     An ethyl parathion hydrolase opd gene mutant library was established by directed evolution techniques of error-prone PCR using the expression vector pRBB. Expression vector pRBB could be ligated with PCR products directly to express target protein, so it made screening more convenient and fast. In order to analyze the effect of different amino acid positions towars ethyl parathion hydrolase activity, two Oph mutants losing activity were selected from the mutant library, both of which had three site mutations. Structural models of two mutant proteins revealed that most of the mutation points of amino acid residues were located in the surface of the structure, and far away from catalytic center of the enzyme.
     For further study of the functions of substitutions in the mutants,12 site-mutation variants were constructed by using SOE-PCR. By detecting the activities of the mutants, substitutions F216L and M293V with single mutation site were found to show slight decreased activity compared with wild type enzyme, whereas simultaneous mutation with the same two sites results in reduction to 50% of original enzyme. This phenomenon indicated that the decreased activity of double sites mutant was not due to the contribution of the single substitution, but due to the synergistic effect of multi-site substitutions. V316E substitution caused a reduction of 70% of the original enzyme activity; E115G and R275H mutations had made the activity decreased by nearly 80%;I98T single site mutation and R275H and V316E double sites mutation lost all of the enzyme activity. All of the results revealed that mutation sites outside of the catalytic center or the binding sites changed catalytic activity by changing formation of hydrogen bonds of catalytic residues in active site. This study provided useful references for directed evolution of the ethyl parathion hydrolase.
引文
[1]Duilio A, Tutino ML and Marino G. Recombinant protein production in Antarctic gram-negative bacteria[J]. Methods Mol Biol,2004,267:225-238.
    [2]Doran P. Foreign protein production in plant tissue cultures[J]. Curr. Opin Biotechnol,2000,11: 199-204.
    [3]Nuc P, Nuc K. Recombinant protein production in Escherichia coli[J]. Postepy Biochem,2006,52(4): 448-456.
    [4]Larrick JW, Thomas DW. Producing proteins in transgenic plant and animals[J]. Curr Opin Biotechnol,2001,12 (4):411-418.
    [5]Hockneyr C. Recent developments in heterologous p rotein production in Escherichia coli[J]. Trends Biotechnol,1994,12(11):456-463.
    [6]Makride SC. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiological. Reviews,1996,60(3):512-538.
    [7]Ou J, Yamada Y, Nagahiss K, et al. Dynamic change in promoter activation during lysine biosynthesis in Escherichia coli cells[J]. Mol Biosyst,2008,4(2):128-134.
    [8]Qing G, Xia B and InouyeM. Enhancement of translation initiation by A/T-rich sequences downstream of the initiation codon in Escherichia coli[J]. J Mol Microbiol Biotechnol,2003,6: 133-144.
    [9]Adhya S and Gottesman M. Promoter occlusion:transcription through a promoter may inhibit its activity[J]. Cell,1982,29:939-944.
    [10]Buell G, Schulz MF, Selzer G, et al. Optimizing the expression in E. coli of a synthetic gene encoding somatomedin-C (IGF-I)[J]. Nucleic Acids Res,1985,13:1923-1938.
    [11]Inouye M. The discovery of mRNA interferases:implication in bacterial physiology and application to biotechnology [J]. J Cell Physiol,2006,209(3):670-676.
    [12]Rao XC, Li S, Hu JC, et al. A novel carrier molecule for high-level expression of peptide antibiotics in Escherichia coli[J]. Protein Express Purif,2004,36 (1):11-18.
    [13]Morino T, Morita M, Seya K, et al. Construction of a runaway vector and its use for a high-level expression of a cloned human superoxide dismutase gene[J]. Appl Microbiol Biotechnol,1988,28: 170-175.
    [14]Nordstro MK and Uhlin BE. Runaway-replication plasmids as tools to produce large quantities of proteins from cloned genes in bacteria[J]. Bio/Technology,1992,10:661-666.
    [15]Wilson CJ, Zhan H, Swint Kruse, et al. The lactose repressor systeml paradigms for regulation-allosterie behavior and protein folding[J]. Cell Mol Life Sci,2007,64(1):3-16.
    [16]Bowers LM, Lapoint K, Anthony L, et al. Bacterial expression system with tightly regulated gone expression and plasmid copy number[J]. Gene,2004.340(1):11-18.
    [17]Das, A. Overproduction of proteins in Escherichia coli:vectors, hosts, and strategies[J]. Methods Enzymol,1990,182:93-112.
    [18]Hasan N and Szybalski W. Construction of laclts and laclqts expression plasmids and evaluation of the thermosensitive lac repressor[J]. Gene,1995,163:35-40.
    [19]Yabuta, M., Onai-Miura S and Ohsuye K. Thermo-inducible expression of a recombinant fusion protein by Escherichia coli lac repressor mutants [J]. J Biotechnol,1995,39:67-73.
    [20]Caulcott CA and Rhodes M. Temperature-induced synthesis of recombinant proteins[J]. Trends Biotechnol,1986,4:142-146.
    [21]Derynck R, Remaut E, Saman E, et al. Expression of human fibroblast interferon gene in Escherichia coli[J]. Nature (London),1980,287:193-197.
    [22]Studier FW and Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes[J]. J Mol Biol,1986,189:113-130.
    [23]Tabor S, and Richardson CC. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes[J]. Proc Natl Acad Sci USA,1985,82:1074-1078.
    [24]Moffatt BA and Studier FW. T7 lysozyme inhibits transcription by T7 RNA polymerase[J]. Cell, 1987,49:221-227.
    [25]Bae YM, Stauffer GV. Mutations that affect activity of the Rhizobium meliloti trpE (G) promoter in Rhizobium meliloti and Escherichia coli[J]. J Bacteriol,1991,173(18):5831-5836.
    [26]Newbury SF, Smith NH, Robinson EC, et al. Stabilization of translationally active mRNA byprokaryotic REP sequences[J]. Cell,1987,48:297-310.
    [27]Richardson JP. Transcription termination[J]. Crit Rev Biochem Mol Biol.1993,28 1-30.
    [28]Ross J. mRNA stability in mammalian[J] cells. Microbiol Rev,1995,59:423-450.
    [29]Gold L. Posttranscriptional regulatory mechanisms in Escherichiacoli[J]. Annu Rev Biochem,1988, 57:199-233.
    [30]Barrick D, Villanueba K, Childs J, et al. Quantitative analysis of ribosome binding sites in E. coli[J]. Nucleic Acids Res,1994,22:1287-1295.
    [31]de Smit MH, and van Duin J. Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data[J]. J Mol Biol,1994,244:144-150.
    [32]Poole, ES Brown, CM Tate WP. The identity ofthe base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli[J]. EMBO J.1995,14:151-158.
    [33]Rauhut R, Klug G. mRNA degradation in bacteria[J]. FEMS Microbiol Rev.1999,23:353-370.
    [34]Regnier P, Arraian CM. Degradation of mRNA in bacteria:emergence of ubiquitous features[J]. Bioessays.2000,22:235-244.
    [35]Lopez PJ, Marchand I, Joyce SA, et al. The C-terminal half of RNase E, which organizes the Escherichia coli degradosome, participates in mRNA degradation but not rRNA processing in vivo[J]. Mol Microbiol.1999,33:188-199.
    [36]Phi-Van L, Stratling WH, et al. Dissection of the ability of the chicken lysozyme gene 5'matrix attachment region to stimulate transgene expression and to dampen position effects[J]. Biochemistry,1996,35(33):10735-10742.
    [37]Belasco JG., Nilsson G, Gabain A, et al. The stability of E. coli gene transcripts is dependent on determinants localized to specific mRNA segments[J]. Cell,1986,46:245-251.
    [38]Wikstrom PM, Lind LK. Importance of mRNA folding and start codon accessibility in the expression of genes in a ribosomal protein operon of Escherichia coli[J]. J Mol Biol,1992,224(4): 949-966.
    [39]Chen CYA, Shyu AB. AU-rich elements:characterization and importance in mRNA degradation. Trends Biochem Sci,1995,20(11):465-470.
    [40]Kruys V, Marinx O, Shaw G, et al. Translation blockade imposed by Cytokine-derived UA-rich Sequences[J]. Science,1989,245(4920):852-855.
    [41]罗辽复,李晓琴tRNA丰度是影响蛋白质二级结构形成的一个因素[J].内蒙古大学学报.2003,34(5):519-529.
    [42]时成波,吕安国,吴文芳等.改造稀有密码子提高SEA蛋白表达量[J].生物工程学报,2002,18(4):477-480.
    [43]Sato T, Terabe M, Watansbe H. Codon and base biases after the initiation codon of the open reading frames in the Escherichia coli genome and their influence on the translation efficiency [J]. J Biochem(Tokyo),2001,129(6):851-860.
    [44]Dzivenu KO, Hyun HP and Wu H. General co-expression vectors for the overexpression of heterodimeric protein complexes in Escherichia coli. Protein Expres Purif,2004,38:1-8.
    [45]Yoichi K, Hideki Y, Takashi Y. Overproduction of bacterial protein disulfide isomerase(DsbC) and its modulator(DsbD) markedly enhances periplasmic production of human nerve growth factor in Escherichia coli[J]. Biol Chem,2001,276:14393-14399.
    [46]Vasseur-Godbillon C, Hamdane D, Marden MC, et al. High-yield expression in Escherichia coil of soluble human α-hemoglobin complexed with its molecular chaperone[J]. Protein Eng Des Sel, 2006,19:91-97.
    [47]Lin WJ, Huang SW, Chou CP. DegP-co-expression minimizes inclusion-body formation upon overproduction of recombinant penicillin acylase in Escherichia coil[J]. Biotechnol Bioengineer, 2001,73:484-492.
    [48]de Mareo A, Volrath S, Bruyere T, et al. Recombinant maize protoporphyrinogen IX oxidase expressed in Escherichia coli forms complexes with GroEL and DnaK chaperones[J]. Protein Expres Purif,2000,20:81-86.
    [49]Levy R, W eiss R, Chen G. et al. Production of correctly folded Fab antibody fragment in the cytoplasm of Escherichia coli trxB gor mutants via the co-expression of molecular chaperones[J]. Protein Expre Purif,2001,23:338-347.
    [50]Xu HM, hang GY, Ji XD, et al. Expression of soluble, biologically active recombinant human endostatin in Escherichia coli[J]. Protein Express Purif,2005,41:252-258.
    [51]Zang YH, Zhang X, Yuan DW, et al. Expression, purification, and characterization of a novel recombinant fusion protein rhTPO/SCF in Escherichia coli[J]. Protein Express.Purif,2006,47: 427-433.
    [52]Kholod N and Mustelin T. Novel vectors for co-expression of two proteins in Escherichia coli[J]. Biotechniques,2001,31:322-328.
    [53]Maori M and Masahiko I. Improvement in the expression of CYP2B6 by co-expression with molecular chaperones GroES/EL in Escherichia coli[J]. Protein Express Purif,2006,46:401-405.
    [54]Chen HP, Hsui FC, Lin LY, et al. Co-expression, purification and characterization of the E and S subunits of coenzyme B12 and B6 dependent Clostridium sticklandii D-ornithine aminomutase in Escherichia coli[J]. Eur J Biochem,2004,271(21):4293-4297.
    [55]Joly CJ, Leung WS and Swartz RJ. Overexpression of Escherichia coli oxidoreductases increases recombinant insulin-like growth factor-I accumulation[J]. Proc Natl Acad Sci USA,1998,95: 2773-2777.
    [56]Du LQ, Wei YT, Chen FZ, et al. Co-expression of gpd1 and hor2 from Saccharomyces cerevisiae in Escherichia coli[J]. Chin J Biotechnol,2005,21(3):385-389.
    [57]Tan S. A modular polycistronic expression system for overexpressing protein complexes in Escherichia coli[J]. Protein Express Purif,2001,21:224-234.
    [58]Tan S, kern CR and Selleck W. The pST44 polycistronic expression system for producing protein complexes in Escherichia coli[J]. Protein Express Purif,2005,40:385-395.
    [59]Kim KJ, Kim HE, Lee KH, et al. Two-promoter vector is highly efficient for overproduction of protein complexes[J]. Protein Science,2004,13:1698-1703.
    [60]Muller B, Restle T, Weiss S. et al. Co-expression of the subunits of the heterodimer of HIV-1 reverse transcriptase in Escherichia coli[J]. J Biological Chemistry,1989,264:13975-13978.
    [61]Caspers P, Stieger M and Burn P. Overproduction of bacterial chaperones improves the solubility of recombinant protein tyrosine kinases in Escherichia coli[J]. Cell Mol Biol,1994,40:635-644.
    [62]Ostermeier M, De Sutter K and Georgiou G. Eukaryotic protein disulfide isomerase complements Escherichia coli dsbA mutants and increases the yield of a heterologous secreted protein with disulfide bonds[J]. J Biol Chem,1996,271:10616-10622.
    [63]Humphreys DP, Weir N, Mountain A. et al. Human protein disulfide isomerase functionally complements a dsbA mutation and enhances the yield of pectate lyase C in Escherichia coli[J]. J Biol Chem,1995,270:28210-28215.
    [64]Wang L, Miller A, Kendall DA. Signal peptide determinants of SecA binding and stimulation of ATPase activity[J]. Biol Chem,2000,275(14):10154-10159.
    [65]Sagiya Y, Yamagata H and Udaka S. Direct high-level secretion into the culture medium of tuna growth hormone in biologically active form by Bacillus brevis[J]. Appl Microbiol Biotechnol,1994, 42(223):358-363.
    [66]Greenwood JM, Gilkes NR, Miller RC. et al. Purification and processing of cellulose-binding domain-alkaline phosphatase fusion proteins[J]. Biotechnol. Bioeng,1994,44:1295-1305.
    [67]Jones FS, Crossin KL, Cunningham BA, et al. Identification and characterization of the promoter for the cytotactin gene[J]. Proc Natl Acad Sci USA,1990,87(17):6497-6501.
    [68]Liang S, Bipatnath M, Xu Y. et al. Activities of constitutive promoters in Escherichia coli[J]. J Mol Biol,1999,292:19-37.
    [69]Gafny R, Cohen S, Nachaliel N. et al. Isolated P2 rRNA promoters of Escherichia coli are strong promoters that are subject to stringent control[J]. J Mol Biol,1994,243:152-156.
    [70]Rao L, Ross W. Appleman JA. et al. Factor-independent activation of rrnB P1:an "extended" promoter with an upstream element that dramatically increase promoter strength[J]. J Mol Biol, 1994,235:1421-1435.
    [71]Gourse RL, de Boer HA and Nomura M. DNA determinations of rRNA synthesis in E. coli:growth rate dependent regulation, feedback inhibition, upstream activation, antitermination[J]. Cell,1986, 44:197-205.
    [72]Hirvonen CA, Ross W, Wozniak CE. et al. Contributions of UP elements and the transcription factor FIS to expression from the seven rrn P1 promoters in Escherichia coli[J]. J Bacteriol,2001, 183:6305-6314.
    [73]Ross W, Gosaink K K. et al A third recognition element in bacterial promoters:DNA binding by the a subunit of RNA polymerase[J]. Science.1993,262:1407-1413.
    [74]Ross W, Aiyar SE, Salomon J. et al. Escherichia coli promoters with UP elements of different strengths:modular structure of bacterial promoters[J]. J Bacteriol,1998,180:5375-5383.
    [75]Condon C, Squires C and Squires CL. Control of rRNA transcription in Escherichia coli[J]. Microbiol. Rev,1995,59:623-645.
    [76]Adhya S. Multipartite genetic control elements:communication by DNA loop[J]. Annu Rev Genet, 1989,23:227-250.
    [77]Schleif R. DNA looping[J]. Annu Rev Biochem,1992,61:199-223.
    [78]Matthews KS:DNA looping[J]. Microbiol Rev,1992,56:123-136.
    [79]Vilar JMG and Saiz L. DNA looping in gene regulation:from the assembly of macromolecular complexes to the control of transcriptional noise[J]. Current Opinion in Genetics and Development,2005,15:136-144.
    [80]Chambeyron S and Bickmore WA. Does looping and clustering in the nucleus regulate gene expression[J]? Curr Opin Cell Biol,2004,16(3):256-262.
    [81]Moreau P, Hen R, Wasylyk B. et al. The SV40 72 base repair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants[J]. Nucleic Acids Res,1981,9: 6047-6068.
    [82]Irani MH, Orosz L and Adhya S. A control element within a structural gene:the gal operon of Escherichia coli[J]. Cell,1983,32:783-788.
    [83]Dunn TM, Hahn S, Ogden S. et al. An operator at -280 base pairs that is required for repression of araBAD operon promoter:addition of DNA helical turns between the operator and promoter cyclically hinders repression [J]. Proc Natl Acad Sci USA,1984,81:5017-5020.
    [84]Ptashne M. A genetic switch:phage lambda revisited edn 3rd. Cold Spring Harbor, N.Y.:Cold Spring Harbor Laboratory Press; 2004.
    [85]Tolhuis B, Palstra RJ, Splinter E. et al. Looping and interaction between hypersensitive sites in the active beta-globin locus[J]. Mol Cell,2002,10:1453-1465.
    [86]Ham TS, Lee SK, Keasling JD. et al. A tightly regulated inducible expression system utilizing the fim inversion recombination switch[J]. Biotechnol Bioeng,2006,94:1-4.
    [87]刘晓琳,王刚,化冰等.启动子控制严密性对抗体库多样性影响的研究[J].海军总医院学报,2001,14:139-144.
    [88]Liu P, Jenkins NA and Copeland NG. A highly efficiently recombineering-based method for generating conditional knockout mutations[J]. Genome Res,2003,13:476-484.
    [89]Oehler S, Eismann ER, KramerH. et al. The three operators of the lac operon cooperate in repression[J]. EMBO J,1990,9:973-979.
    [90]Muller J, Oehler S and Muller-Hill B. Repression of lac promoter as a function of distance, phase and quality of an auxiliary lac operator[J]. J Mol Biol,1996,257:21-29.
    [91]Oehler S, Amouyal M, Kolkhof P. et al. Quality and position of the three lac operators of E. coli define efficiency of repression[J]. EMBO J,1994,13:3348-3355.
    [92]Vilar JM and Saiz L. DNA looping and physical constraints on transcription regulation[J]. J. Mol. Biol,2003,331:981-989.
    [93]Balaeff A, Mahadevan L and Schulten K. Elastic rod model of a DNA loop in the lac operon[J]. Physical Review Letters,1999,83(23):4900-4903.
    [94]Balaeff A, Mahadevan L and Schulten K. Structural basis for cooperative DNA binding by CAP and lac repressor[J]. Structure,2004,12:123-132.
    [95]Villa E, Balaeff A and Schulten K. Structural dynamics of the lac repressor-DNA complex revealed by a multiscale simulation[J]. Pnas,2005,102(19):6783-6788.
    [96]Villa E, Balaeff A, Mahadevan L. et al. Multiscale method for simulating protein-DNA complexes[J]. Multiscale Mod Sim,2004,2:527-553.
    [97]Ashani Y, Rothschild N and Segall Y. Prophylaxis against organophosphates poisoning by an enzyme hydrolyzing organophosphorus compounds in mice[J]. Life Sci,1991,49:367-374.
    [98]Lewis VE, Donarski WJ, Wild JR. et al. Mechanism and stereochemical course at phosphorus of the reaction catalyzed by a bacterial phosphotriesterase[J]. Biochemistry,1998,27:1591-1597.
    [99]Sedar CM, Gibson DT, Munnecke DM. et al. Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta[J]. Appl Environ Microbiol,1982,44:246-249.
    [100]Omburo GA, Kuo JM, Mullins LS. et al. Characterization of the zinc binding site of bacterial phosphotriesterase[J]. J Biol Chem,1992,267:13278-13283.
    [101]Rowland SS, Speedie MK and Pogell BM. Purification and characterization of a secreted recombinant phosphotriesterase (parathion hydrolase) from Streptomyces lividans[J]. Appl Environ Microbiol,1991,57:440-444.
    [102]Dumas DP, Wild JR and Raushel FM. Expression of pseudomonas diminuta phosphotriesterase activity in the fall armyworm confers resistance to insecticides [J]. Experientia,1990,46:729-731.
    [103]Donarski WJ, Dumas DP, Heitmeyer DP. et al. Structure-activity relationships in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta[J]. Biochemistry,1989,28: 4650-4655.
    [104]Vanhoke JL, Benning MM, Raushel FM. et al. Three dimensional structure of the zinc-containing phosphotriesterase with the bound substrate analog diethyl 4-Methylbenzyl phosphonate[J]. Biochemistry,1996,35:6020-6025.
    [105]Kuo JM and Raushel FM. Identification of the histidine ligands to the binuclear metal venter of phosphotriesterase by site-directed mutagenesis[J]. Biochemistry,1994,33:4265-4272.
    [106]Dumas DP, Caldwell SR, Wild JR. et al. Purification and properties of the phosphotriesterase from Pseudomonas diminuta[J]. J Biol Chem,1989,264:19659-19665.
    [107]Jane MK and Frank M. Raushel. Identification of the Histidine Ligands to the Binuclear Metal Center of Phosphotriesterase by Site-Directed Mutagenesis[J]. Biochemistry,1994,33:4265-4272.
    [108]Janeen LV, Matthew MB, Frank MR. et al. Three dimensional Structure of the Zinc-Containing Phosphotriesterase with the Bound Substrate Analog Diethyl 4-Methylbenzylphosphonate[J]. Biochemistry,1996,35:6020-6025.
    [109]Chen GM, Sogorb MA, Wu FY. et al. Enhancement, Relaxation, and Reversal of the Stereoselectivity for Phosphotriesterase by Rational Evolution of Active Site Residues[J]. Biochemistry,2001,40:1332-1339.
    [110]Chen GM, Sogorb MA, Wu FY. et al. Structural determinations of the Substrate and Stereochemical Specificity of Phosphotriesterase[J]. Biochemistry,2001,40:1325-1331.
    [111]Li WS, Lum KT, Chen GM. et al. Stereoselective Detoxification of Chiral Sarin and Soman Analogues by Phosphotriesterase[J]. Bioorg Med Chem,2001,9:2083-2091.
    [112]Leung DW, Chen E and Goeddel DV. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction[J]. Technique,1989,1:11-15.
    [113]Stemmer WPC. DNA shuffling by random fragmentation and reassembly:in vitro recombination for molecular evolution[J]. Proc Natl Acac Sci,1994,91:10747-10751.
    [114]Geddle ML and Matsumura L. Rapid evolution of β-glucurondiase specificity by saturation mutagenesis of an active site loop[J]. J Biol Chem,2004,279(25):26462-26468.
    [115]Palackal N, Brennan Y, Callen WN. et al. An evolutionary route to xylanase process fitness[J]. Protein Sci,2004, (13):494-503.
    [116]Chen K and Arnold FH. Enzyme engineering for nonaqueous solvent:random mutagenesis to enhance activity of sublisin E in polar organic media[J]. Bio Technology,1991,9:1073-1077.
    [117]Fujii R, Kitaoka M, Hayashi K. One-step random mutagenesis by error-prone rolling circle amplification[J]. Nucleic Acids Res,2004,32(19):e145
    [118]Stemmer WPC, Rapid evolution of a protein in vitro by DNA shuffling[J]. Nature,1994,370(4): 389-391.
    [119]Moore JC, Jin HM, Kuchner O. et al. Strategies for the in vitro evolution of protein function: enzyme evolution by random recombination of improved sequences[J]. J Mol Biol,1997,272 (3): 336-347.
    [120]Crameri A, Raillard SA, Bemmdez E. et al. DNA shuffling of a family of genes from diverse species accelerates evolution[J]. Nature,1998,391(3):288-291.
    [121]Zhao H, Giver L, Shao Z. et al. Molecular evolution by staggered extension process(STEP)in vitro recombination. Nat Biotechnol,1998,16:258-261.
    [122]Shao Z, Zhao H and Arnold FH. Random-priming in vitro recombination:an effective tool for directed evolution[J]. Nucleic Acids Res,1998,26(2):681-683.
    [1]Ou J, Yamada Y, Nagahiss K. et al. Dynamic change in promoter activation during lysine biosynthesis in Escherichia coli cells[J]. Mol Biosyst,2008,4(2):128-134.
    [2]Gafny R, Cohen S, Nachaliel N. et al. Isolated P2 rRNA promoters of Escherichia coli are strong promoters that are subject to stringent control[J]. J Mol Biol,1994,243:152-156.
    [3]Nomura M, Gourse R and Baughman G. Regulation of the synthesis of ribosomes and ribosomal components [J]. Annu Rev Biochem,1984,53:75-118.
    [4]Gourse RL, de Boer HA and Nomura M. DNA determinations of rRNA synthesis in E. coli:growth rate dependent regulation, feedback inhibition, upstream activation, antitermination[J]. Cell,1986, 44:197-205.
    [5]Sharon O, Dennis H, Carol MS. et al. The Escherichia coli L-arabinose operon:Bingding sites of the regulatoty proteins and a mechanism of positive and negative regulation[J]. Proc Natl Acad Sci USA,1980,77:3346-3350.
    [6]Miller SA, Dykes DD, Polesky HE A simple salting out procedure for extracting DNA from human nucleated cells[J]. Nucleic Acids Res,1988,16:1215.
    [7]Miller GL. Use of dinitrosalicyclic acid reagent for determination of reducing sugar[J]. Biotechnol Bioeng Symp,1959,5:193-219.
    [8]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem,1976,72:248-254.
    [9]杨巍,张岚等.利用两种不相容质粒在大肠杆菌中共表达DFF45和DFF40[J].生物化学与生物物理学报,2001,33(2):238-242.
    [10]Meacock PA and Cohen SN. Partitioning of bacterial plasmids during cell division:a cis-acting locus that accomplishes stable plasmid inheritance. Cell,1980,20:529-542.
    [11]Martin K, Huo Li and Schleif RF.The DNA loop model for ara repression:AraC protein occupies the proposed loop sites in vivo and repression-negative mutations lie in these same sites [J]. Proc Natl Acad Sci USA,1986,83:3654-3658.
    [12]Schleif R. DNA looping[J]. Annu Rev Biochem,1992,61:199-223.
    [13]Davison J. Mechanism of control of DNA replication and incompatibility in ColEl-type plasmids. A review. Gene,1984; 28(3):1215.
    [14]Novick RP. Plasmid incompatibility. Microbiol Rev,1987,51(4):381-395.
    [15].范立强,袁勤生,吴祥甫.不相容双质粒共表达大肠杆菌肉碱脱水酶基cazB及其辅因子合成酶基因cazE中国医药工业杂志,2002,33:113-116.
    [16].Wei Yang, Lan Zhang, Zhigang Lu. et al. A new method for protein coexpression in Escherichia coli using two incompatible plasmids. Prot Expre and Purifi,2001,22:472-478.
    [17].Pashley CA, Parish T, Mc Adam, et al. Gene replacement in mycobacteria by using incompatible plasmids[J]. Appl Environ Microbiol,2003,34:517-523.
    [1]Muller J, Oehler S and Muller-Hill B. Repression of lac promoter as a function of distance, phase and quality of an auxiliary lac operator[J]. J Mol Biol,1996,257:21-29.
    [2]Agarwal S, Nikolai B, Yamaguchi T. et al. Construction and use of retroviral vectors encoding the toxic gene barnase[J]. Molecular Therapy,2006,14:555-563.
    [3]宋洪元,曹必好,丁建刚等.核糖核酸酶barnase基因的克隆策略研究[J].西北植物学报,2005,25(6):1118-1125.
    [4]Paddon CJ and Hartley R.W. Expression of Bacillus amyloliquefaciens extracelluar ribonuclease (barnase) in Escherichia coli following an inactivating mutation[J]. Gene,1987,53:11-19.
    [5]Hartley RW. Barnase and barstar expression of its cloned inhibitor permits expression of a cloned ribonuclease[J]. J Mol Biol,1988,202:913-915.
    [6]Oehler S, Amouyal M, Kolkhof P. et al. Quality and position of the three lac operators of E.coli define efficiency of repression[J]. EMBO J,1994,13:3348-3355.
    [7]Condon C, Squires C and Squires CL. Control of rRNA transcription in Escherichia coli[J]. Microbiol Rev,1995,59:623-645.
    [8]Hirvonen CA, Ross W, Wozniak CE. et al. Contributions of UP elements and the transcription factor FIS to expression from the seven rrn P1 promoters in Escherichia coli[J]. J Bacteriol,2001,183: 6305-6314.
    [9]Vilar JM and Saiz L. DNA looping and physical constraints on transcription regulation [J]. J. Mol. Biol,2003,331:981-989.
    [10]Stephen EH, Darren MG and Richard BS. Two are better than one[J]. Nature structural biology, 2000,7:705-707.
    [11]Vilar JMG and Saiz L. DNA looping in gene regulation:from the assembly of macromolecular complexes to the control of transcriptional noise[J]. Current Opinion in Genetics & Development, 2005,15:136-144.
    [12]Vilar JMG and Saiz L. DNA looping and physical constraints on transcription regulation[J]. J Mol Biol,2003,331:981-989.
    [13]Lewis M, Chang G, Horton NC. et al. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer[J]. Science,1996,271:1247-1254.
    [14]Moffatt BA and Studier FW. T7 lysozyme inhibits transcription by T7 RNA polymerase[J]. Cell, 1987,49:221-227.
    [15]Miroux B and Walker JE. Over-production of Proteins in Escherichia coli:Mutant Hosts that Allow Synthesis of some Membrane Proteins and Globular Proteins at High Levels. J Mol Biol,1996,260: 289-298.
    [1]Kumio Y, Yoko O, Kenji S. et al. Improvement in thermostability and psychrophilicity of psychrophilic alanine racemase by site-directed mutagenesis[J]. Journal of Molecular Catalysis B: Enzymatic,2003,23:389-395.
    [2]Yutaka Y and Keiko K. Identification of a glutamine residue essential for catalytic activity of aspergilloglutamic peptidase by site-directed mutagenesis[J]. FEBS Letters,2004,569:161-164.
    [3]由德林,曲红,陈强等.次黄嘌呤-鸟嘌呤磷酸核糖转移酶突变体的基因构建、表达和性质[J].生物化学与生物物理学报,2003,9:853-858.
    [4]Kunishige K and Katsuyuki T. Alteration of substrate specificity of leucine dehydrogenase by site-directed mutagenesis[J]. Journal of Molecular Catalysis B:Enzymatic,2003,23:299-309.
    [5]Akashi O, Akihiro I, Masahiro M. et al. Mutual conversion of substrate specificities of Thermoactinomyces vulgaris R-47 α-amylases TVAI and TV All by site-directed mutagenesis[J]. Carbohydrate Research,2003,338:1553-1558.
    [6]周杨晟,黄鹤,李士云等.定点突变提高青梅素G酰化酶的稳定性[J].生物化学与生物物理学报,2000,32(6):581-585.
    [7]Jeremiah B, Frueauf, Miguel A. et al. Alteration of inhibitor selectivity by site-directed mutagenesis of Arg294 in the ADP-glucose pyrophosphorylase from Anabaena PCC 7120[J]. Archives of Biochemistry and Biophysics,2002,400:208-214.
    [8]Hiroyuki A, Andrey G, Ljudmila K. et al. Conversion of cofactor specificities of alanine dehydrogenases by sitedirected mutagenesis[J]. Journal of Molecular Catalysis B:Enzymatic,2004, 30:173-176.
    [9]陆健,曹钰,陈坚等.运用定点突变提高重组木聚糖酶在毕赤氏酵母中的表达[J].微生物学报,2002,4:425-430.
    [10]Yue S, Huimin Y, Xudong S. et al. Cloning of the nitrile hydratase gene from Nocardia sp. in Escherichia coli and Pichia pastoris and its Functional Expression using Site-directed Mutagenesis[J]. Enzyme and Microbial Technology,2004,35:557-562.
    [11]Shinkyo R, Sakaki T, Takita T. et al. Generation of 2,3,7,8-TCDD-metabolizing enzyme by modifying rat CYP1A1 through site-directed mutagenesis[J]. Biochemical and Biophysical Research Communications,2003,308:511517.
    [12]Richard DR, Irina K, Ashok M. et al. Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase[J]. Nature Biotechnology.1997,15(10):984-987.
    [13]Cho CMH, Mulchandani A and Chen W. Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos[J]. Appl Environ Microbiol,2004,70: 4681-4685.
    [14]吴旭平.邻单胞菌M6甲基对硫磷水解酶催化特性的研究[D].南京:南京农业大学,2005:86.
    [15]李晓慧.毒死蜱降解菌的分离、mpd基因克隆与定向进化及应用研究[D].南京:南京农业大学,2005:123.
    [16]Chen K and Arnold FH. Enzyme engineering for nonaqueous solvent:random mutagenesis to enhance activity of sublisin E in polar organic media[J]. Bio Technology,1991,9:1073-1077.
    [17]Chen K and Arnold FH. Tuning the activity of an enzyme for unusual environments:sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide[J]. Proc Natl Acad Sci USA, 1993,90:5618-5622.
    [18]Maeda T, Sanchez TV and Wood TK. Protein engineering of hydrogenase to enhance hydrogen production[J]. Appl Microbiol Biotechnol,2008,79:77-86.
    [19]Van LB, Spelberg JHL, Kingma J. et al. Directed evolution of epoxide hydrolase from A. radiobacter toward higher enantioselectivity by error-prone PCR and DNA shuffling[J]. Chem Biol, 2004,11:981-990.
    [20]Wang TW, Zhu H, Ma XY. et al. Mutant library construction in directed molecular evolution[J]. Mol Biotechnol,2006,34:55-68.
    [21]Jane MK and Frank M. Raushel. Identification of the Histidine Ligands to the Binuclear Metal Center of Phosphotriesterase by Site-Directed Mutagenesis[J]. Biochemistry,1994,33:4265-4272.
    [22]Janeen LV, Matthew MB, Frank MR. et al. Three dimensional Structure of the Zinc-Containing Phosphotriesterase with the Bound Substrate Analog Diethyl 4-Methylbenzylphosphonate[J]. Biochemistry,1996,35:6020-6025.
    [23]Chen GM, Sogorb MA, Wu FY. et al. Enhancement, Relaxation, and Reversal of the Stereoselectivity for Phosphotriesterase by Rational Evolution of Active Site Residues[J]. Biochemistry,2001,40:1332-1339.
    [24]Chen GM, Sogorb MA, Wu FY. et al. Structural determinations of the Substrate and Stereochemical Specificity of Phosphotriesterase[J]. Biochemistry,2001,40:1325-1331.
    [25]Li WS, Lum KT, Chen GM. et al. Stereoselective Detoxification of Chiral Sarin and Soman Analogues by Phosphotriesterase[J]. Bioorg Med Chem,2001,9:2083-2091.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700