用户名: 密码: 验证码:
有机薄膜的介质辅助脉冲激光蒸发及其研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲激光沉积(pulsed laser deposition,PLD)方法是目前无机材料薄膜制备的最常用的技术之一,在无机薄膜材料制备上取得了很大的成功。在有机薄膜制备和研究方面,由于有机分子极易受到高能量激光的破坏,该技术的应用受到了严重的制约。为了有效地解决因激光辐射引起的有机分子分解问题,上世纪90年代末,在脉冲激光沉积技术的基础上,美国海军研究实验室(NavalResearch Laboratory,NRL)发展了介质辅助脉冲激光蒸发(Matrix-assisted pulsedlaser evaporation,MAPLE)技术,其基本原理是借助介质分子对激光能量的吸收,避免了激光光子与有机/聚合物材料的直接相互作用,很好地避免了有机/聚合物材料的分解。大量的实验表明,介质辅助脉冲激光蒸发技术是有机/聚合物薄膜制备的有效工具。
     目前,国外研究者利用介质辅助脉冲激光蒸发技术开展了很多有机、聚合物和生物材料薄膜的制备研究工作,如聚乙烯基乙二醇、聚苯胺、功能性聚硅氧烷、纤维蛋白原血蛋白、三醋酸基淀粉多聚糖、葡萄糖等,得到了令人比较满意的结果。在国内,目前尚未报道有关该方面的工作,因此我们在中国科学技术大学国家同步辐射实验室建立了一套介质辅助脉冲激光蒸发技术设备,用于开展有机/聚合物薄膜的制备和研究。
     在本论文中,研究了利用不同波长的激光制备的聚酰亚胺,本征态聚苯胺以及掺杂态聚苯胺薄膜的性质。对介质辅助脉冲激光蒸发技术在有机/聚合物薄膜材料制备和研究方面的应用作了初步探讨。
     本论文主要包括三部分:
     第一部分主要对脉冲激光沉积技术和介质辅助脉冲激光蒸发技术以及聚酰亚胺和聚苯胺的发展概况作了回顾和总结。国外在介质辅助脉冲激光蒸发技术方面的研究工作证明了介质辅助脉冲激光是有机/聚合物薄膜和生物材料薄膜制备的有效的工具,开展该方面的工作对于新型薄膜材料的开发和基础薄膜研究具有重要的意义。
     在第二部分中,对实验设备和实验操作进行了介绍。
     第三部分中,利用介质辅助脉冲激光蒸发技术制备了聚酰亚胺薄膜、本征态聚苯胺薄膜、盐酸掺杂聚苯胺薄膜和磺基水杨酸掺杂聚苯胺薄膜,并利用原子力显微镜、红外光谱、紫外.可见吸收光谱、X射线光电子能谱和X射线衍射技术对薄膜进行了分析研究。
     第三章介绍了利用MAPLE技术制备了聚酰亚胺薄膜,并对各种条件下制备的薄膜进行了分析。通过红外光谱的研究,薄膜样品的各个特征吸收峰与聚酰胺酸本体的红外光谱没有发生明显的变化,这充分说明了介质辅助脉冲激光蒸发技术的特点:在介质分子的保护下,有效的避免了有机/聚合物或生物材料的分解。但紫外.可见吸收光谱分析结果也显示,对于聚合物薄膜而言,虽然其化学组成和组成膜的主要单元没有变化,但分子量发生了明显的变化。这可能是因为,在薄膜制备过程中,不可避免的要发生一定的光化学反应,引起材料结构上的某些变化。利用原子力显微镜对薄膜的表面形貌分析结果表明,薄膜形貌强烈依赖于激光能量,随着激光能量的升高,薄膜形貌变差,因此,低能量的激光有利于高质量薄膜的制备。
     第四章到第六章是利用不用波长的激光和不同激光能量制备的本正态聚苯胺和掺杂态聚苯胺薄膜,并利用原子力显微镜、红外光谱、紫外-可见吸收光谱、X射线光电子能谱和X射线衍射技术对薄膜进行了分析研究。利用红外光谱对不同能量的激光造成的聚苯胺分子的破坏程度分析的结果显示,高能量激光对薄膜成分的改变更为明显。通过对不同波长激光制备的薄膜的比较发现,激光波长也对薄膜成分也有比较明显的影响,长波激光制备的薄膜与本体化学成分更相似,这是由于长波激光光子能量低,在薄膜制备过程中其光化学效应减弱,对靶材的化学成分破坏小。XRD的研究结果显示,不同波长的激光对于聚苯胺薄膜的凝聚态结构具有很大的影响,不同波长的激光制备的薄膜具有不同的结晶结构。另外,对盐酸掺杂和磺基水杨酸掺杂聚苯胺的比较还发现,由于不同掺杂聚苯胺的稳定性不同,激光对薄膜结构的影响也不同。
     在第七章中,对激光波长与能量、掺杂对聚苯胺薄膜结构和表面形貌的影响进行了简单讨论。原子力显微镜的研究结果表明,薄膜形貌与激光能量、激光波长有关,短波长激光制备的薄膜形貌要优于长波长激光制备的薄膜,低能量激光制备的薄膜形貌要优于高能量激光制备的薄膜。薄膜形貌还与靶的温度、激光频率以及靶与衬底的距离有关。从化学组分的角度看,低能量、长波长对保持薄膜与靶材组分一致性有益。此外,不同的掺杂对薄膜影响也很明显,不同掺杂态的聚苯胺薄膜结构具有很大的差异,过去人们普遍认为无机酸掺杂的聚苯胺薄膜具有一定的结晶度,而大分子有机酸掺杂的聚苯胺薄膜基本是无定形态结构。而我们在对聚苯胺薄膜的XRD分析结果中发现,利用介质辅助脉冲激光蒸发技术制备的薄膜中,无机酸盐酸掺杂的聚苯胺薄膜基本为非晶态结构,而磺基水杨酸掺杂的聚苯胺薄膜中则存在着一定的结晶区,而且在32.8度处有一个较强的尖锐的衍射峰,其机理尚有待进一步研究。
Pulsed laser deposition (PLD) is the most commonly used technology for the preparation of inorganic thin films, and it has already achieved great success. However, because of the high laser energy, the organic molecules were vulnerable to be damaged in varying degrees during the deposition process of organic thin films, and it severely limited the applications of the pulsed laser deposition technology in the preparation and research of organic thin film. In order to effectively eliminate the decomposition of organic molecules caused by the laser radiation, in the late 1990s, on the basis of pulsed laser deposition technology, the U.S. Navy Research Laboratory (NRL) had developed matrix-assisted pulsed laser evaporation technology. The basic principle of this technology is as following. The matrix molecules which absorbed laser energy prevent organic/polymer materials from direct interacting with laser photon and, thereby avoid the decomposition of organic/polymer materials, so as to promote the development of the study on organic films by laser evaporation technology. A large number of experiments showed that the composition and structure of thin films prepared by matrix-assisted pulsed laser evaporation are similar to that of the starting material.
     At present, foreign researchers have deposited and studied a series of organic, polymer and biomaterial films by matrix-assisted pulsed laser evaporation, such as polyethylene glycol, polyaniline, functionalized polysiloxane, fibrinogen blood proteins, triacetate-pullulan polysaccharide and glucose and so on, and quite satisfying results have been obtained. Untill now, there was no domestic research in this field was reported. We have built an equipment for matrix-assisted pulsed laser evaporation in National Synchrotron Radiation Laboratory in University of Science and Technology of China to deposit and study organic/polymer thin films.
     In this paper, we deposited and studied polyimide and polyaniline thin films with different laser beams. A preliminary discussions about deposition and applications of organic/polymer films prepared by matrix-assisted pulsed laser evaporation were presented.
     This dissertation is composed of three parts.
     In the first part, we reviewed and summed up the development of pulsed laser deposition, matrix-assisted pulsed laser evaporation, polyimide and polyaniline. The research works on matrix-assisted pulsed laser evaporation abroad show that matrix-assisted pulsed laser evaporation is an effective tool for the preparation of organic/polymer and biomaterials thin films and it's important to built an experimental set-up home for developing new-brand films.
     In the second part, detailed experimental equipments and related operation steps were given.
     In the third part, we prepared polyimide and polyaniline films by matrix-assisted pulsed laser evaporation technology, and analyzed these films by AFM, FTIR, Uv-Vis absorption spectroscopy, XPS and XRD.
     In chapter 3, polyimide thin films were made with KrF excimer laser and polyamic acid solution target. The FTIR spectroscopies showed that the characteristic peaks of films were coincide to that of the target. This fully shows that the advantages of matrix-assisted pulsed laser evaporation technology, that is, the decomposition of organic/polymer or biomaterials were effectively avoided with the protection of matrix. However, the Uv-Vis absorption spectroscopy showed that, although the chemical composition and characteristic structures are well maintained, the molecular weight changes significantly.That can be explained as following. The process of matrix-assisted pulsed laser evaporation is a combination of photochemical effect and photothermal effect,and the photochemical effect which made the structures of materials change is inevitable. AFM images showed that film morphology is stronglydepend on laser energy. With the increasing of laser energy, the film quality becameworse. So, the low-energy laser is conducive to the preparation of high-quality films.
     From chapter 4 to chapter 6, undoped and doped polyaniline films were madewith different laser wavelength and different laser energy,and analyzed results byAFM, FTIR, Uv-Vis absorption spectroscopy, XPS and XRD are present. The impactof laser energy on the chemical structure of the film was evaluated by the infraredspectral,and the result showed that the higher the laser energy was, the more thechemical changed. The comparison between the films with different wavelength lasershowed, that laser wavelength has an obvious impact on the chemical structure of thefilm. The chemical structures of films with long laser wavelength are more similar tothat of polyaniline target. This is due to that the longer the laser wavelength is, thelower energy the laser photon is of, and photothermal effect dominanted whilephotochemical effect weakened during the process of deposition. The results of XRDshowed that different wavelength of laser are of great on the condensed structures ofpolyaniline films, and film with different wavelength had different crystallinestructure. The comparison between polyanilines of different doping showed that, dueto the different stability of polyanilines of different doping, the influence of laser onthe structure of the film was quite different.
     In chapter 7, the influence of laser and doping on the structure and surface morphology of polyaniline films were discussed. AFM showed that not only laser energy, but also laser wavelength strongly influenced the surface morphology of the film. The surface morphology of the film made with shorter laser wavelength is superior to that of the film made with longer laser wavelength. In addition, the surface morphology is also depend on the temperature of target, laser frequency and the distance between target and substrate. From the point of view of chemical structure, a longer wavelength and higher laser energy is conducive to make a better film, and the impact of doping on the film is also clear. In the past, researchers agreed that polyaniline powder or film doped with inorganic acid was a little bit crystalline, while those doped with organic acid were of amorphous structures. But in our experiment, the XRD shown that the polyaniline films doped with inorganic acid are of amorphous structures and no diffraction peaks appear, while the films doped with sulfosalicylic acid are of a little bit crystalline and a relative sharp diffraction peak appears on 2θ=32.8°.
引文
[1] A A Serafetinides, M I Makropoulou, C D Skordoulis, A K Kar. Ultra-short pulsed laser ablation of polymers. Applied Surface Science, 2001,180: 42-56
    [2] A F Diaz, J F Rubinson, H B Mark. Electrochemistry and electrode applications of electroactive/conductive polymers. Advanced Polymer Science, 1988,84:113-139
    [3] AGutierrez-Llorente, R Perez-Casero, B Panot, J Roussel, R M Defourneau, D Defourneau, J L Fave, E Millon, J Perriere. Growth of anthracene thin films by matrix-assisted pulsed-laser evaporation. Applied Physics A, 2003,77:785-788
    [4] A Gutierrez-Llorente, G Horowitz, R Perez-Casero, J Perriere, J L Fave, A Yassar, C Sant. Growth of polyalkythiophene films by matrix assisted pulsed laser evaporation. Organic electronics, 2004,5 :29-34
    [5] A Gerardino, A Notargiacomo, P Morales. Laser assisted deposition of nanopatterned biomolecular layers. Microelectronic Engineering, 2003,67-68: 923-929
    [6] A G MacDiarmid. Synthetic metals: A novel role for organic polymers. Synthetic Metals, 2002, 125:11-22
    [7] A J Heeger. Semiconducting and metallic polymers: the fourth generation of polymeric materials. Synthetic Metals, 2002,125:23-42
    [8] A Purice, J Schou, P Kingshott, N Pryds, M Dinescu. Characterization of lysozyme films produced by matrix assisted pulsed laser evaporation (MPLE). Applied Surface Science. 2007,253:6451-6455
    [9]A Purice, J Schou, P Kingshott, M Dinescu. Production of active lysozyme films by matrix assisted pulsed laser evaporation at 355nm. Chemical Physics Letters,2007,435:350-353
    [10] A P Caricato, M Catalano, G Ciccarella, M Martino, R Rella, F Romano, J Spadavecchia, A Taurino, T Tunno, D Valerini. Matrix assisted pulsed laser evaporation for TiO2 nanoparticle thin film deposition. Digest Journal of Nanomaterials and Biostructures, 2006,1(2):43-47
    [11] A P Caricato, M G Manera, M Martino, R Rella, F Romano, J Spadavecchia, T Tunno, D Valerini. Uniform thin films of TiO2 nanoparticles deposited by matrix-assisted pulsed laser evaporation. Applied Surface Science, 2007,253:6471-6475
    [12] A T Sellinger, E M Leveugle, K Gogick, L V Zhigilei, J M Fitz-Gerald. Laser processing of polymer nanocomposite thin films. Journal of Vacuum Science Technology A, 2006,24(4): 1618-1622
    [13] A Pique, R A McGill, D B Chrisey, D Leonhardt, T E Mslna, B J Spargo, J H Callahan, R W Vachet, R Chung, M A Bucaro. Growth of organic thin films by the matrix assisted pulsed laser evaporation (MAPLE) technique. Thin Solid Films, 1999,355-356:536-541
    [14] A Pique, R C Y Auyeung, J L Stepnowski, D W Weir, C B Arnold, R A McGill, D B Chrisey. Laser processing of polymer thin films for chemical sensor applications. Surface and Coatings Technology. 2003,163 -164 : 293-299
    [15] A Pique, P Wu, B R Ringeisen, D M Bubb, J S Melinger, R A McGill, D B Chrisey. Processing of functional polymers and organic thin films by the Martrix-assisted pulsed laser evaporation (MAPLE) technique. Applied surface science, 2002,186:408-415
    [16] B Toftmann, K Rodrigo, J Schou, R Pedrys. High laser-fluence deposition of organic materials in water ice matrices by "MAPLE". Applied Surface Science, 2005,247:211-216
    [17] B Toftmann, M R Papantonakis, R C Y Auyeung, W Kim, S E O'Malley, D M Bubb, J S Horwitz, J Schou, P M Johansen, R F Haglund. UV and RIR matrix assisted pulsed laser deposition of organic MEH-PPV films. Thin Solid Films, 2004,453-454:177-181
    [18]C Constantinescu, N Scarisoreanu, A Moldovan, M Dinescu, C Vasiliu. Thin films of polyaniline deposited by MAPLE technique. Applied Surface Science, 2007,253:7711-7714
    [19] C K Chiang, C R Fincherjr, Y W Park, A J Heeger, H Shirakawa, E J Louis, E J Gau, A G MacDiarmid. Electrical Conductivity in Doped Polyacetylene. Physical Review Letters, 1977, 39,1098-1101
    [20] C Hong, H B Chae, K H Lee, S K Ahn, C K Kim, T W Kim, N I Cho, S O Kim. The possibility of pulsed laser deposited organic thin films for light-emitting diodes. Thin Solid Films, 2002,409: 37-42
    [21] D Dijkkamp, T Venkatesan, X D Wu, S A Shaheen, N Jisrawi, Y H Min-Lee, W L Mclean, M Croft. Preparation of Y~Ba~Cu Oxide Superconductor Thin Films Using Pulsed Laser Evaporation from High T.sub.c Bulk Material. Applied Physics Letters, 1987,51(8):619-621
    [22] D M Bubb, M R Papantonakis, J S Horwitz, R F Haglund, B Toftmann, R A McGill, D B Chrisey. Vapor deposition of polystyrene thin films by intense laser vibrational excitation. Chemical Physics Letters, 2002, 352:135-139
    [23] E J Houser, D B Chrisey, M Bercu, N D Scarisoreanu, A Purice, D Colceag, C Constantinescu, A Moldovan, M Dinescu. Functionalized polysiloxane thin films deposition by matrix-assisted pulsed laser evaporation for advanced chemical sensor applications. Applied Surface Science, 2006,252:4871-4876
    [24] E M Genies, M Lapkowski. Polyaniline films. Electrochemical redox mechanisms. Synthetic Metals, 1988,24(1-2):61-68
    [25] E T Kang, K G Neoh, K L Tan. Polyaniline: A polymer with many interesting intrinsic redox states. Progress in Polymer Science, 1998,23:277-324
    [26] F Breech, L Cross. Optical microemission stimulated by a ruby MASER. Applied Spectroscopy, 1962,16:59
    [27] F Bloisi, L Vicari, R Pana, V Califano, R Perazzani, E Bontempi, L E Depero. Biomaterial thin film deposition and characterization by means of MAPLE technique. Materials Science and Engineering C. 2007,27:1185-1190
    [28] G B Blanchet. Deposition of amorphous fluoropolymers thin films by laser ablation. Applied Physics Letters, 1993,62(5):479-481
    [29] G Kecskemeti, N Kresz, T Smausz, B Hopp, A Nogradi. Pulsed laser deposition of pepsin thin films. Applied Surface Science, 2005,247:83-88
    [30] G Kecskemeti, T Smausz, N Kresz, Zs Toth, B Hopp, D Chrisey, O Berkesi. Pulsed laser deposition of polyhydroxybutyrate biodegradable polymer thin films using ArF excimer laser. Applied Surface Science, 2006,253(3): 1185-1189
    [31] H M Smith, A F Turner. Vacuum Deposited Thin Films Using a Ruby Laser. Applied Optics, 1965,4(1):147-148
    [32] H Shirakawa, E J Louis, A G MacDiarmid, C K Chiang, A J Heeger. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. Journal of the Chemical Society, Chemical Communications, 1977:578-580
    [33] K Rodrigo, P Czuba, B Toftmann, J Schou, R Pedrys. Surface morphology of polyethylene glycol films produced by matrix-assisted pulsed laser evaporation (MAPLE): Dependence on substrate temperature. Applied Surface Science, 2006, 252:4824-4828
    [34] K Takahashi, K Nakamura, T Yamaguchi, T Komura, S Ito, R Aizawa, K Murata. Characterization of water-souble Externally HCl-doped conductivity polyaniline. Synthetic Metals, 2002,128(1):27-33
    [35] L D Wang, H S Kwok. Pulsed laser deposition of organic thin films. Thin Solid Films, 2000,363:58-60
    [36] L Stamatin, R Cristescu, G Socol, A Moldovan, D Mihaiescu, I Stamatin, I N Mihailescu, D B Chrisey. Laser deposition of fibrinogen blood proteins thin films by matrix assisted pulsed laser evaporation. Applied Surface Science, 2005,248: 422-427
    [37]L V Zhigilei, P B S. Kodali, B J Garrison. Molecular dynamics model for laser ablation and desorption of organic solids. Journal of Physical Chemistry B, 1997, 101:2028-2037
    [38]L V Zhigilei, P B. S. Kodali, B J. Garrison. A Microscopic View of laser ablation. Journal of Physical Chemistry B, 1998,102:2845-2853
    [39] M Angelopoulos, R Dipietro, W G Zheng, A G MacDiarmid, A J Epstein. Effect of selected processing parameters on solution properties and morphology of polyaniline and impact on conductivity. Synthetic Metals, 1997,84(1):35-39。
    [40] M J Winokur, B R Mattes. Determination of the local molecular structure in amorphous polyaniline. Physical Review B condensed matter,1996, 54(18): R12637-R12640。
    [41] M-X Wan,J-P Yang, Q Jiang, X Mi, P-X Ye. Nonlinear optical properties of solution of the substituted polyaniline. Journal of Applied Polymer Science, 1993, 47(7):1263-1268
    [42] P Barta, Th Kugler, W R Salaneck, A P Monkman, J Libert, R Lazzaroni, J L Bredas. Electronic structure of emeraldine and pemigraniline base: A joint theoretical and experimental study. Synthetic Metals, 1998, 93(2):83-87
    [43] P De Wilde, Ber. Dtsch. Chem. Ges. 1874,7:352
    [44] P K Wu, B R Ringeisen, J Callahan, M Brooks, D M Bubb, H D Wu, A Pique, B Spargo, R A McGill, D B Chrisey. The deposition, structure, pattern deposition, and activity of biomaterial thin-films by matrix-assisted pulsed-laser evaporation (MAPLE) and MAPLE direct write. Thin Solid Silms, 2001,398-399:607-614
    [45] P M Beadle, Y F Nicolau, E Banka, P Rannou, D Djurado. Controlled polymerization of aniline at sub-zero temperatures. Synthetic Metals, 1998, 95:29-45
    [46] R Cristescu, A Doraiswamy, G Socol, S Grigorescu, E Axente, D Mihaiescu, A Moldovan, R J Narayan, I Stamatin, I N Mihailescu, B J Chisholm, D B Chrisey. Polycaprolactone biopolymer thin films obtained by matrix assisted pulsed laser evaporation. Applied Surface Science, 2007,253:6476-6479
    [47] R Cristescu, D Mihaiescu, G Socol, 1 Stamatin, I N Mihailescu, D B Chrisey. Deposition of biopolymer thin films by matrix assisted pulsed laser evaporation. Applied Physics A, 2004,79:1023-1026
    [48] R Cristescu, G Dorcioman, C Ristoscu, E Axente, S Grigorescu, A Moldovan, I N Mihailescu, T Kocourek, M Jelinek, M Albulescu, T Buruiana, D Mihaiescu, I Stamatin, D B Chrisey. Matrix assisted pulsed laser evaporation processing of triacetate-pullulan polysaccharide thin films for drug delivery systems. Applied Surface Science, 2006,252:4647-4651
    [49] R Cristescu, I Stamatin, D E Mihaiescu, C Ghica, M Albulescu, I N Mihailescu, D B Chrisey. Pulsed laser deposition of biocompatible polymers: a comparative study in case of pullulan. Thin solid films, 2004,453-454:262-268
    [50] R Cristescu, T Kocourek, A Moldovan, L Stamatin, D Mihaiescu, M Jelinek, I Stamatin, I N Mihailescu, D B Chrisey. Laser deposition of cryoglobulin blood proteins thin films by matrix assisted pulsed laser evaporation. Applied Surface Science, 2006,252:4651-4655
    [51] R Cristescu, T Patz, R J Narayan, N Menegazzo, B Mizaikoff, D E Mihaiescu, P B Messersmith, I Stamatin, I N Mihailescu, D B Chrisey. Processing of mussel adhesive protein analog thin films by matrix assisted pulses laser evaporation. Applied Surface Science, 2005,247:217-224
    [52] R Frycek, M Jelinek, T Kocourek, P Fill, M Vrnata, V Myslik, M Vrbova. Thin organic layers prepared by MAPLE for gas sensor application. Thin Solid Films, 2006,495:308-311
    [53] R Ou, R Samuels. Investigation of fundamental molecular parameters of polyaniline films. Journal of Polymer Science Part B: Polymer Physics, 1999, 37(24):3473-3487。
    [54] R P MacCall, J M Leng, H J Ye, S K Manohar, J G Masters, G E Asturias, A G MacDiarmid, A J Epstein. Spectroscopy and defect states in polyaniline. Physical Review B, 1990, 41(8):5202-5213
    [55] S B Ogale. Deposition of polymer films by laser ablation. Pulsed laser deposition of thin films [M], 1994,567-579
    [56] S R Farrar, A E A Contoret, M O'Neill, J E Nicholls, A J Eastwood, G J Richards, P Vlachos, S M Kelly. Pulsed laser deposition of small molecules for organic electroluminescence. Applied Surface Science, 2002,186:435-440
    [57] T E Itina, L V Zhigilei, B J Garrison. Matrix-assisted pulsed laser evaporation of polymeric materials: a molecular dynamics study. Nuclear instruments and Methods in Physics Research B, 2001,180:238-244
    [58] T M Patz, A Doraiswamy, R J Narayan, N Menegazzo, C Kranz, B Mizaikoff, Y Zhong, R Bellamkonda, J D Bumgardner, S H Elder, X F Walboomers, R Modi, D B Chrisey. Matrix assisted pulsed laser evaporation of biomaterial thin films. Material Science & Engineering C: Biominetic and supramolecular systems, 2007,27(3):514-522
    [59]T Tunno, A P caricato, M E Caruso, A Luches, M Martino, F Romano, D Valerini, M Anni. Matrix-assisted pulsed laser evaporation of polyfluorene thin films.Alllied Surface Science,2007,253:6461-6464
    [60]V Meenakshi,W Teizer,D G Naugle,H Zhao,K R Dunbar.Films of Mn_(12)-acetate by pulsed laser evaporation.Solid State Communications,2004,132:471-476
    [61]W Luzny,M Sniechowski,J Laska.Structural properties of emeraldine base and the role of water contents:X-ray diffraction and computer modeling study.Synthetic Metals,2002,126:27-35
    [62]X Yang,Y Tang,M Yu,Q Qin.Pulsed laser deposition of aluminum tris-8-hydroxyquinline thin films.Thin Solid Films,2000,358(1-2):187-190
    [63]Y Chen,E T Kang,K G Neoh,S L Lira,Z H Ma,K L Tan.Intrinsic redox states of polyaniline studied by high-resolution X-ray photoelectron Spectroscopy.Colloid and Polymer Science,2001,279(1):73-76
    [64]Y T Shin,S W Shin,J Shin,K Lee,M Cha.Pulse laser deposition of thin conjugated-polymer film.Thin Solid Films,2000,360:13-16
    [65]李运钧,何金田等.脉冲激光沉积非晶碳-聚酰亚胺复合薄膜的场致电子发射研究.中国激光,1997,Vol.A24,No.10:952-956
    [66]陆珉,吴益华,姜海夏.导电聚苯胺的特性及应用.功能材料,1998,29(4):353-355
    [67]潘秀梅,王荣顺,苏忠民.水分子与聚苯胺间氢键的形成对电子性质的影响.化学学报,1996,54(10):961-965
    [68]王惠忠,王荣顺,赵成大,黄宗浩,唐劲松,王宝忱,王佛松.掺杂聚苯胺能带结构和导电机理的研究.高等学校化学学报,1991,12(9):1229-1233
    [69]王佛松,唐劲松,王利祥,张宏放,莫志深.聚苯胺晶性问题的探讨.高分子材料科学与工程,1990,5:48-52
    [70]王利祥,王佛松.导电聚合物聚苯胺的研究进展1.合成,链结构和凝聚态结构.应用化学,1990,7(5):10-24
    [71]王利祥,王佛松.导电聚合物一聚苯胺的研究进展Ⅱ.电子现象、导电机理、性质和应用.应用化学,1990,7(6):1-8
    [72]万梅香.导电高分子.高分子通报,1999,(3):47-53
    [73]万梅香,李永肪.第3章:导电高聚物.有机固体.上海:上海科学技术出版社,1999:89-107
    [74]王献红.第十一章:导电高分子的化学与物理.现代高分子物理学,上册.北京:科学出版社,2001:298-327
    [75]曾幸荣,张兴华,杨卫,吴振耀,龚克成.聚苯胺的质子酸掺杂机制的研究.功能高分子学报,1992,1:25-28
    [76]张兵临.非晶态有机聚合物薄膜脉冲激光沉积.激光与光电子学进展,1996,第1期(总第361期):1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700