基于生物炼制的竹材组分分离及苄基化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对资源短缺和能源紧缺所带来的严峻挑战,木质纤维素原料制备生物基材料、能源以及化学品的研究日益受到研究者的重视。基于生物炼制的木质纤维素组分分离,可实现木质纤维素资源的高效利用。本研究采用温和条件分离竹材主要组分,并对竹材进行了苄基化改性。球磨后竹粉采用超声辅助乙醇处理、低温氢氧化钠/尿素处理、乙醇结合二氧六环抽提以及二甲亚砜溶剂抽提,分离得到乙醇溶出组分、木质素、溶出聚糖和纤维素组分。采用有机酸在常压下将竹材分离为纤维素组分、降解碳水化合物以及木质素。分别在氯化锂/二甲亚砜体系和氢氧化钠/尿素体系中实现了竹材苄基化改性。
     采用氢氧化钠/尿素体系预处理结合有机溶剂连续抽提方法分离竹材,发现:(1)超声辅助乙醇抽提过程中,随着超声时间的延长,乙醇溶出组分得率增加,木质素含量提高。所得木质素主要由G、S和H型单元组成。溶出木质素的H型单元含量较高,随着超声时间的延长,G型和S型单元的相对含量增加。(2)低温氢氧化钠/尿素预处理后竹粉采用二氧六环和乙醇抽提,所得木质素主要为β-O-4’连接。木质素中的酯键在低温碱性溶液中被破坏。采用二甲亚砜抽提所得聚糖组分,主要单糖为葡萄糖(50%-55%),其次为木糖(41%-44%)。核磁共振波谱分析表明聚糖组分主要由α-(1→4)-D-葡聚糖(淀粉)和含有取代基的β-(1→4)-D-聚木糖组成。(3)球磨竹粉经过连续处理,所得纤维素组分得率为75.1%-77.7%。对比纤维素组分以及球磨竹粉,发现连续预处理导致部分半纤维素类聚糖和木质素溶出,所得纤维素组分的总糖含量高于原本球磨样品。处理后得到的纤维素组分结构更加松散,并且具有较大的表面积。这表明低温氢氧化钠/尿素溶液有效地破坏了竹材的水解障碍,生成具有高反应活性的纤维素原料,可用于酶水解生产生物乙醇。
     采用有机酸在常压条件下分离竹材的研究表明:(1)乙酸常压分离竹材的适宜条件为乙酸浓度90%,温度114℃,盐酸用量4.0%,处理时间2 h。原料中木质素的脱出率达到95.28%,所得纤维素组分的得率为47.55%(残留木质素的含量为2.11%)。与磨木木质素相比,乙酸木质素杂质含量低(碳水化合物含量2.48%-4.56%)。乙酸木质素的重均分子量为4870~5210g/mol,低于磨木木质素的一半。由于乙酸木质素在抽提过程中连接键断裂形成大量游离酚羟基,乙酸木质素具有较强的抗氧化性。(2)以乙酸/甲酸/水为溶剂,采用微波辅助加热可有效提取竹材木质素。升高温度能够显著提高木质素的得率。对抽提后木质素进行结构表征,发现木质素单元之间的醚键(主要为β-O-4'连接)大量断裂。此外,随着微波加热强度的增加,木质素中碳水化合物含量降低,木质素分子量降低。微波辅助有机酸分离竹材木质素的优化条件为:微波加热处理温度109℃,时间60 min,木质素得率为17.98%。所得木质素的糖含量为1.81%,重均分子量为6070g/mol,游离基捕获指数为1.15,高于BHT(0.29)。(3)甲酸及添加催化剂的甲酸体系可用于竹材的制浆,获得纸浆、木质素和降解碳水化合物。竹材甲酸木质素可采用连续溶剂分级方法分离,所用溶剂为乙醚、乙酸乙酯、甲醇、丙酮和二氧六环/水。采用乙酸乙酯分级所得木质素的抗氧化性较高,可用做稳定剂以防止高分子材料老化。热稳定性分析表明,使用木质素制备木质素基共混材料温度应低于170℃。
     苄基化改性发现:(1)在氯化锂/二甲亚砜溶剂体系中,竹粉可不经丝光化处理直接进行苄基化。较之传统浓氢氧化钠溶液体系(改性温度100℃以上),该体系中苄基化可在较低温度条件下进行。由于无定形组分的降解,苄基化后样品的结晶度略有降低,热稳定性有所提高,但仍低于纯纤维素。(2)在7%氢氧化钠/12%尿素体系中实现了竹粉苄基化改性。较之传统浓氢氧化钠体系中的改性,本研究的改性温度较低。适宜条件为:氯化苄对竹粉羟基的摩尔比3,反应温度80℃,时间2 h。原本球磨竹粉在苄基化改性后结晶结构发生了破坏。改性所得苄基化竹粉含有较大非极性基团且结晶度较低,可用于制备可降解生物复合材料。(3)采用氢氧化钠/尿素体系溶解纤维素,并合成了苄基纤维素。与传统方法合成的苄基纤维素相比,在氢氧化钠/尿素体系中合成的苄基纤维素,即使取代度较低(取代度≤0.51),也能溶解于常见的有机溶剂。
     综上所述,本研究采用基于氢氧化钠/尿素预处理的有机溶剂抽提,实现了温和条件下木质纤维素主要组分的有效分离。率先提出了一种以有机酸为分离介质的高效清洁分离木质纤维素原料新方法,并系统研究了所得木质素结构与抗氧化性。采用氯化锂/二甲亚砜溶剂体系和低温氢氧化钠/尿素溶剂体系,首次实现了木质纤维素温和条件下苄基化改性和纤维素直接溶解后苄基化改性。温和条件下木质纤维素组分分离与化学改性,为木质纤维素在替代石油化学品、生物能源和生物基材料等领域的应用奠定了基础。
     该博士研究生以第1作者身份发表SCI收录期刊论文10篇(其中JCR一区和二区论文共4篇),目前影响因子总和22.8;被国外专家邀请参与编写英文专著2部。
In response to the severe challenges of resource scarcity and energy shortage, the preparation of biobased materials, energy, and chemicals has attracted increasing attention. Fractionation of lignocelluloses based on the concept of biorefinery technology is of vital importance for their effective utilization. In this study, bamboo utilization was investigated with fractionation (sequential treatments and organic acid extraction) and benzylation under mild conditions. The sequential treatments involved ultrasonic irradiation extraction in ethanol, cold NaOH/urea pretreatment, ethanol/dioxane extraction, and DMSO extraction, yielding ethanol-soluble fractions, lignin, soluble polysaccharides, and cellulose fractions. In addition, bamboo was fractionated into cellulosic pulp, degraded carbohydrates, and lignin with organic acid extractions under atmospheric pressure. Benzylation of bamboo was carried out in two systems, LiCl/DMSO and NaOH/urea.
     Investigation of the sequential treatments of ball-milled bamboo based on 7% NaOH/12% urea pretreatment and successive organic solvent extraction indicated that:
     (1) There was a slight increase of the yield and the molecular weight of the lignin with the increase of the ultrasonic irradiation time. Lignin was mainly composed of guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H) type units. Lignin rich in H unit was preferentially released in ethanol solution, whereas an increase of the ultrasonic irradiation time resulted in a slight increase of the dissolution of lignin with G and S units.
     (2) The lignin isolated with dioxane and ethanol from the cold NaOH/urea pretreated bamboo had a major proportion ofβ-O-4' ether linkages. In addition, the ester groups of lignin were largely cleaved in the cold alkaline solution. For the polysaccharide fractions obtained by DMSO extraction, glucose (50-55%) was the major sugar component, and xylose (41-44%) was the second major sugar component in all cases. NMR spectral analysis suggested that the polysaccharide fractions were mainly composed of (1,4)-linkedα-D-glucan from amylose and (1,4)-linkedβ-D-xylan attached with minor amounts of branched sugars from hemicelluloses.
     (3) The ball-milled bamboo was subjected to successive pretreatments to obtain cellulose fractions with yields of 75.1-77.7%. The comparative characterization of the cellulose fractions and the original ball-milled bamboo showed that the successive pretreatments resulted in partial removal of hemicelluloses and lignin. The total sugar content in the cellulose fractions was higher than that in the original ball-milled sample. The characteristics of the obtained cellulose fractions suggested that the cold sodium hydroxide/urea based pretreatments effectively disrupted the recalcitrance of bamboo, generating highly reactive cellulosic materials for enzymatic hydrolysis to produce bioethanol.
     The organic acid extraction under atmospheric pressure indicated that:
     (1) Under the optimal conditions for acetic acid extraction, i.e.,4.0% HCl dosage in 90% aqueous acetic acid at 114℃,95.28% of the lignin in the raw material was released accompanying a cellulosic pulp yield of 47.55% and the residual lignin content in the pulp was 2.11%. Compared to milled wood lignin (MWL), acetic acid lignins had lower impurities (carbohydrates 2.48-4.56%). Acetic acid lignins had Mw ranging from 4 870 g/mol to 5 210 g/mol, less than half of that of MWL. The stronger antioxidant activity of acetic acid lignins observed was attributed to a large reduction of aliphatic hydroxyl groups together with a significant increase of free phenolic hydroxyl groups.
     (2) Bamboo lignin was successfully extracted by microwave heating in acetic acid/formic acid/water system. An increase of the extraction temperature markedly increased the yield of the extracted lignin. Structural investigation of the extracted lignin indicated that there was an increase of the phenolic hydroxyl content in the lignin due to the cleavage of the linkages between lignin units (mainlyβ-O-4'linkages). In addition, an increase of the severity of the microwave-assisted extraction resulted in a decrease of bound carbohydrates and a lower molecular weight of the lignin. Under the optimal conditions, i.e., microwave-assisted extraction at 109℃for 60 min, a lignin yield of 17.98% was achieved. The obtained lignin fraction had a low bound sugar content (1.81%) together with a low molecular weight (Mw 6 070 g/mol), and showed good antioxidant activity (RSI 1.15), which was higher than that of BHT (0.29).
     (3) Aqueous formic acid with and without the addition of reagents (HCl or H2O2) was successfully applied to separate pulp, lignin, and degraded carbohydrates from bamboo. Bamboo organosolv lignin was fractionated into five preparations by sequential solvent extractions with ether, ethyl acetate, methanol, acetone, and dioxane/water. The lignin fraction extracted with ethyl acetate had a high RSI value, making it a promising stabilizer material to prevent polymer aging. Thermal stability investigation indicated that the working temperature for the preparation of thermoplastics and organosolv lignin based polymer blends should be lower than 170℃.
     Benzylation of bamboo suggested that:
     (1) Benzylated bamboo can be synthesized in LiCl/DMSO solution without mercerization via concentrated NaOH solution. The preferential mild reaction conditions suggested that benzylation of lignocellulose could be achieved in nonaqueous solution at a relatively low temperature. The highly benzylated bamboo had a porous surface with small irregular slices ascribed to the disruption of intermolecular and intramolecular hydrogen bonds. The crystallinity of bamboo decreased negligibly after modification due to the degradation of amorphous components, and the thermal stability slightly increased but was still lower than that of cellulose.
     (2) Bamboo was successfully benzylated in 7% NaOH/12% urea aqueous solution under various reaction conditions. It was found that benzylation can be accomplished at a relatively lower temperature, compared to the conventional benzylation in concentrated alkali. The optimal conditions were found to be the molar ratio of benzyl chloride to OH group in bamboo 3, reaction temperature 80℃, and reaction time 2 h. It was found that the crystalline structure of the native ball-milled bamboo was damaged after benzylation modification. The benzylated bamboo obtained had a low crystallinity as well as large non-polar groups and can be used for the preparation of biobased composite material.
     (3) Benzyl cellulose was successfully synthesized starting from cold NaOH/urea aqueous solution. Compared to the benzyl cellulose synthesized in heterogeneous systems, the benzyl cellulose product with a low DS (≤0.51) obtained in the homogeneous system in the present study dissolved in many organic solvents.
     In conclusion, a mild and effective protocol based on the NaOH/urea pretreatment and organic solvent extraction was proposed for the fractionation of the major components of lignocelluloses. For the first time, a clean and effective method using organic acids as separation media was put forward to fractionate lignocelluloses, and the relationship between lignin structure and its antioxidant capacity was investigated. Bamboo was initially benzylated with LiCl/DMSO and NaOH/urea systems under mild conditions, and cellulose was successfully benzylated after dissolution in cold NaOH/urea system. The mild fractionation and modification of lignocelluloses lay the foundation of their potential application in the fields of chemicals, energy, and materials.
     The doctor candidate has published 10 papers in SCI international journals as first author, among which 4 papers are published in journals of JCR 1 and 2. The total impact factor is 22.8 at present. In addition, the candidate has been invited and joined for writing 2 books published in English.
引文
[1]陈尚,勇强,徐勇,朱均均,余世袁.蒸汽爆破预处理对玉米秸秆化学组成及纤维结构特性的影响[J].林产化学与工业,2009,29(S1):33-38.
    [2]陈育如,夏黎明,岑沛霖,欧阳平凯.蒸汽爆破预处理对植物纤维素性质的影响[J].高校化学工程学报,1999,13(3):234-239.
    [3]崔永强,林燕,华鑫怡,孔海南.木质纤维素为原料的燃料乙醇发酵技术研究进展[J].化工进展,2010,29(10):1868-1876.
    [4]董绪燕,魏芳,刘亮,胡小加,江木兰,杨湄,钮琰星,郭璐璐,赵元弟,黄凤洪,陈洪,李光明.农作物生物炼制的发展现状与展望[J].中国农学通报,2008,24(7):488-493.
    [5]高洁,汤烈贵.纤维素科学[M].北京:科学出版社,1996.
    [6]高英,石韬,汪君,陈汉平,王贤华,杨海平.生物质水热技术研究现状及发展[J].可再生能源,2011,29(4):77-83.
    [7]高振华,邸明伟.生物质材料与应用[M].北京:化学工业出版社,2008.
    [8]郭立颖,史铁钧,李忠,段衍朋.两种咪唑类离子液体对杉木粉的溶解性能[J].化工学报,2008,59(5):1299-1304.
    [9]黄进,夏涛,郑化.生物质化工与生物质材料[M].北京:化学工业出版社,2009.
    [10]姜岷,韦萍,卢定强,徐虹,周华,欧阳平凯.后化石经济时代工业生物技术发展的若干思考[J].化工进展,2006,25(10):1119-1123.
    [11]蒋挺大.木质素[M].第2版.北京:化学工业出版社,2009.
    [12]李坚.生物质复合材料学[M].北京:科学出版社,2008.
    [13]李志强,江泽慧,费本华.竹材制取生物乙醇原料预处理技术研究进展[J].化工进展,2012,31(3):533-540.
    [14]廖俊和,陶杨,邵薇,肖洁,罗学刚.有机溶剂法制浆研究最新进展[J].林产工业,2004,31(4):11-13,20.
    [15]林鹿,何北海,孙润仓,胡若飞.木质生物质转化高附加值化学品[J].化学进展,2007,19(7):1206-1216.
    [16]刘传富,孙润仓,任俊莉,叶君.离子液体在纤维素材料中的应用进展[J].精细化工,2006,23(4):318-321,331.
    [17]刘传富,张爱萍,李维英,孙润仓.纤维素在新型绿色溶剂离子液体中的溶解及其应用[J].化学进展,2009,21(9):1800-1806.
    [18]罗鹏,刘忠.蒸汽爆破法预处理木质纤维原料的研究[J].林业科技,2005a,30(3):53-56.
    [19]罗鹏,刘忠,王高升.蒸汽爆破预处理条件对麦草生物转化为乙醇影响的研究[J].酿酒科技,2005b,(10):43-47.
    [20]马降龙,王铁军,吴创之,袁振宏.木质纤维素化工技术及应用[M].北京:科学出版社,2010.
    [21]曲音波.木质纤维素降解酶与生物炼制[M].北京:化学工业出版社,2011.
    [22]曲音波.木质纤维素资源的生物炼制技术进展与展望[J].精细化工原料及中间体,2007,(11):6-7.
    [23]任俊莉,孙润仓,刘传富.半纤维素的化学改性研究进展[J].现代化工,2006,26(Z1):68-71,73.
    [24]阮奇城,祁建民,胡开辉,方平平,林海红,徐建堂,陶爱芬,林国龙,易利福.白腐真菌Pleurotus sajor-caju预处理对红麻秸秆发酵乙醇的影响[J].生物工程学报,2011,27(10):1464-1471.
    [25]师少飞,王兆梅,郭祀远.纤维素溶解的研究现状[J].纤维素科学与技术,2007,15(3):74-78.
    [26]谭天伟,俞建良,张栩.生物炼制技术研究新进展[J].化工进展,2011,30(1):117-125.
    [27]檀俊利,刘光良,卢雪梅,高培基.速生材制生物机械浆的研究(Ⅰ)—泡桐(Paulownia elongate)真菌预处理机械浆[J].林产化学与工业,1998,18(2):26-32.
    [28]陶杨,罗学刚.乙醇制浆对竹纤维长度的影响[J].福建林业科技,2005,32(4):39-43.
    [29]王璐,黄峰,高培基.MALDI-MS技术在木质素类物质结构研究中的应用进展[J].林产化学与工业,2009,29(6):26-32.
    [30]许丙磊,彭奇均.玉米芯蒸汽爆破处理的研究及响应曲面法优化[J].林产化学与工业,2010,30(6):82-88.
    [31]许凤,孙润仓,詹怀宇.非木材半纤维素研究的新进展[J].中国造纸学报,2003,18(1):145-151.
    [32]许庆利,蓝平,隋淼,周明,颜涌捷.木质纤维素水解制取燃料乙醇研究进展[J].化工进展,2009,28(3):1906-1912.
    [33]杨瑞丰,李永,周景辉.乙醇法制浆技术的应用与发展状况[J].中国造纸,2006,25(4):50-53.
    [34]余权英,蔡宏斌.苄基化木材的制备及其热塑性研究[J].林产化学与工业,1998,18(1):26-32.
    [35]余权英.化学改性转化木材为热塑性和热固性材料[J].化学进展,1996,8(4):331-339.
    [36]张春红,陈秋玲,孙可伟.天然植物纤维转变为热塑性材料研究进展[J].塑料工业,2007,35(6):5-8.
    [37]张金明,吕玉霞,罗楠,武进,余坚,何嘉松,张军.离子液体在纤维素化学中的应用研究新进展[J].高分子通报,2011,(10):138-153.
    [38]张应龙,张锐昌,张咏梅,艾明强,黄峰.木素结构分析方法研究进展[J].安徽农业科学,2011,39(36):22514-22517.
    [39]张裕卿,付二红,梁江华.超声波对木质纤维素糖化过程影响的研究[J].中国生物工程杂志,2007,27(9):81-84.
    [40]张彰,孙丰文,张茜.酯化、醚化改性对木材热性能的影响[J].南京林业大学学报(自然科学版),2009,33(6):6-10.
    [41]郑勇,轩小朋,许爱荣,郭蒙,王键吉.室温离子液体溶解和分离木质纤维素[J].化学进展,2009,21(9):1807-1812.
    [42]庄军平,林鹿,庞春生,刘颖,孙勇.木质纤维素稀水解液脱毒研究进展[J].现代化工,2009,29(2):19-23.
    [43]Abad S, Santos V, Parajo J C. Evaluation of Eucalyptus globulus wood processing in media made up of formic acid, water, and hydrogen peroxide for dissolving pulp production [J]. Industrial & Engineering Chemistry Research,2001,40 (1):413-419.
    [44]Abdelkafi F, Ammar H, Rousseau B, Tessier M, El Gharbi R, Fradet A. Structural analysis of alfa grass (Stipa tenacissima L.) lignin obtained by acetic acid/formic acid delignification [J]. Biomacromolecules,2011,12(11):3895-902.
    [45]Allen S G, Schulman D, Lichwa J, Antal Jr M J, Jennings E, Elander R. A comparison of aqueous and dilute-acid single-temperature pretreatment of yellow poplar sawdust [J]. Industrial & Engineering Chemistry Research,2001,40 (10):2352-2361.
    [46]Alvira P, Tomas-Pejo E, Ballesteros M, Negro M J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis:A review [J]. Bioresource Technology,2010,101 (13):4851-4861.
    [47]Andersson S, Wikberg H, Pesonen E, Maunu S L, Serimaa R. Studies of crystallinity of Scots pine and Norway spruce cellulose [J]. Trees-structure and Function,2004,18 (3):346-353.
    [48]Arato C, Pye E K, Gjennestad G. The lignol approach to biorefining of woody biomass to produce ethanol and chemicals [J]. Applied Biochemistry and Biotechnology,2005,123 (1): 871-882.
    [49]Ass B A P, Ciacco G T, Frollini E. Cellulose acetates from linters and sisal:Correlation between synthesis conditions in DMAc/LiCl and product properties [J]. Bioresource Technology,2006,97 (14):1696-1702.
    [50]Azuma J, Nomura T, Koshijima T. Lignin-carbohydrate complexes containing phenolic acids isolated from the culms of bamboo [J]. Agricultural and Biological Chemistry,1985,49 (9): 2661-2669.
    [51]Bach Tuyet Lam T, Iiyama K, Stone B A. Distribution of free and combined phenolic acids in wheat internodes [J]. Phytochemistry,1990,29 (2):429-433.
    [52]Bak J S, Ko J K, Han Y H, Lee B C, Choi I G, Kim K H. Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment [J]. Bioresource Technology,2009,100 (3):1285-1290.
    [53]Balakshin M Y, Capanema E A, Chang H M. Recent advances in the isolation and analysis of lignins and lignin-carbohydrate complexes [M]//Thomas Q H. Characterization of Lignocellulosic Materials. Blackwell Publishing Ltd.,2008:148-170.
    [54]Ball R, McIntosh A C, Brindley J. Feedback processes in cellulose thermal decomposition: Implications for fire-retarding strategies and treatments [J]. Combustion Theory and Modelling, 2004,8 (2):281-291.
    [55]Barclay L R C, Xi F, Norris J Q. Antioxidant properties of phenolic lignin model compounds [J]. Journal of Wood Chemistry and Technology,1997,17 (1-2):73-90.
    [56]Bendahou A, Dufresne A, Kaddami H, Habibi Y. Isolation and structural characterization of hemicelluloses from palm of Phoenix dactylifera L. [J]. Carbohydrate Polymers,2007,68 (3): 601-608.
    [57]Billa E, Tollier M T, Monties B. Characterisation of the monomeric composition of in situ wheat straw lignins by alkaline nitrobenzene oxidation:Effect of temperature and reaction time [J]. Journal of The Science of Food and Agriculture,1996,72 (2):250-256.
    [58]Bjorkman A. Isolation of lignin from finely divided wood with neutral solvents [J]. Nature,1954, 174(4440):1057-1058.
    [59]Bradbury J H, Jenkins G A. Determination of the structures of trisaccharides by C-13-NMR spectroscopy [J]. Carbohydrate Research,1984,126 (1):125-156.
    [60]Brosse N, Sannigrahi P, Ragauskas A. Pretreatment of Miscanthus x giganteus using the ethanol organosolv process for ethanol production [J]. Industrial & Engineering Chemistry Research, 2009,48 (18):8328-8334.
    [61]Buranov A U, Mazza G. Lignin in straw of herbaceous crops [J]. Industrial Crops and Products, 2008,28 (3):237-259.
    [62]Cai J, Zhang L. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions [J]. Macromolecular Bioscience,2005,5 (6):539-548.
    [63]Cai J, Zhang L. Unique gelation behavior of cellulose in NaOH/urea aqueous solution [J]. Biomacromolecules,2006,7(1):183-189.
    [64]Cai J, Zhang L, Liu S L, Liu Y T, Xu X J, Chen X M, Chu B, Guo X L, Xu J, Cheng H, Han C C, Kuga S. Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures [J]. Macromolecules,2008,41 (23):9345-9351.
    [65]Cai J, Zhang L N, Chang C Y, Cheng G Z, Chen X M, Chu B. Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature [J]. Chemphyschem,2007, 8(10):1572-1579.
    [66]Camacho F, Gonzalez-Tello P, Jurado E, Robles A. Microcrystalline-cellulose hydrolysis with concentrated sulphuric acid [J]. Journal of Chemical Technology & Biotechnology,1996,67 (4): 350-356.
    [67]Capanema E A, Balakshin M Y, Kadla J F. Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy [J]. Journal of Agricultural and Food Chemistry,2005,53 (25):9639-9649.
    [68]Carvalheiro F, Duarte L C, Girio F M. Hemicellulose biorefineries:a review on biomass pretreatments [J]. Journal of Scientific & Industrial Research,2008,67 (11):849-864.
    [69]Casey J P. Pulp and Paper:Chemistry and Chemical Technology [M].2nd ed. New York: Interscience Publishers,1960.
    [70]Carvalheiro F, Duarte L C, Medeiros R, Girio F M. Optimization of brewery's spent grain dilute-acid hydrolysis for the production of pentose-rich culture media [J]. Applied Biochemistry and Biotechnology,2004,115(1-3):1059-1072.
    [71]Chang V S, Holtzapple M T. Fundamental factors affecting biomass enzymatic reactivity [J]. Applied Biochemistry and Biotechnology,2000,84-86 (1):5-37.
    [72]Chang V S, Nagwani M, Kim C H, Holtzapple M T. Oxidative lime pretreatment of high-lignin biomass [J]. Applied Biochemistry and Biotechnology,2001,94 (1):1-28.
    [73]Chen W H, Tu Y J, Sheen H K. Impact of dilute acid pretreatment on the structure of bagasse for bioethanol production [J]. International Journal of Energy Research,2010,34 (3):265-274.
    [74]Chundawat S P S, Beckham G T, Himmel M E, Dale B E. Deconstruction of lignocellulosic biomass to fuels and chemicals [J]. Annual Review of Chemical and Biomolecular Engineering, 2011,2(1):121-145.
    [75]Cruz J M, Dominguez J M, Dominguez H, Parajo J C. Antioxidant and antimicrobial effects of extracts from hydrolysates of lignocellulosic materials [J]. Journal of Agricultural and Food Chemistry,2001,49 (5):2459-2464.
    [76]Cuissinat C, Navard P. Swelling and dissolution of cellulose, Part III:plant fibres in aqueous systems [J]. Cellulose,2008,15(1):67-74.
    [77]Curvelo A A S, Pereira R. Kinetics of ethanol-water of sugar cane bagasse [C]//The 8th International Symposium on Wood and Pulping Chemistry,1996. Finland:Helsinki.
    [78]da Roz A L, Curvelo A A S. Thermal characterization of benzylcellulose derivatives prepared from bleached pinus kraft pulp [J]. Journal of Thermal Analysis and Calorimetry,2004,75 (2): 429-436.
    [79]Daly W H, Caldwell J D. Influence of quaternary ammonium-salts on cellulose benzylation [J]. Journal of Polymer Science Part C-Polymer Letters,1979,17 (2):55-63.
    [80]Danyadi L, Moczo J, Pukanszky B. Effect of various surface modifications of wood flour on the properties of PP/wood composites [J]. Composites Part A-Applied Science and Manufacturing, 2010,41 (2):199-206.
    [81]Dapia S, Santos V, Parajo J C. Formic acid-peroxyformic acid pulping of Fagus sylvatica [J]. Journal of Wood Chemistry and Technology,2000,20 (4):395-413.
    [82]Dapia S, Santos V, Parajo J C. Study of formic acid as an agent for biomass fractionation [J]. Biomass and Bioenergy,2002,22 (3):213-221.
    [83]De Filippis P, Scarsella M, Verdone N. Peroxyformic acid formation:A kinetic study [J]. Industrial & Engineering Chemistry Research,2009,48 (3):1372-1375.
    [84]del Rio J C, Rencoret J, Marques G, Li J B, Gellerstedt G, Jimenez-Barbero J, Martinez A T, Gutierrez A. Structural characterization of the lignin from jute (Corchorus capsularis) fibers [J]. Journal of Agricultural and Food Chemistry,2009,57 (21):10271-10281.
    [85]Delmas M. Vegetal refining and agrichemistry [J]. Chemical Engineering and Technology,2008, 31 (5):792-797.
    [86]Dence C. The determination of lignin [M]//Lin S, Dence C. Methods in lignin chemistry. Berlin: Springer-Verlag,1992:33-61.
    [87]Deng H B, Lin L, Sun Y, Peng H, Pan C S, He B H, Ouyang P, Liu S J. Lignin from formic acid hydrolysis of wheat straw [J]. Journal of Biobased Materials and Bioenergy,2008,2 (2): 148-155.
    [88]Deraman M, Zakaria S, Murshidi J A. Estimation of crystallinity and crystallite size of cellulose in benzylated fibres of oil palm empty fruit bunches by X-ray diffraction [J]. Japanese Journal of Applied Physics,2001,40 (5A):3311-3314.
    [89]Diamantoglou M, Lemke H D. Dialysis membrane made of polysaccharide ether:US,5171444 [P].1992-12-15. http://www.freepatentsonline.com/5171444.html.
    [90]Djidjelli H, Boukerrou A, Rabouhi A, Founas R, Kaci M, Zefouni O, Djillah N, Belrnouhoub L. Effect of olive residue benzylation on the thermal and mechanical properties of poly(vinyl chloride)/olive residue composites [J]. Journal of Applied Polymer Science,2008,107 (3): 1459-1465.
    [91]Doner L W, Hicks K B. Isolation of hemicellulose from corn fiber by alkaline hydrogen peroxide extraction [J]. Cereal Chemistry,1997,74 (2):176-181.
    [92]Dudonne S, Vitrac X, Coutiere P, Woillez M, Merillon J M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC Assays [J]. Journal of Agricultural and Food Chemistry,2009,57 (5): 1768-1774.
    [93]Duff S J B, Murray W D. Bioconversion of forest products industry waste cellulosics to fuel ethanol:A review [J]. Bioresource Technology,1996,55 (1):1-33.
    [94]Ebringerova A, Heinze T. Xylan and xylan derivatives-biopolymers with valuable properties,1-Naturally occurring xylans structures, procedures and properties [J]. Macromolecular Rapid Communications,2000,21 (9):542-556.
    [95]Ebringerova A, Hromadkova Z. An overview on the application of ultrasound in extraction, separation and purification of plant polysaccharides [J]. Central European Journal of Chemistry, 2010,8 (2):243-257.
    [96]Ede R, Brunow G, Poppius K, Sundquist J, Horting B. Formic acid/peroxyformic acid pulping,1: Reactions of beta-aryl ether model compounds with formic acid [J]. Nordic Pulp and Paper Research Journal,1988,3 (3):119-123.
    [97]El Hage R, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A. Characterization of milled wood lignin and ethanol organosolv lignin from Miscanthus [J]. Polymer Degradation and Stability,2009,94 (10):1632-1638.
    [98]Evtuguin D V, Tomas J L, Silva A M S, Neto C P. Characterization of an acetylated heteroxylan from Eucalyptus globulus Labill [J]. Carbohydrate Research,2003,338 (7):597-604.
    [99]Faix O. Classification of lignins from different botanical origins by FT-IR spectroscopy [J]. Holzforschung,1991,45 (sl):21-27.
    [100]Faustino H, Gil N, Baptista C, Duarte A P. Antioxidant activity of lignin phenolic compounds extracted from kraft and sulphite black liquors [J]. Molecules,2010,15 (12):9308-9322.
    [101]Fengel D, Shao X. Studies on the lignin of the bamboo species Phyllostachys makinoi hay [J]. Wood Science and Technology,1985,19(2):131-137.
    [102]Ferreira F C, Curvelo A A S, Mattoso L H C. Preparation and characterization of benzylated sisal fibers [J]. Journal of Applied Polymer Science,2003,89 (11):2957-2965.
    [103]FitzPatrick M, Champagne P, Cunningham M F, Whitney R A. A biorefinery processing perspective:Treatment of lignocellulosic materials for the production of value-added products [J]. Bioresource Technology,2010,101 (23):8915-8922.
    [104]Fort D A, Remsing R C, Swatloski R P, Moyna P, Moyna G, Rogers R D. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride [J]. Green Chemistry,2007,9(1):63-69.
    [105]Fujii Y, Azuma J, Marchessault R H, Morin F G, Aibara S, Okamura K. Chemical-composition change of bamboo accompanying its growth [J]. Holzforschung,1993,47 (2):109-115.
    [106]Gandini A, Belgacem M N, Mohamed Naceur B, Alessandro G. Lignins as components of macromolecular materials [M]. Monomers, Polymers and Composites from Renewable Resources. Amsterdam:Elsevier,2008:243-271.
    [107]Garcia A, Toledano A, Andres M A, Labidi J. Study of the antioxidant capacity of Miscanthus sinensis lignins [J]. Process Biochemistry,2010,45 (6):935-940.
    [108]Gastaldi G, Capretti G, Focher B, Cosentino C. Characterization and proprieties of cellulose isolated from the Crambe abyssinica hull [J]. Industrial Crops and Products,1998,8 (3): 205-218.
    [109]Gellerstedt G. Gel permeation chromatography [M]//Dence C W, Lin S Y. Methods in Lignin Chemistry. Heidelberg:Springer-Verlag,1992:491.
    [110]Girio F M, Fonseca C, Carvalheiro F, Duarte L C, Marques S, Bogel-Lukasik R. Hemicelluloses for fuel ethanol:A review [J]. Bioresource Technology,2010,101 (13):4775-4800.
    [111]Glasser W G, Hsu O H H, Reed D L, Forte R C, Wu L C F. Lignin-derived polyols, polyisocyanates, and polyurethanes [M]. Urethane Chemistry and Applications. American Chemical Society,1981:311-338.
    [112]Glasser W G. Lignin-based Polymers [M]//Buschow K H J, Robert W C, Merton C F, et al. Encyclopedia of Materials:Science and Technology. Oxford:Elsevier,2001:4504-4507.
    [1133]Goldstein I S. Acid processes for cellulose hydrolysis and their mechanisms [M], Wood and agricultural residues. New York:Academic Press Inc.,1983:315-328.
    [114]Gong G F, Liu D Y, Huang Y D. Microwave-assisted organic acid pretreatment for enzymatic hydrolysis of rice straw [J]. Biosystems Engineering,2010,107 (2):67-73.
    [115]Gosselink R J A, de Jong E, Guran B, Abacherli A. Co-ordination network for lignin standardisation, production and applications adapted to market requirements (EUROLIGNIN) [J]. Industrial Crops and Products,2004,20 (2):121-129.
    [116]Gosselink R J A, van Dam J E G, de Jong E, Scott E L, Sanders J P M, Li J E B, Gellerstedt G. Fractionation, analysis, and PCA modeling of properties of four technical lignins for prediction of their application potential in binders [J]. Holzforschung,2010,64 (2):193-200.
    [117]Gregorova A, Kosikova B, Stasko A. Radical scavenging capacity of lignin and its effect on processing stabilization of virgin and recycled polypropylene [J]. Journal of Applied Polymer Science,2007,106(3):1626-1631.
    [118]Gullon P, Gonzalez-Munoz M J, Gool M P v, Schols H A, Hirsch J, Ebringerova A, Parajo J C. Structural features and properties of soluble products derived from Eucalyptus globulus hemicelluloses [J]. Food Chemistry,2011,127 (4):1798-1807.
    [119]Hadano S, Maehara S, Onimura K, Yamasaki H, Tsutsumi H, Oishi T. Syntheses and biodegradability of benzylated waste pulps and graft copolymers from PBzs and L-lactic acid [J]. Journal of Applied Polymer Science,2004,92 (4):2658-2664.
    [120]Hadano S, Onimura K, Yamasaki H, Tsutsumi H, Oishi T. Syntheses of benzylated waste pulps and their biodegradability [J]. Kobunshi Ronbunshu,2003,60 (2):51-56.
    [121]Hatakka A. Lignin-modifying enzymes from selected white-rot fungi:production and role from in lignin degradation [J]. FEMS Microbiology Reviews,1994,13 (2-3):125-135.
    [122]Haykiri-Acma H, Yaman S, Kucukbayrak S. Comparison of the thermal reactivities of isolated lignin and holocellulose during pyrolysis [J]. Fuel Processing Technology,2010,91 (7):759-764.
    [123]He Y F, Pang Y Z, Liu Y P, Li X J, Wang K. S. Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production [J]. Energy & Fuels,2008,22 (4):2775-2781.
    [124]Holtman K M, Chang H M, Jameel H, Kadla J F. Quantitative C-13 NMR characterization of milled wood lignins isolated by different milling techniques [J]. Journal of Wood Chemistry and Technology,2006,26 (1):21-34.
    [125]Hon D N S, Ou N H. Thermoplasticization of wood.1. Benzylation of wood [J]. Journal of Polymer Science Part A-Polymer Chemistry,1989,27 (7):2457-2482.
    [126]Hongzhang C, Liying L. Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction [J]. Bioresource Technology,2007,98 (3):666-676.
    [127]Huang Z P, Zhang L N. Chemical structures of water-soluble polysaccharides from Rhizoma Panacis Japonici [J]. Carbohydrate Research,2009,344 (9):1136-1140.
    [128]Huber G W, Dumesic J A. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery [J]. Catalysis Today,2006,111 (1):119-132.
    [129]Ibarra D, Chavez M I, Rencoret J, del Rio J C, Gutierrez A, Romero J, Camarero S, Martinez M J, Jimenez-Barbero J, Martinez A T. Structural modification of Eucalypt pulp lignin in a totally chlorine-free bleaching sequence including a laccase-mediator stage [J]. Holzforschung,2007,61 (6):634-646.
    [130]liyama K, Lam T B T, Kasuya N, Stone B A. Rapid and simple determination of O-acetyl groups bound to plant cell walls by acid hydrolysis and'H NMR measurement [J]. Phytochemistry,1994, 35 (4):959-961.
    [131]liyama K, Lam T B T, Stone B A. Phenolic acid bridges between polysaccharides and lignin in wheat internodes [J]. Phytochemistry,1990,29 (3):733-737.
    [132]Islam A, Sarkanen K V. The isolation and characterization of the lignins of jute (Corchorus-capsularis) [J]. Holzforschung,1993,47 (2):123-132.
    [133]lsogai A, Ishizu A, Nakano J. Preparation of tri-O-substituted cellulose ethers by the use of a nonaqueous cellulose solvent [J]. Journal of Applied Polymer Science,1984,29 (12): 3873-3882.
    [134]Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T. Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi [J]. Journal of Biotechnology,2003,103 (3):273-280.
    [135]Jahan M S, Chowdhury D A N, Islam M K. Atmospheric formic acid pulping and TCF bleaching of dhaincha (Sesbania aculeata), kash(Saccharum spontaneum) and banana stem (Musa Cavendish) [J]. Industrial Crops and Products,2007,26 (3):324-331.
    [136]Jia S S, Fei J J, Zhou J P, Chen X M, Meng J Q. Direct electrochemistry of hemoglobin entrapped in cyanoethyl cellulose film and its electrocatalysis to nitric oxide [J]. Biosensors & Bioelectronics,2009,24 (10):3049-3054.
    [137]Jin H J, Zha C X, Gu L X. Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution [J]. Carbohydrate Research,2007,342 (6):851-858.
    [138]Kacurakova M, Belton P S, Wilson R H, Hirsch J, Ebringerova A. Hydration properties of xylan-type structures:an FTIR study of xylooligosaccharides [J]. Journal of the Science of Food and Agriculture,1998,77 (1):38-44.
    [139]Kalia S, Kaith B S, Kaur I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review [J]. Polymer Engineering & Science,2009,49 (7): 1253-1272.
    [140]Kalia S, Kaushik V K, Sharma R K. Effect of benzoylation and graft copolymerization on morphology, thermal stability, and crystallinity of sisal fibers [J]. Journal of Natural Fibers,2011, 8(1):27-38.
    [141]Kamm B, Kamm M. Principles of biorefineries [J]. Applied Microbiology and Biotechnology, 2004,64(2):137-145.
    [142]Kamm B, Kamm M. Biorefineries-Multi Product Processes [M]//ULBER R, SELL D. White Biotechnology. Berlin; Springer.2007:175-204.
    [143]Kaparaju P, Serrano M, Thomsen A B, Kongjan P, Angelidaki I. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept [J]. Bioresource Technology,2009, 100 (9):2562-2568.
    [144]Kim H, Ralph J. Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-4/pyridine-d5 [J]-Organic & Biomolecular Chemistry,2010,8 (3):576-591.
    [145]Kim S, Holtzapple M T. Delignification kinetics of corn stover in lime pretreatment [J]. Bioresource Technology,2006a,97 (5):778-785.
    [146]Kim T H, Lee Y Y. Pretreatment and fractionation of corn stover by ammonia recycle percolation process [J]. Bioresource Technology,2005,96 (18):2007-2013.
    [147]Kim T H, Lee Y Y, Sunwoo C, Kim J S. Pretreatment of corn stover by low-liquid ammonia recycle percolation process [J]. Applied Biochemistry and Biotechnology,2006b,133 (1):41-57.
    [148]Kirk T K, Brown W, Cowling E B. Preparative fractionation of lignin by gel-permeation chromatography [J]. Biopolymers,1969,7 (2):135-153.
    [149]Kumar P, Barrett D M, Delwiche M J, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production [J]. Industrial & Engineering Chemistry Research,2009a,48 (8):3713-3729.
    [150]Kumar R, Wyman C E. Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies [J]. Biotechnology Progress,2009b,25 (2): 302-314.
    [151]Kuo C H, Lee C K. Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments [J]. Carbohydrate Polymers,2009,77 (1):41-46.
    [152]Kuo M, Hse C Y, Huang D H. Alkali treated kraft lignin as a component in flakeboard resins [J]. Holzforschung,1991,45 (1):47-54.
    [153]Kushwaha P K, Kumar R. Influence of chemical treatments on the mechanical and water absorption properties of bamboo fiber composites [J]. Journal of Reinforced Plastics and Composites,2011,30 (1):73-85.
    [154]Larsson P T, Wickholm K, Iversen T. A CP/MAS C-13 NMR investigation of molecular ordering in celluloses [J]. Carbohydrate Research,1997,302 (1-2):19-25.
    [155]Laser M, Jin H M, Jayawardhana K, Lynd L R. Coproduction of ethanol and power from switchgrass [J]. Biofuels Bioproducts & Biorefining-Biofpr,2009,3 (2):195-218.
    [156]Laser M, Schulman D, Allen S G, Lichwa J, Antal Jr M J, Lynd L R. A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol [J]. Bioresource Technology,2002,81(1):33-44.
    [157]Laszkiewicz B. Solubility of bacterial cellulose and its structural properties [J]. Journal of Applied Polymer Science,1998,67(11):1871-1876.
    [158]Lawal O S, Lechner M D, Kulicke W M. The synthesis conditions, characterizations and thermal degradation studies of an etherified starch from an unconventional source [J]. Polymer Degradation and Stability,2008,93 (8):1520-1528.
    [159]Le Moigne N, Navard P. Dissolution mechanisms of wood cellulose fibres in NaOH-water [J]. Cellulose,2010,17(1):31-45.
    [160]Lee J. Biological conversion of lignocellulosic biomass to ethanol [J]. Journal of Biotechnology, 1997,56(1):1-24.
    [161]Lee S H, Doherty T V, Linhardt R J, Dordick J S. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis [J]. Biotechnology and Bioengineering,2009,102 (5):1368-1376.
    [162]Lee Y, Iyer P, Torget R. Dilute-acid hydrolysis of lignocellulosic biomass [M]//Tsao G, Brainard A, Bungay H, et al. Recent Progress in Bioconversion of Lignocellulosics. Berlin/Heidelberg: Springer,1999:93-115.
    [163]Li C L, Knierim B, Manisseri C, Arora R, Scheller H V, Auer M, Vogel K. P, Simmons B A, Singh S. Comparison of dilute acid and ionic liquid pretreatment of switchgrass:Biomass recalcitrance, delignification and enzymatic saccharification [J]. Bioresource Technology,2010a,101 (13): 4900-4906.
    [164]Li J B, Henriksson G, Gellerstedt G. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion [J]. Bioresource Technology,2007,98 (16):3061-3068.
    [165]Li S M, Jia N, Zhu J F, Ma M G, Sun R C. Synthesis of cellulose-calcium silicate nanocomposites in ethanol/water mixed solvents and their characterization [J]. Carbohydrate Polymers,2010b,80 (1):270-275.
    [166]Ligero P, Vega A, Villaverde J J. Delignification of Miscanthus x giganteus by the Milox process [J]. Bioresource Technology,2010,101 (9):3188-3193.
    [167]Ligero P, Villauerde J J, de Vega A, Bao M. Delignification of Eucalyptus globulus saplings in two organosolv systems (formic and acetic acid) Preliminary analysis of dissolved lignins [J]. Industrial Crops and Products,2008,27 (1):110-117.
    [168]Lin S, Dence C. Methods in Lignin Chemistry [M]. Berlin:Springer,1992.
    [169]Lisboa S A, Evtuguin D V, Neto C P, Goodfellow B J. Isolation and structural characterization of polysaccharides dissolved in Eucalyptus globulus kraft black liquors [J]. Carbohydrate Polymers, 2005,60(1):77-85.
    [170]Liu L, Sun J S, Li M, Wang S H, Pei H S, Zhang J S. Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment [J]. Bioresource Technology,2009,100 (23):5853-5858.
    [171]Liu Q, Wang S R, Zheng Y, Luo Z Y, Cen K F. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis [J]. Journal of Analytical and Applied Pyrolysis,2008a,82 (1):170-177.
    [172]Liu Z T, Sun Z F, Liu Z W, Lu J, Xiong H P. Benzylated modification and dyeing of ramie fiber in supercritical carbon dioxide [J]. Journal of Applied Polymer Science,2008b,107 (3): 1872-1878.
    [173]Locci E, Laconi S, Pompei R, Scano P, Lai A, Marincola F C. Wheat bran biodegradation by Pleurotus ostreatus:A solid-state Carbon-13 NMR study [J]. Bioresource Technology,2008,99 (10):4279-4284.
    [174]Lora J H, Glasser W G. Recent industrial applications of lignin:A sustainable alternative to nonrenewable materials [J]. Journal of Polymers and the Environment,2002,10 (1-2):39-48.
    [175]Love G D, Snape C E, Jarvis M C. Comparison of leaf and stem cell-wall components in barley straw by solid-state C-13 NMR [J]. Phytochemistry,1998,49 (5):1191-1194.
    [176]Lu F C, Ralph J. Derivatization followed by reductive cleavage (DFRC method), a new method for lignin analysis:Protocol for analysis of DFRC monomers [J]. Journal of Agricultural and Food Chemistry,1997,45 (7):2590-2592.
    [177]Lu Q, Liu W, Yang L, Zu Y, Zu B, Zhu M, Zhang Y, Zhang X, Zhang R, Sun Z, Huang J, Zhang X, Li W. Investigation of the effects of different organosolv pulping methods on antioxidant capacity and extraction efficiency of lignin [J]. Food Chemistry,2012,131 (1):313-317.
    [178]Lu X, Zhang M Q, Rong M Z, Shi G, Yang G C. All-plant fiber composites. I:Unidirectional sisal fiber reinforced benzylated wood [J]. Polymer Composites,2002,23 (4):624-633.
    [179]Lu X, Zhang M Q, Rong M Z, Shi G A, Yang G C. All-plant fiber composites.11:Water absorption behavior and biodegradability of unidirectional sisal fiber reinforced benzylated wood [J]. Polymer Composites,2003,24 (3):367-379.
    [180]Luo X G, Zhang L. New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system [J]. Food Research International,2010, doi:10.1016/j.foodres.2010.05. 016.
    [181]Lynd L R, Larson E, Greene N, Laser M, Sheehan J, Dale B E, McLaughlin S, Wang M. The role of biomass in America's energy future:framing the analysis [J]. Biofuels Bioproducts & Biorefining,2009,3 (2):113-123.
    [182]Morck R, Reimann A, Kringstad K P. Fractionation of Kaft lignin by successive extraction with organic-solvent. 3. Fractionation of Kraft lignin from birch [J]. Holzforschung,1988,42 (2): 111-116.
    [183]Morck R, Yoshida H, Kringstad K P, Hatakeyama H. Fractionation of Kraft lignin by successive extraction with organic-solvents.1. Functional-groups, C-13-NMR-spectra and molecular-weight distributions [J]. Holzforschung,1986,40 (S):51-60.
    [184]Ma L. Plasticization of wood by benzylation [D]. Idaho:University of Idaho,2007.
    [185]Maekawa E. Studies on Hemicellulose of Bamboo [J]. Wood Research,1976,59-60:153-179.
    [186]Mansfield S D, Mooney C, Saddler J N. Substrate and enzyme characteristics that limit cellulose hydrolysis [J]. Biotechnology Progress,1999,15 (5):804-816.
    [187]Martinez A T, Rencoret J, Marques G, Gutierrez A, Ibarra D, Jimenez-Barbero J, del Rio J C. Monolignol acylation and lignin structure in some nonwoody plants:A 2D NMR study [J]. Phytochemistry,2008,69 (16):2831-2843.
    [188]Marzialetti T, Olarte M B V, Sievers C, Hoskins T J C, Agrawal P K, Jones C W. Dilute acid hydrolysis of Loblolly pine:A comprehensive approach [J]. Industrial & Engineering Chemistry Research,2008,47 (19):7131-7140.
    [189]Mason T J, Paniwnyk L, Lorimer J P. The uses of ultrasound in food technology [J]. Ultrasonics Sonochemistry,1996,3 (3):S253-S260.
    [190]Maunu S L.13C CPMAS NMR studies of wood, cellulose fibers, and derivatives [M]//Thomas Q H. Characterization of Lignocellulosic Materials. Wiley-Blackwell,2009:227-248.
    [191]Mcdonough T J. The chemistry of organosolv delignification [J]. Tappi Journal,1993,76 (8): 186-193.
    [192]Melo B N, Dos-Santos C G, Botaro V R, Pasa V M D. Eco-composites of polyurethane and Luffa aegyptiaca modified by mercerisation and benzylation [J]. Polymers & Polymer Composites, 2008,16 (4):249-256.
    [193]Monavari S, Galbe M, Zacchi G. The influence of solid/liquid separation techniques on the sugar yield in two-step dilute acid hydrolysis of softwood followed by enzymatic hydrolysis [J]. Biotechnology for Biofuels,2009, http://www.biotechnologyforbiofuels.com/content/pdf /1754-6834-2-6.pdf.
    [194]Monteil-Rivera F, Huang G H, Paquet L, Deschamps S, Beaulieu C, Hawari J. Microwave-assisted extraction of lignin from triticale straw:Optimization and microwave effects [J]. Bioresource Technology,2012,104:775-782.
    [195]Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch M R. Optimization of pH controlled liquid hot water pretreatment of corn stover [J]. Bioresource Technology,2005a,96 (18):1986-1993.
    [196]Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass [J]. Bioresource Technology,2005b,96 (6):673-686.
    [197]Mosier N, Wyman C, Dale B, Elander R, Lee Y Y, Holtzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass [J]. Bioresource Technology, 2005a,96 (6):673-686.
    [198]Mousavioun P, Doherty W O S. Chemical and thermal properties of fractionated bagasse soda lignin [J]. Industrial Crops and Products,2010,31 (1):52-58.
    [199]Moxley G, Zhu Z G, Zhang Y H P. Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis [J]. Journal of Agricultural and Food Chemistry,2008,56 (17):7885-7890.
    [200]Muhammad N, Man Z, Bustam Khalil M A. Ionic liquid—a future solvent for the enhanced uses of wood biomass [J]. European Journal of Wood and Wood Products,2011,70 (1-3):125-133.
    [201]Nadji H, Diouf P N, Benaboura A, Bedard Y, Riedl B, Stevanovic T. Comparative study of lignins isolated from Alfa grass (Stipa tenacissima L.) [J]. Bioresource Technology,2009,100 (14): 3585-3592.
    [202]Nagel M C V, Koschella A, Voiges K, Mischnick P, Heinze T. Homogeneous methylation of wood pulp cellulose dissolved in LiOH/urea/H2O [J]. European Polymer Journal,2010,46 (4): 1726-1735.
    [203]Ohara H. Biorefinery [J]. Applied Microbiology and Biotechnology,2003,62 (5):474-477.
    [204]Oliveira L, Eutuguin D, Cordeiro N, Silvestre A J D. Structural characterization of stalk lignin from banana plant [J]. Industrial Crops and Products,2009,29 (1):86-95.
    [205]Pal S, Mal D, Singh R P. Cationic starch:an effective flocculating agent [J]. Carbohydrate Polymers,2005,59 (4):417-423.
    [206]Pan X J, Kadla J F, Ehara K, Gilkes N, Saddler J N. Organosolv ethanol lignin from hybrid poplar as a radical scavenger:Relationship between lignin structure, extraction conditions, and antioxidant activity [J]. Journal of Agricultural and Food Chemistry,2006,54 (16):5806-5813.
    [207]Pan X J, Sano Y. Atmospheric acetic acid pulping of rice straw IV:Physico-chemical characterization of acetic acid lignins from rice straw and woods. Part 1. Physical characteristics [J]. Holzforschung,1999,53 (5):511-518.
    [208]Pereira R, Campana S P, Curvelo A A S, Gandini A. Benzylated pulps from sugar cane bagasse [J]. Cellulose,1997,4 (1):21-31.
    [209]Perez D D, Terrones M G H, Grelier S, Nourmamode A, Castellan A. Peroxyformic acid pulping of Eucalyptus grandis wood chips and sugar cane bagasse in one stage and characterization of the isolated lignins [J]. Journal of Wood Chemistry and Technology,1998,18 (3):333-365.
    [210]Perez J A, Ballesteros I, Ballesteros M, Saez F, Negro M J, Manzanares P. Optimizing Liquid Hot Water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production [J]. Fuel,2008,87 (17-18):3640-3647.
    [211]Perttunen J, Myllykoski L, Keiski R. Lactic acid fermentation of hemicellulose liquors and their activated carbon pretreatments [M]//Hofman M, Thonart P. Engineering and Manufacturing for Biotechnology. Springer Netherlands,2002:29-38.
    [212]Petrus L, Gray D G, Bemiller J N. Homogeneous alkylation of cellulose in lithium-chloride dimethyl-sulfoxide solvent with dimsyl sodium activation.A proposal for the mechanism of cellulose dissolution in LiCl/Me2SO [J]. Carbohydrate Research,1995,268 (2):319-323.
    [213]Popescu C M, Larsson P T, Tibirna C M, Vasile C. Characterization of fungal-degraded lime wood by X-ray diffraction and cross-polarization magic-angle-spinning 13C-nuclear magnetic resonance spectroscopy [J]. Applied Spectroscopy,2010,64 (9):1054-1060.
    [214]Qi H S, Chang C Y, Zhang L N. Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution [J]. Cellulose,2008,15 (6):779-787.
    [215]Qi H S, Liebert T, Meister F, Heinze T. Homogenous carboxymethylation of cellulose in the NaOH/urea aqueous solution [J]. Reactive & Functional Polymers,2009,69 (10):779-784.
    [216]Ralph J, Lu F C. Cryoprobe 3D NMR of acetylated ball-milled pine cell walls [J]. Organic& Biomolecular Chemistry,2004,2 (19):2714-2715.
    [217]Ramos L A, Frollini E, Koschella A, Heinze T. Benzylation of cellulose in the solvent dimethylsulfoxide/tetrabutylammonium fluoride trihydrate [J]. Cellulose,2005,12 (6):607-619.
    [218]Ren J L, Sun R C, Peng F. Carboxymethylation of hemicelluloses isolated from sugarcane bagasse [J]. Polymer Degradation and Stability,2008,93 (4):786-793.
    [219]Rencoret J, Marques G, Gutierrez A, Nieto L, Jimenez-Barbero J, Martinez A T, del Rio J C. Isolation and structural characterization of the milled-wood lignin from Paulownia fortunei wood [J]. Industrial Crops and Products,2009a,30 (1):137-143.
    [220]Rencoret J, Marques G, Gutierrez A, Nieto L, Santos J I, Jimenez-Barbero J, Martinez A T, del Rio J C. HSQC-NMR analysis of lignin in woody (Eucalyptus globulus and Picea abies) and non-woody (Agave sisalana) ball-milled plant materials at the gel state [J]. Holzforschung,2009b, 63 (6):691-698.
    [221]Rodrigues G, de Assuncao R M N, Vieira J G, Meireles C D, Cerqueira D A, Barud H D, Ribeiro S J L, Messaddeq Y. Characterization of methylcellulose produced from sugar cane bagasse cellulose:Crystallinity and thermal properties [J]. Polymer Degradation and Stability,2007,92 (2):205-210.
    [222]Rodriguez A, Jimenez L. Pulping with organic solvents other than alcohols [J]. Afinidad,2008, 65(535):188-196.
    [223]Rohleder E, Heinze T. Comparison of benzyl celluloses synthesized in aqueous NaOH and dimethyl sulfoxide/tetrabutylammonium fluoride [J]. Macromolecular Symposia,2010,294 (2): 107-116.
    [224]Rubin E M. Genomics of cellulosic biofuels [J]. Nature,2008,454 (7206):841-845.
    [225]Saha B C, Cotta M A. Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw [J]. Biotechnology Progress,2006,22 (2):449-453.
    [226]Sahin H T, Young R A. Auto-catalyzed acetic acid pulping of jute [J]. Industrial Crops and Products,2008,28 (1):24-28.
    [227]Sahoo S, Seydibeyoglu M O, Mohanty A K, Misra M. Characterization of industrial lignins for their utilization in future value added applications [J}. Biomass & Bioenergy,2011,35 (10): 4230-4237.
    [228]Sarkanen K V. Chemistry of solvent pulping [J]. Tappi Journal,1990,73 (10):215-219.
    [229]Schmidt A S, Mallon S, Thomsen A B, Hvilsted S, Lawther J M. Comparison of the chemical properties of wheat straw and beech fibers following alkaline wet oxidation and laccase treatments [J]. Journal of Wood Chemistry and Technology,2002,22 (1):39-53.
    [230]Seca A M L, Cavaleiro J A S, Domingues F M J, Silvestre A J D, Evtuguin D, Neto C P. Structural characterization of the bark and core lignins from kenaf(Hibiscus cannabinus) [J]. Journal of Agricultural and Food Chemistry,1998,46 (8):3100-3108.
    [231]Seca A M L, Cavaleiro J A S, Domingues F M J, Silvestre A J D, Evtuguin D, Neto C P. Structural characterization of the lignin from the nodes and internodes of Arundo donax reed [J]. Journal of Agricultural and Food Chemistry,2000,48 (3):817-824.
    [232]Serrano L, Egues I, Alriols M G, Llano-Ponte R, Labidi J. Miscanthus sinensis fractionation by different reagents [J]. Chemical Engineering Journal,2010,156 (1):49-55.
    [233]Shafizad.F, Mcginnis G D, Philpot C W. Thermal-degradation of xylan and related model compounds [J]. Carbohydrate Research,1972,25 (1):23-33.
    [234]Shao S L, Wen G F, Jin Z F. Changes in chemical characteristics of bamboo(Phyllostachys pubescens) components during steam explosion [J]. Wood Science and Technology,2008,42 (6): 439-451.
    [235]Shen D K, Gu S, Bridgwater A V. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR [J]. Journal of Analytical and Applied Pyrolysis,2010,87 (2): 199-206.
    [236]Shukry N, Fadel S M, Agblevor F A, Ei-Kalyoubi S F. Some physical properties of acetosolv lignins from bagasse [J]. Journal of Applied Polymer Science,2008,109 (1):434-444.
    [237]Silverstein R M, Webster F X, Kiemle D J. Spectrometric Identification of Organic Compounds [M].7th ed. New York:John Wiley & Sons,2005.
    [238]Singh R, Singh S, Trimukhe K. D, Pandare K V, Bastawade K B, Gokhale D V, Varma A J. Lignin-carbohydrate complexes from sugarcane bagasse:Preparation, purification, and characterization [J]. Carbohydrate Polymers,2005,62 (1):57-66.
    [239]Song Y B, Sun Y X, Zhang X Z, Zhou J P, Zhang L N. Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers [J]. Biomacromolecules,2008,9 (8): 2259-2264.
    [240]Song Y B, Zhang J, Gan W P, Zhou J P, Zhang L N. Flocculation properties and antimicrobial activities of quaternized celluloses synthesized in NaOH/urea aqueous solution [J]. Industrial & Engineering Chemistry Research,2010,49 (3):1242-1246.
    [241]Sugiyama H, Nitta T, Horii M, Motohashi K, Sakai J, Usui T, Hisamichi K, Ishiyama J. The conformation of α-(1→4)-linked glucose oligomers from maltose to maltoheptaose and short-chain amylose in solution [J]. Carbohydrate Research,2000,325 (3):177-182.
    [242]Sun N, Rahman M, Qin Y, Maxim M L, Rodriguez H, Rogers R D. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate [J]. Green Chemistry,2009,11 (5):646-655.
    [243]Sun R C. Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels [M]. Amsterdam: Elsevier,2010.
    [244]Sun R C, Lawther J M, Banks W B. Influence of alkaline pretreatments on the cell-wall components of wheat-straw [J]. Industrial Crops and Products,1995,4 (2):127-145.
    [245]Sun R C, Lawther J M, Banks W B. Fractional and structural characterization of wheat straw hemicelluloses [J]. Carbohydrate Polymers,1996,29 (4):325-331.
    [246]Sun R C, Sun X F, Xu X P. Effect of ultrasound on the physicochemical properties of organosolv lignins from wheat straw [J]. Journal of Applied Polymer Science,2002a,84 (13):2512-2522.
    [247]Sun R C, Tomkinson J. Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw [J]. Ultrasonics Sonochemistry,2002b,9 (2):85-93.
    [248]Sun X F, Fowler P, Rajaratnam M, Zhang G C. Extraction and characterisation of hemicelluloses from maize stem [J]. Phytochemical Analysis,2010,21 (5):406-415.
    [249]Sun X F, Sun R C, Tomkinson J, Baird M S. Isolation and characterization of lignins, hemicelluloses, and celluloses from wheat straw by alkaline peroxide treatment [J]. Cellulose Chemistry and Technology,2003,37 (3-4):283-304.
    [250]Sun Y, Cheng J Y. Hydrolysis of lignocellulosic materials for ethanol production:a review [J]. Bioresource Technology,2002c,83 (1):1-11.
    [251]Sundquist J, Poppius-Levlin K. Milox pulping and bleaching [M]//Young R, Akhtar M. Environmentally Friendly Technologies for the Pulp and Paper Industry. New York:John Willey and Sons,1998:157-190.
    [252]Swatloski R P, Spear S K, Holbrey J D, Rogers R D. Dissolution of Cellose with Ionic Liquids [J]. Journal Of The American Chemical Society,2002,124 (18):4974-4975.
    [253]Taherzadeh M J, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production:a review [J]. International Journal of Molecular Sciences,2008,9 (9):1621-1651.
    [254]Tai D S, Chen C L, Gratzl J S. Chemistry of delignification during kraft pulping of bamboos [J]. Journal of Wood Chemistry and Technology,1990,10(1):75-99.
    [255]Tan S S Y, MacFarlane D R, Upfal J, Edye L A, Doherty W O S, Patti A F, Pringle J M, Scott J L. Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid [J]. Green Chemistry,2009,11 (3):339-345. [256] Teeaar R, Serimaa R, Paakkari T. Crystallinity of cellulose, as determined by CP/MAS NMR and XRD methods [J]. Polymer Bulletin,1987,17 (3):231-237.
    [257]Tejado A, Pena C, Labidi J, Echeverria J M, Mondragon 1. Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis [J]. Bioresource Technology,2007,98 (8):1655-1663.
    [258]Thring R W, Chornet E, Overend R P. Recovery of a solvolytic lignin:Effects of spent liquor/acid volume ratio, acid concentration and temperature [J]. Biomass,1990,23 (4):289-305.
    [259]Thring R W, Vanderlaan M N, Griffin S L. Fractionation of Alcell R lignin by sequential solvent extraction [J]. Journal of Wood Chemistry and Technology,1996,16 (2):139-154.
    [260]Toh K, Yokoyama H, Noda H, Yuguchi Y. Antioxidant capacity of lignin from green tea waste [J]. Journal of Food Biochemistry,2010,34:192-206.
    [261]Toledano A, Serrano L, Garcia A, Mondragon I, Labidi J. Comparative study of lignin fractionation by ultrafiltration and selective precipitation [J]. Chemical Engineering Journal, 2010,157(1):93-99.
    [262]Toma M, Vinatoru M, Paniwnyk L, Mason T J. Investigation of the effects of ultrasound on vegetal tissues during solvent extraction [J]. Ultrasonics Sonochemistry,2001,8 (2):137-142.
    [263]Tsubaki S, Iida H, Sakamoto M, Azuma J I. Microwave heating of tea residue yields polysaccharides, polyphenols, and plant biopolyester [J]. Journal of Agricultural and Food Chemistry,2008,56 (23):11293-11299.
    [264]Tsubaki S, Sakamoto M, Azuma J. Microwave-assisted extraction of phenolic compounds from tea residues under autohydrolytic conditions [J]. Food Chemistry,2010,123 (4):1255-1258.
    [265]Vanderghem C, Richel A, Jacquet N, Blecker C, Paquot M. Impact of formic/acetic acid and ammonia pre-treatments on chemical structure and physico-chemical properties of Miscanthus x giganteus lignins [J]. Polymer Degradation and Stability,2011,96 (10):1761-1770.
    [266]Vares T, Lundell T K, Hatakka A I. Production of multiple lignin peroxidases by the white-rot fungus Phlebia ochraceofulva [J]. Enzyme and Microbial Technology,1993,15 (8):664-669.
    [267]Vazquez G, Antorrena G, Gonzalez J, Freire S, Lopez S. Acetosolv pulping of pine wood. Kinetic modelling of lignin solubilization and condensation [J]. Bioresource Technology,1997,59 (2-3): 121-127.
    [268]Vazquez G, Freire S, Rodriguez-Bona C, Gonzalez J, Antorrena G. Structures, and reactivities with formaldehyde, of some acetosolv pine lignins [J]. Journal of Wood Chemistry and Technology,1999,19 (4):357-378.
    [269]Velasquez J, Ferrando F, Farriol X, Salvado J. Binderless fiberboard from steam exploded Miscanthus sinensis [J]. Wood Science and Technology,2003,37 (3):269-278.
    [270]Vila C, Santos V, Parajo J C. Simulation of an organosolv pulping process:Generalized material balances and design calculations [J]. Industrial & Engineering Chemistry Research,2003,42 (2): 349-356.
    [271]Vila C, Santos V, Parajo J C. Dissolving pulp from TCF bleached acetosolv beech pulp [J]. Journal of Chemical Technology and Biotechnology,2004,79 (10):1098-1104.
    [272]Villaverde J J, Li J B, Ek M, Ligero P, de Vega A. Native lignin structure of Miscanthus x giganteus and its changes during acetic and formic acid fractionation [J]. Journal of Agricultural and Food Chemistry,2009,57 (14):6262-6270.
    [273]Villaverde J J, Ligero P, de Vega A. Formic and acetic acid as agents for a cleaner fractionation of Miscanthus x giganteus [J]. Journal of Cleaner Production,2010,18 (4):395-401.
    [274]Vinardell M P, Ugartondo V, Mitjans M. Potential applications of antioxidant lignins from different sources [J]. Industrial Crops and Products,2008,27 (2):220-223.
    [275]Vinatoru M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs [J]. Ultrasonics Sonochemistry,2001,8 (3):303-313.
    [276]Vincendon M. Xylan derivatives:Benzyl ethers, synthesis, and characterization [J]. Journal of Applied Polymer Science,1998,67 (3):455-460.
    [277]Wallace G, Russell W R, Lomax J A, Jarvis M C, Lapierre C, Chesson A. Extraction of phenolic-carbohydrate complexes from gramineous cell-walls [J]. Carbohydrate Research,1995, 272(1):41-53.
    [278]Wang L, Luo Z, Xiu S, Shahbazi A. Pretreatment and fractionation of wheat straw with acetic acid to enhance enzymatic hydrolysis and ethanol fermentation [J]. Energy Sources Part A-Recovery Utilization and Environmental Effects,2011a,33 (13):1230-1238.
    [279]Wang L L, Jiang Y J, Li C H, Li X T, Meng L Q, Wang W, Mu X D. Microwave-assisted hydrolysis of corn cob for xylose production in formic acid [C]//Materials for Renewable Energy & Environment,2011b:332-335.
    [280]Wang S R, Wang K G, Liu Q, Gu Y L, Luo Z Y, Cen K F, Fransson T. Comparison of the pyrolysis behavior of lignins from different tree species [J]. Biotechnology Advances,2009a,27 (5):562-567.
    [281]Wang Y, Deng Y. The kinetics of cellulose dissolution in sodium hydroxide solution at low temperatures [J]. Biotechnology and Bioengineering,2009b,102 (5):1398-1405.
    [282]Wang Z, Yokoyama T, Matsumoto Y. Dissolution of ethylenediamine pretreated pulp with high lignin content in LiCl/DMSO without milling [J]. Journal of Wood Chemistry and Technology, 2010,30 (3):219-229.
    [283]Wang Z G, Yokoyama T, Chang H M, Matsumoto Y. Dissolution of beech and spruce milled woods in LiCl/DMSO [J]. Journal of Agricultural and Food Chemistry,2009c,57 (14): 6167-6170.
    [284]Wegener G, Fengel D. Rapid ultrasonic isolation of milled wood lignins-fractionation and degradation experiments [J]. Tappi,1979,62 (3):97-100.
    [285]Weil J, Sarikaya A, Rau S L, Goetz J, Ladisch C M, Brewer M, Hendrickson R, Ladisch M R. Pretreatment of yellow poplar sawdust by pressure cooking in water [J]. Applied Biochemistry and Biotechnology,1997,68 (1):21-40.
    [286]Wen J L, Sun Y C, Xu F, Sun R C. Fractional isolation and chemical structure of hemicellulosic polymers obtained from Bambusa rigida species [J]. Journal of Agricultural and Food Chemistry, 2010,58(21):11372-11383.
    [287]Wongsiriwan U, Noda Y, Song C, Prasassarakich P, Yeboah Y. Lignocellulosic biomass conversion by sequential combination of organic acid and base treatments [J]. Energy & Fuels, 2010,24 (5):3232-3238.
    [288]Wright J D. Ethanol from biomass by enzymatic hydrolysis [J]. Chemical Engineering Progress, 1988,84 (8):62-74.
    [289]Wyman C E. Biomass ethanol:Technical progress, opportunities, and commercial challenges [J]. Annual Review of Energy and the Environment,1999,24:189-226.
    [290]Wyman C E, Dale B E, Elander R T, Holtzapple M, Ladisch M R, Lee Y Y. Coordinated development of leading biomass pretreatment technologies [J]. Bioresource Technology,2005,96 (18):1959-1966.
    [291]Xie X F, Goodell B, Zhang D J, Nagle D C, Qian Y H, Peterson M L, Jellison J. Characterization of carbons derived from cellulose and lignin and their oxidative behavior [J]. Bioresource Technology,2009,100(5):1797-1802.
    [292]Xu F, Sun R C, Sun J X. Structural characterization of residual lignins isolated with tetraacetylethylenediamine-activated peroxide from ultrasonically irradiated organosolv pretreated wheat straw [J]. International Journal of Polymer Analysis and Characterization,2005, 10 (5-6):293-311.
    [293]Xu F, Sun R C, Zhai M Z, Sun J X, She D, Geng Z C, Lu Q. Fractional separation of hemicelluloses and lignin in high yield and purity from mild ball-milled Periploca sepium [J]. Separation Science and Technology,2008,43 (11-12):3351-3375.
    [294]Xu J, Thomsen M H, Thomsen A B. Enzymatic hydrolysis and fermentability of corn stover pretreated by lactic acid and/or acetic acid [J]. Journal of Biotechnology,2009,139 (4):300-305.
    [295]Yan L F, Tao H Y, Bangal P R. Synthesis and flocculation behavior of cationic cellulose prepared in a NaOH/urea aqueous solution [J]. Clean-Soil Air Water,2009,37 (1):39-44.
    [296]Yang H P, Yan R, Chen H P, Lee D H, Zheng C G. Characteristics of hemicelulose, cellulose and lignin pyrolysis [J]. Fuel,2007,86 (12-13):1781-1788.
    [297]Yoshida H, Morck R, Kringstad K P, Hatakeyama H. Fractionation of Kraft lignin by successive extraction with organic-solvents. 2. Thermal-properties of Kraft lignin fractions [J]. Holzforschung,1987,41 (3):171-176.
    [298]Yoshioka A, Seino T, Tabata M, Takai M. Homolytic scission of interunitary bonds in lignin induced by ultrasonic irradiation of MWL dissolved in dimethylsulfoxide [J]. Holzforschung, 2000,54 (4):357-364.
    [299]Zakaria S, Hamzah H, Murshidi J A, Deraman M. Chemical modification on lignocellulosic polymeric oil palm empty fruit bunch for advanced material [J]. Advances in Polymer Technology,2001,20 (4):289-295.
    [300]Zakzeski J, Bruijnincx P C, Jongerius A L, Weckhuysen B M. The catalytic valorization of lignin for the production of renewable chemicals [J]. Chemical Reviews,2010,110 (6):3552-3599.
    [301]Zemke G W, Moro J R, Gomez-Pineda E A, Winkler-Hechenleitner A A. Benzylcellulose from a cotton residue cellulose:Characterization by thermal analyses and infrared spectroscopy [J]. International Journal of Polymeric Materials,1996,34 (3):197-210.
    [302]Zhang L N, Ruan D, Gao S J. Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution [J]. Journal of Polymer Science Part B-Polymer Physics,2002,40 (14): 1521-1529.
    [303]Zhang M Q, Rong M Z, Lu X. Fully biodegradable natural fiber composites from renewable resources: All-plant fiber composites [J]. Composites Science and Technology,2005,65 (15-16): 2514-2525.
    [304]Zhang X, Tu M B, Paice M G. Routes to potential bioproducts from lignocellulosic biomass lignin and hemicelluloses [J]. Bioenergy Research,2011,4 (4):246-257.
    [305]Zhang X, Yuan T, Peng F, Xu F, Sun R. Separation and structural characterization of lignin from hybrid poplar based on complete dissolution in DMSO/LiCl [J]. Separation Science and Technology,2010,45 (16):2497-2506.
    [306]Zhang X Y, Yu H B, Huang H Y, Liu Y X. Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms [J]. International Biodeterioration & Biodegradation,2007a,60 (3):159-164.
    [307]Zhang Y H, Ding S Y, Mielenz J R, Cui J B, Elander R T, Laser M, Himmel M E, McMillan J R, Lynd L R. Fractionating recalcitrant lignocellulose at modest reaction conditions [J]. Biotechnology and Bioengineering,2007b,97 (2):214-23.
    [308]Zhao X, Liu D. Chemical and thermal characteristics of lignins isolated from Siam weed stem by acetic acid and formic acid delignification [J]. Industrial Crops and Products,2010a,32 (3): 284-291.
    [309]Zhao X B, Cheng K K, Liu D H. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis [J]. Applied Microbiology and Biotechnology,2009,82 (5):815-827.
    [310]Zhao X B, Liu D H. Chemical and thermal characteristics of lignins isolated from Siam weed stem by acetic acid and formic acid delignification [J]. Industrial Crops and Products,2010b,32 (3):284-291.
    [311]Zhao Y L, Wang Y, Zhu J Y, Ragauskas A, Deng Y L. Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature [J]. Biotechnology and Bioengineering,2008,99 (6): 1320-1328.
    [312]Zhou J P, Zhang L, Cai J, Shu H. Cellulose microporous membranes prepared from NaOH/urea aqueous solution [J]. Journal of Membrane Science,2002,210(1):77-90.
    [313]Zhou J P, Zhang L N. Solubility of cellulose in NaOH urea aqueous solution [J]. Polymer Journal, 2000,32 (10):866-870.
    [314]Zhou J P, Zhang L N, Cai J. Behavior of cellulose in NaOH/urea aqueous solution characterized by light scattering and viscometry [J]. Journal of Polymer Science Part B-Polymer Physics,2004, 42 (2):347-353.
    [315]Zhou Q, Zhang L N, Li M, Wu X J, Cheng G Z. Homogeneous hydroxyethylation of cellulose in NaOH/urea aqueous solution [J]. Polymer Bulletin,2005,53 (4):243-248.
    [316]Zhu S D, Wu Y X, Chen Q M, Yu Z N, Wang C W, Jin S W, Ding Y G, Wu G. Dissolution of cellulose with ionic liquids and its application:a mini-review [J]. Green Chemistry,2006,8 (4): 325-327.
    [317]Zohuriaan M J, Shokrolahi F. Thermal studies on natural and modified gums [J]. Polymer Testing, 2004,23 (5):575-579.
    [318]Zweigle M L. Purification of cellulose ether reaction product: US,4229572 [P].1980-10-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700