木质素生物降解机理及其在清洁高效制浆过程中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杨树是我国速生工业用材林的重要树种,在长江流域及以北地区广泛种植。以杨木为主要原料的大型制浆生产线先后建成投产,主要采用的制浆技术包括BCTMP、APMP和P-RC APMP等。由于P-RC APMP制浆技术具有工艺流程紧凑,原料适性广,有效协调了松厚度与强度之间的关系等优点,近年来在我国速生阔叶材林浆纸一体化工程建设中,选用的厂家较多。白腐菌能够降解植物纤维中的木质素,人们试图将白腐菌此种特性引入制浆造纸过程,多年来,进行了较多的探索和努力,取得了令人兴奋的成果,但目前还未见产业化应用的报道,实验室研究工作仍然处于方兴未艾的局面,着力解决产业化技术开发的前期瓶颈问题。本论文选用4株高效白腐菌株(Pycnoporus cinnabarinus,Pycnoporus sanguimeus,Tranetes versicolor和Phanerochaete chryscoporium)对杨木木片进行预处理,将白腐菌处理和P-RC APMP制浆相结合,试图在降低化学品消耗,降低磨浆能耗,提高纸浆的质量,改善废水污染特征等方面有所进步。同时在此基础上,揭示白腐菌用于预处理杨木而改善制浆性能的机理,为生物化机浆的技术开发提供理论依据。
     以降解木质素效率为考核目标,优化了所选用的4株白腐菌预处理杨木木片的适宜条件,结果表明,适宜温度为29oC,适宜的培养基pH值为3.5。同时还发现,在外加碳源充足时白腐菌几乎不降解纤维素和半纤维素,而是选择性的降解木质素。有效改善了这4株白腐菌对木质素降解的选择性。在同样的预处理条件下,比较4株白腐菌的作用效果,旨在筛选合适的菌株。研究表明,Ph.c生长速度快,环境适应性强,木质素的降解效率高且具有良好的选择性,为缩短处理时间提供了条件;T.v损失纤维素和半纤维素较少而降解的木质素较多,降解木质素的选择性比Py.s和Py.c高。木质素降解的选择性Ph.c>T.v>Py.s>Py.c。
     利用电子显微镜观察了白腐菌在杨木木片上生长和对杨木降解的过程。在白腐菌处理过程中,白腐菌在木片表面迅速生长,覆盖木片表面。通过导管进入木片内部,并通过纹孔进入周围的细胞。利用SEM/EDXA测定了处理过程中杨木各部分木质素浓度的变化。开始两周胞间层和细胞角木质素浓度下降较快,细胞壁S2层由于纤维素的阻碍,木质素浓度下降较慢。随处理时间的延长,胞间层木质素浓度下降速度基本保持不变,细胞角木质素浓度下降逐渐减慢,而细胞壁S2层木质素由于纤维素和半纤维素的降解量的增加而降解逐渐加快。培养基的加入不但可以保护纤维素和半纤维素,而且间接保护了细胞壁木质素,这对于生物机械法制浆有重要意义。
     为了阐明白腐菌降解杨木木质素的机理,利用气相色谱/质谱、核磁共振等手段测定了白腐菌处理杨木的产物和处理后木质素中各基团含量。白腐菌降解木质素主要通过Cα-Cβ氧化断裂,其次为β-O-4键断裂。同时白腐菌还对木质素进行脱甲氧基作用。
     为了考核白腐菌预处理对杨木木片在制浆性能方面的作用,将白腐菌处理后杨木木片和对照样采用两个不同用药量工艺进行P-RC APMP制浆,结果表明:白腐菌处理可以大量降低磨浆能耗,磨浆至350CSF时,工艺1条件下,Ph.c处理降低能耗30%以上,T.v处理降低11%,工艺2条件下,Ph.c处理和T.v处理都降低能耗14.37%。
     白腐菌预处理后制P-RC APMP浆可以提高浆的强度,在低用药量下,白腐菌处理对撕裂强度改善作用更明显,在高用药量下,白腐菌处理对耐破强度改善作用更明显。白腐菌处理改善了木片的可漂性。由于白腐菌处理产生的有机物在后续磨浆漂白过程中消耗掉部分药品,在低用药量下,白腐菌处理后制P-RC APMP浆白度比对照低,但在高用药量下相差不大,T.v处理样P-RC APMP浆的白度比对照样更高。
     由于白腐菌处理使木片中含有大量的菌丝、有机酸和酶等,而且白腐菌处理降解了部分木质素,也使药液更容易渗透,有较多的木质素溶出进入废水,使废水的污染负荷比对照样高得多,同时可生化性也高。
     白腐菌预处理降解了部分木质素,白腐菌产生的酶和菌丝等也在制浆过程中进入废水,白腐菌预处理P-RC APMP制浆废水污染负荷比对照样高,但可生化性好,而且废水中物质容易被微生物降解,所以废水处理去除率比对照样高,出水水质比对照样好。
Poplar is an important fast-grow specie for industry in China, which was planted widely on Changjiang river and north area. Several high yield pulp lines had been built in recent years, which mostly use BCTMP, APMP and P-RC APMP technology, poplar was major resourse. P-RC APMP technology has the benefit of sequnce flow compact, material adaptability wide and has both good bulk and good strength quality, has been used in many fast-grow hard wood pulping mill in resent years. White rot fungi could delignification of fibre, many research has been carried on to introduce it into pulp industry and much progress has been done, but still can’t industrialization. Now, there are many research trying to resolve the problems of industrialization. In this paper, 4 white rot fungi (Pycnoporus cinnabarinus, Pycnoporus sanguimeus, Tranetes versicolor and Phanerochaete chryscoporium) were used to treating poplar chips, then the chips were milled by P-RC APMP sequence. Combining the benefit of bio-treatment and P-RC APMP, we try to make some progress on reduceing the energy consumption or chmical consumption of pulping, enhancing the quality of pulp and reforming effluent treatment. The mechanism and the optimal codition of white rot fungi treating poplar chips were also studied to supply a theory foundation on bio-chmimechnical pulping technology.
     Use delignification of poplar as the target, the culture conditions of white rog fungi treating poplar were optimized, the result showed that: the best culture condition for white rot fungi growing and treating poplar chips was temperature 29 oC and pH 3.5. The 4 white rot fungi don’t decompose cellulose and hemecellulose until the carbon source was used out, it showed good selectivity of delignification. Ph.c has good adaptability, grows much faster and more efficiently of delignification than others, so it need less time to treating chips. The selectivity of delignification: Ph.c>T.v>Py.s>Py.c.
     SEM was utilized to observe the process of white rot fungi growing on poplar chips. White rot fungi grows fast, and cover chips in a few days, the mycelium went into chips through vessels, and then went into other cells through pits. Lignin thichness of poplar chip treated by white rot fungi for different time was tested by SEM/EDXA. At the beginning of bio-treatment, the thichness of lignin at cell middle lamella and cell corner reduced rapidly. Because of the cumber of cellulose and hemicellulose, the thichness of lignin at cell wall s2 reduced much slower. When bio-treatment keeping on, cellulose and hemicellulose degraded much,the thichness of lignin at cell wall s2 reduced faster and faster, and the thichness of lignin at cell corner reduced slowly down, the thichness of lignin at cell middle lamella kept the speed reducing. The culture medium added not only protected cellulose and hemecelloluse, but also protected lignin in cell wall indirectly. It was very important to bio-chemimechanical pulping. White rot fungi decompose lignin mostly depends on cutting Cα-Cβandβ-O-4 bond.
     After bio-treatment, poplar chips were pulped by two P-RC APMP sequnces. The result showed that: white rot fungi treatment could save much energy consumption of milling, when freeness of pulp was 350CSF, Ph.c could save more than 30% of energy in sequence 1 and T.v could save 11%, both Ph.c and T.v could save 14.37% in sequence 2.
     White rot fungi pretreatment could enhance the strength of pulp. When the dosage of chemical was low, the enhancement of tear strength was much evident; when the dosage of chemical was high, the enhancement of burst strength was much evident. Because the organic compounds white rot fungi made cost much chemical, when the dosage of chemical was low, pulp with bio-treatment had lower brightness than control, but when the dosage of chemical was high, the pulp with bio-treatment had higher brightness than control. That means white rot fungi could improve the bleachability of chips.
     White rot fungi treatment made much mycelium, organism acid and enzymes, much of them went into the effluent. White rot fungi decomposed some lignin and made chemicals easier to infiltrate into chips, which made more lignin dessloved into effluent. So, the effluent of white rot fungi treated sample had higher load than control.
     White rot fungi pretreatment degraded some lignin, and it made enzymes and hypha. Much of them entered the effluent of pulping. So the pollution charge of white rot fungi pre-treated P-RC APMP effluent was higher than control, but it was much easyer to be treated, more pollutant could be moved off.
引文
[1]国家经贸委.造纸工业“十五”规划. http://www.cas.cn/html/Dir/2001/08/27/7994.htm
    [2]许超.速生材的新型盘磨机械法制浆工艺及在中国制浆造纸工业中的发展潜力. 1999年中国造纸学会学术报告会议论文集,北京, 1999,24.
    [3]林鹿,黄伟韩,赵德清,等,白腐菌对二次纤维的脱墨作用.中国造纸学报,2005,20(1):83~87.
    [4]徐清华.废新闻纸漆酶/介体体系脱墨及其机理的研究:[博士论文].天津:天津科技大学,2004.
    [5]艾育明,余惠生.纸浆氯漂废水的生物治理.纤维素科学与技术.1999,7(2):22-26
    [6]秦文鹃、余惠生.白腐菌处理苇浆氯漂废水的脱色机理研究.中国造纸,2000.1,20~23.
    [7]闫冰,高扬,张曾.白腐菌Phanerochaete chrysosporlum处理CTMP废液的研究.广东造纸,2000,(1):9-11.
    [8]任拥政,章北平,张晓昱,等.白腐菌一厌氯一好氯工艺处理造纸黑液研究.华中科技大学学报(城市科学版),2004,20(1). 44-46.
    [9]林鹿,王双飞,陈嘉翔.白腐菌对蔗渣浆CEH漂白废水的脱色工业水处理,1996,16(3):25~27.
    [10]林鹿,王双飞,陈嘉翔.白腐菌对蔗渣浆CEH漂白废水毒性的消除.水处理技术,1996,22(4):240~244.
    [11]林鹿,陈嘉翔,余家鸾,等.白腐菌对纸浆CEH漂白废水的脱色、消除毒性和芳香化合物的降解.中国造纸学报-l996,11(增刊):69~74.
    [12]王双飞,陈嘉翔,高扬,等.PVA-H3BO3包埋白腐菌处理苇浆漂白废水的研究.中国造纸学报,1997,(12):75~81.
    [13]谢来苏.制浆造纸的生物技术.化学工业出版社,2003.
    [14]张厚民,A.M.Stomp.生物技术与制浆造纸工业(上).纸和造纸,1991,(4):51-56
    [15]陈嘉翔.生物技术在制浆造纸工业应用的前景.中国造纸,1993,(6):50-57
    [16] Jujop. Enzymes are breaking into paper. Pulp and Paper Int. 1991,33(9):81-83.
    [17]秦梦华,陈嘉翔.酶制剂与制浆造纸工业.纸和造纸. 1995,(2):4-6.
    [18] Petit-Conil. M., Sigoillot J. C., et al. 7th Intconf. Biotechnol. Pulp Pap. Ind., Vancouver, Canada, 1998, A:A143.
    [19]王双飞、高扬.白腐菌预处理蔗渣浆的漂白研究.中国造纸,1997.9,18~22.
    [20]季立才,胡培植.漆酶催化氧化反应研究进展.林产化学与工业,1997,17(1):79-84
    [21] Hiromi Tanaka, Shuji Itakura. Hydroxyl Radical Generation by an Extracellular Low-Molecular-WeightSubstance and Phenlo Oxidase Activity During Wood Degradation by the White-Rot Basidiomycete Phanerochaete chrysosporium. Holzforschung, vol. 53(1999),21~28.
    [22] C. Birkinsshaw, C.J. McCarthy. The Thermomechanical Behaviour of Wood Subject to Fungal Decay. Holzforschung, 53(1999)459~464.
    [23] Stefan Backa, Anders Brolin. Characterisation of Fungal Degraded Birch Wood by FTIR and Py-GC. Holzforschung, 55(2001)225~232.
    [24] Gonzalo Idáraga, Juan Ramos et al.Biomechanical Pulping of Agave sisalana. Hozforschung, vol.55, 2001(1),42~46.
    [25]韩善明,房桂干,沈葵忠等.漆酶-介体系统处理麦草化学浆全无氯漂白性能的研究, Jean-Claude SIGOILLOT,Marther ASTHER.林产化学与工业,vol.22(4), 2002,12.
    [26] Han Shanming, Fang Guigan, Deng Yongjun, et al. Efficient effects on enhancement of bleachabilities of Soda-AQ wheat-straw pulps by laccase treatment, The 2nd international symposium on emerging technologies of pulping and papermaking, Guangzhou, P.R. China, Oct. 9~11, 2002.
    [27] Han Shanming, Fang Guigan,, M. Asther, et al. Enzymatic delignification optimization of wheat straw Soda-AQ pulp by laccase–mediator treatment. The 2nd international symposium on emerging technologies of pulping and papermaking, Guangzhou, P.R. China, Oct. 9~11, 2002.
    [28] Tien M.. ignin-degrading enzyme from the Hymeno-mycete phanerochaete chrysosporium burd. Science,1983, 221:661~663.
    [29]Glenn J K.. An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot Basidiomycete Phanerochaete chrysosporium. Biochem. Biophys. Res. Commum. 1983, 114:1077~1083.
    [30] Kuwahara M.. Separation and Characterization of two extacellular H2O2-dependent Wxidases from ligninolytic cultures of phanerochaete chysosporium. FEMS.. 1984, 169:247~250.
    [31]许正宏,孙微.制浆生物技术的研究与工业应用.林产化学与工业.1998,18(3):90.
    [32]徐海鹃.白腐菌降解木素酶系及其作用机理.环境污染治理技术与设备,2000.3,51~54.
    [33]陈嘉翔.生物技术在制浆过程应用研究的部分结果(续).广东造纸,1997,(2)t29-30.
    [34]艾尼瓦尔,付时雨,詹怀宇.白腐菌预处理芦苇制浆的研究.造纸科学于技术,2002(5),5~8.
    [35]卢雪梅,檀俊利.黄孢原毛平革菌对美洲黑杨的生物制浆研究.广东造纸,2000.1, 1~3,20.
    [36] Blanchette R A.A new approach to effective biopulping.Idem,Al:51~55.
    [37] H.E. Schoemaker, P.J. Harvey, E.M. Bowen and J.M. Palmer. FEBS Letters, 1985, 1(183), 7~12.
    [38] Idarraga Gu, Ramos J, Yong R A, et a1. Biomechanical pulping of agave sisalana, Holzforschung, 2001, 55(1): 42~46.
    [39] Chen, C.-L. Nitrobenzene and Cupric Oxide Oxidations. In Methods in Lignin Chemistry; Lin, S. Y., Dence, C. W., Eds.; Springer-Verlag: Berlin, 1992; 301-319.
    [40] S. Camarero, J.M. Barrasa et al. Evaluation of Pleurotus Species for Wheat-Straw Biopulping. Journal of pulp and paper science, vol.24,1998(7),197~203.
    [41] Akhtar. Biomechanical pulping of loblolly pine chips with selected white-rot fungi. Holzforschung,1993, 47(1), 36~40.
    [42] S. Mosai, J.F. Wolfaardt et al. Evaluation of selected white-rot fungi for biosulfite pulping. Bioresource Technology, vol. 68(1999), 89~93.
    [43]刘秀英,藏韵莲.生物处理杨木制浆造纸的初步研究.木材工业,1997,11(2):19~21.
    [44]尤纪雪,叶汉林,童国林,等.白腐菌璜处理对杨木化学制浆性能的影响.中国造纸, 2004, 23(3): 12~15.
    [45]孔凡功,陈嘉川,杨桂花等.三倍体毛白杨单段预处理P-RC APMP的制浆研究.中国造纸学报,2003,18(1):19-25.
    [46]孙来鸿,侯彦召.蓝桉APMP制浆及应用技术的研究与现状. 2002.6,59~62.
    [47]蒋忠道.常温常压下微生物制浆获应用[J].造纸信息,1997,3(3):13.
    [48] Gonzalo Idáraga, Juan Ramos et al. Biomechanical Pulping of Agave sisalana[J]. Hozforschung, 2001,55 (1):42~46.
    [49] Akhtar M, Gary M. Scott R, et a1. Biomechanical pulping: a mill-scale evaluation. Resources[J], Conservation and Recycling, 2000, 28: 241
    [50] Evtuguin, D. V.; Domingues, P. N.; Amado, F. L.; Pascoal Neto, C.; Ferrer Courreia, A. Electrospray ionization mass spectrometry as a tool for lignins molecular weight and structural characterization[J]. Holzforschung 1999, 53, 525-528.
    [51]李建军,詹怀宇.白腐菌预处理制蔗渣生物机械浆[J].纸和造纸,2001,2:58
    [52] Akhtar,M.,Attridge,M.C.,Myers,G..C.,Kirk,T.K.,Blanchette,R.A.. Biomechanical pulping of loblolly pine with different strains of the white-rot fungus Ceriporiopsis subvermispora[J]. Tappi 1992,75:105~109.
    [53] Messner ,K.,Srebotnik,E.,.Biopulping:an overview of developments in an environmentally safe paper-making technology. FEMS Microbiol Rev,1994(13):351~364.
    [54] T K HAKALA,P MAIJALA,J K0NN,et a1.Evaluation of novel wood-rotting polypores and corticioid fungi for the decay and biopulping of Norway spruce(Picea abies)wood.Enzyme and Microbial Technology,2004,34 :255~263
    [55] Massod Akhtar,Gary M.Scott,R0ss E.Swaney et a1. Biomechanical pulping:a mill-scale evaluation Resources,Conservation and Recycling ,2000 ,(28):241~252
    [56] Daniel Cullen . Recent advances on the molecular genetics of ligninolytic fungi . J . of Biotechnology.1997.53:273—289.
    [57] Susana Camarero.Sovan Srkar.Francisco Javier.et a1.Description of a versatile peroxidase in volved in the natural degradation of lignin that has manganese peroxidase and lignin peroxidase substrate interaction sites.The J.of Biological Chemistry.1999.274(15):10324~l0330.
    [58] Masood Akhtar.Robert A.Blanchette.Todd A.Burnes Using simons stain to predict energy savings during biomechanical pulping.Wood and Fiber Science.1995.27 (3):258—264.
    [59]常青,孙秋菊译. BCTMP的未来.国际造纸,2000.5,66.
    [60] H K Sreenath. Toner removal by alkaline-active cellulases from desert basidiomycestes.. 1996. ACS Symp.Ser.655:267-279
    [61] L Viikari. Enzyme-aided bleaching of Kraft pulp. ACS Symp.Ser, 1996, 655:15-24
    [62] Wong K K Y. Mechanisms of xylanase aided bleaching of Kraft pulp. Appita J. 50(5):415-422
    [63] Eriksson K·E L. Past successes and future possibilities for biotechnology in the pulp and paper industry. Proc. 7th Intern. Conf. Biotechnol. Pulp Paper Ind.A7-10
    [64]魏建华,宋艳茹.木质素合成途径及调控的研究进展.植物学报,2001,43(8),771~779.
    [65]付时雨.生物漂白过程木素结构的红外光谱分析.纤维素科学与技术,2000,8(2),30~35.
    [66] Dmitry V. Evtuguin, Carlos Pascoal Neto, Artur M. S. Silva, et al. Comprehensive study on the chemical structure of dioxane lignin from plantation Eucalyptus globules wood. J Agric. Food Chem. 2001,49, 4252-4261.
    [67] Lapierre, C. Application of new methods for the investigationof lignin structures. In Forage Cell Wall Structureand Digestibility; Jung, G. H., Buxton, D. R.,Hatfield, R. D., Ralph, J., Eds.; ASA-CSSA-SSSA: Madison,WI, 1993: 133-166.
    [68] Fukagawa, N.; Meshitsuka, G.; Ishizu, A. A twodimensional NMR study of birch milled wood lignin. J. Wood Chem. Technol. 1991, 11, 373-396.
    [69] Kilpela¨inen I.; Sipilla¨J.; Brunow G.; et al. Application of two-dimensional NMR spectroscopy towood lignin structure determination and identification of some minor structural units of hardand softwood lignins. J. Agric. Food Chem. 1994, 42, 2790-2794.
    [70] Quideau, S.; Ralph, J. A biomimetic route to lignin model compounds via silver(I) oxide oxidation. 2. NMR characterization of noncyclic benzyl ether trimers and tetramers. Holzforschung 1994, 48, 124-132.
    [71] Nose, M.; Bernards, M. A.; Furlan, M.; et al. Towards the specification of consecutive steps in macromolecular lignin assembly. Phytochemistry 1995, 39, 71-79.
    [72] Robert, D.; A?mma¨lahti, E.; Bardet, M.; et al. Improvement in NMR structural studies of lignin through two- and three-dimensional NMR detection and isotopic enrichement. In Lignin and Lignan Biosynthesis. ACS Symp. Ser. 697. Lewis, N. G., Sarkanen, S., Eds.; American Chemical Society: Washington, DC, 1996; 237-254
    [73] Conde, E.; Cadah?′a, E.; Garc?′a-Vallejo, M. C.; et al. Polyphenolic composition of wood extracts from Eucalyptus camaldulensis, E. globulus and E. rudis. Holzforschung 1995, 49, 411-417.
    [74] Conde, E.; Cadah?′a, E.; Garc?′a-Vallejo, M. C.;et al. Low molecular weight polyphenols in wood and bark of Eucalyptus globulus. Wood Fiber Sci. 1995, 27, 379-383.
    [75] Santos, G. G.; Alves, J. C. N.; Rodilla, J. M. L.;et al. Terpenoids and other constituents of Eucalyptus globulus. Phytochemistry 1997, 44, 1309-1312.
    [76] Guetie′rrez, A.; del Rio, J. C.; Gonza′les-Vila, F. J.; et al. Chemical composition of lipophilic extractives from Eucalyptus globulus Labill. Wood. Holzforschung 1999, 53, 481-486.
    [77] Wallis, A. F. A.; Wearne, R. H.; Wright, P. J. Chemical analysis of polysaccharides in plantation eucalypt woods and pulps. Appita J. 1996, 49, 258-262.
    [78]施英乔,丁来保,房桂干,等.厌氧—好氧处理高得率浆APMP废水的研究.环境科学与技术,2000(3).
    [79] Ohtani Yoshito,Ohmae Yoko,Yimrattanabovorn Jareeva,et at.Biobleaching of Kenaf and Shirakaba pulps by wood-rot fungi. Kami Pa Gikyoshi/Japan Tappi Journal, 2002, 56(11) l 97-103.
    [80] Nishida T. Biomechanical pulping and bioblcaching using whit~-rot fungus IZU-154. Kami Pa Gikyoshi/Japan Tappl Journal, 2001, 55(8): 32-43.
    [81] Eaton D. Fungal decolorization of kraft bleach plant effluents. Tappi J, 1980, 63(10): 103.
    [82]于红,秦梦华,卢雪梅,等.微生物预处理对麦草微观结构和化学成分的影响.中国造纸学报, 2004, 19(1): 19-23.
    [83] SachsIB, LeathamGF, MyersGC, et a1. Distinguishing characteristics ofbiomechanicalpulp, TappiJ,1990, 73(9): 249.
    [84] Marguerite S. Environmental compatibility ofefluents ofaspen biome-chanicalpulp. TappiJ, 1994, 77(1): 160.
    [85]池玉杰. 6种白腐菌腐朽后的山杨木材和木质素官能团变化的红外光谱分析.林业科学. 2005, 41(2), 136-140.
    [86]高扬,闫冰,张曾,等.化学机械法制浆废液中污染物质的白腐菌降解:第3部分白腐菌生化降解前后废液的气相色谱/质谱分析.中国造纸学报. 2002, 17(1), 44-47.
    [87] Sun,R. C.,Tomkinson J.,Sun S. F.,et al. Fractional isolation and physico-soluble lignins from fast-growing poplar wood. Polymer,2000,41:8409.
    [88] Evtuguin, D. V., Neto., C. P., Silva, et al. Comprehensive study on the chemical structure of dioxane lignin feom plantation eucalyptus globlus wood. J. Agric. Food Chem., 2001,49:4252.
    [89] Knut Lundquist, Brita Ohlsson, Rune Simonson. Isolation of lignin by means of liquid-liquid extraction[J]. Svensk Paperstidning,1977,(5):143.
    [90] Stephen Y. Lin. Carlton W. Dence. Methods in Lignin Chemistry. New York:1992,243.
    [91]戴永鑫,王海宽,刘逸寒,等.白腐菌对秸秆中木质素生物降解的研究.天津科技大学学报. 2007, 22(4).24-26,51.
    [92]房桂干,施英乔,丁来保,等. BCTMP废水处理研究和工程应用.中华纸业,2008(2):26-28.
    [93] Galliano H, Gas G, Seris J L. Lignin degradation by rigidoporus Lignosus involves synergistic action of two enzyme: MnP and Laccase[J]. Enzyme Microb Technol.. 1991, 13: 478-482.
    [94] Daljit Singh Arora, Mukesh Chander, Paramjit Kaur Gill. Involvement of lignin peroxidase , manganese perosidease and laccase in degradation and selective ligninolysis of wheat straw. International Biodeterioration & Biodegradation. 2002,68: 115-120.
    [95] Tien M, Kirk T K. Lignin peroxidase of phanerochaete chrysosporium methods. Methods Enzyol. 1988, 161: 238-249.
    [96]洪枫,沈兆邦,房桂干.麦草化学机械浆过氧化氢漂白工艺优化的研究.林产化学与工业,2007,27(1):89-92.
    [97] Eric Chao Xu.非木材纤维的APMP制浆,第一部分:红麻和谷草类纤维原料.国际造纸,2000,19(6):1-6.
    [98]劳嘉葆.阔叶木的P-RC法制浆[J].黑龙江造纸,2003(2):31.
    [99]孔凡功,陈嘉川,詹怀宇,等.三倍体毛白杨常规APMP与P-RC APMP的制浆研究.中国造纸学报,2004,19(2):21-24.
    [100] E. C. Xu, M. J. SABOURIN. Proces selection for chemimechanical pulping of aspen. Pulp & Paper Canada. 2002,103(3): 36-39.
    [101] Eric C Xu. P-RC alkaline peroxide mechanical pulping of hardwoods. Part 2- Asian tropical hardwoos. Appita Joumal, 2001, 54(6): 527-531.
    [102] Eric C Xu. A new concept in alkaline peroxide refiner mechnacial pulping. 1999 International mechnacial pulping conference proceedings. Houston, May 24-26,199, p5A-3.
    [103]孙来鸿,候彦召. APMP制浆工艺及其在中国制浆工业中的发展潜力.国际造纸, 2001, 20(1): 29-35.
    [104] Imura, M.. Advanced treatment of domestic wastewater using sequnence in batch reactor activated sludge process. Wat. Sci. Tech. 1993, 28(10): 267-274.
    [105]于晓彩,贾颂今,徐徽. SBR法处理制浆造纸废水的研究.环境保护科学. 2004,30(6), 26-28.
    [106]方士,詹伯君,陈国喜,等. SBR工艺处理造纸废水试验研究.水处理技术. 1999,25(2): 122-124.
    [107] Franta J, Wilderer P A. Biological treatment of papermill wastewater by sequencing batch reactor technology to reduce residual organics. Water Sci. Technol., 1997, 35(1): 129-132..
    [108] Cocci A A, McCarthy P J. Almost S. 1998 Sequenceing batch reactors in the pulp and paper industry: A benc-making study. In proceeding of the 1998 environmental comference; Tappi Press: Norcross, GA, 1998,3:1203.-1206.
    [109] Irvin R L, Moe W M. Periodic biofilter operation for enhanced performance during unsteady- state loading conditions. Water Sci. Technol. 2001, 43(3)231-235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700