系统性红斑狼疮MicroRNA表达谱和功能的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     MicroRNAs(miRNAs)属非编码RNA大家族,高度保守,广泛存在于从病毒、线虫、植物到动物体内,参与生物体的生长、发育、衰老、凋亡的调控。成熟miRNA通过核酸序列互补识别特定的目标mRNA,使之降解或抑制其翻译,从而抑制蛋白质的合成,达到调控基因表达的目的。生物信息学预测约1/3的mRNA受miRNA调控。在免疫细胞中表达的miRNA超过100个,在固有免疫及适应性免疫中发挥重要作用。近年来已经有研究显示在一些疾病中某些特定的miRNA与疾病的发生发展和预后密切相关,miRNA表达谱可以作为疾病的诊断和预后的指标。
     系统性红斑狼疮(SLE)是最为经典的自身免疫病,其特征为多系统受累,体内多种自身抗体产生、免疫复合物沉积在多种组织器官引起的免疫病理损伤,但具体的发病机制仍不清楚。已经有许多研究证实T、B细胞的功能异常在SLE的发病机制中发挥着重要作用。鉴于miRNA在调节T、B等免疫细胞中起重要作用,因此我们推测1miRNA可能在SLE的发病中同样发挥着重要作用。外周血PBMC是研究miRNA在SLE免疫细胞作用很好的靶点,本研究从高通量筛选miRNA在SLE患者PBMC中表达差异入手,对miRNA在SLE发病机制中的作用进行了初步研究。
     目的
     本研究通过筛选SLE患者PBMC中miRNA表达谱差异,寻找与SLE发病相关的miRNA,分析miRNA相对表达量与SLE临床谱的相关性,初步探讨了miR-125b在SLE中的可能的作用机制。
     方法
     1 MicroRNA表达谱芯片技术检测847个成熟miRNAs在初治SLE和正常对照组间表达水平差异,应用分层聚类分析筛选并获得一批SLE特异性表达的1niRNA分子,采用Real-timePCR方法对芯片的结果进行验证。
     2进一步扩大样本量,采用Real-timePCR方法对miR-125b在SLE患者、正常对照组及疾病对照组的表达水平进行检测,其中包括58例SLE患者、26例正常对照、8例类风湿关节炎(RA)患者、8例干燥综合征(pSS)患者,分析其与SLE临床谱的相关性;采用流式细胞仪分选免疫细胞,Real-timePCR方法检测miR-125b在不同免疫细胞中的相对表达量。
     3应用生物信息学方法预测miR-125b的靶基因。构建靶基因表达载体,通过双荧光报告转染实验,体外运用荧光报告系统检测过表达miR-125b后对双荧光素酶报告基因活性的影响。
     结果
     1对847个成熟miRNAs的表达谱检测结果表明存在SLE特异性的miRNA表达谱。筛选并获得了一批SLE特异性表达的miRNA分子,其中有37个miRNA在SLE和正常人PBMC中表达差异显著,26个表达下调,11个表达上调,揭示了SLE患者PBMC中存在着特异的miRNA表达谱。进一步用Real-time PCR对上述结果进行了验证,得出相同结论。
     2扩大样本量进一步证实了miR-125b在SLE患者外周血PBMC中表达量明显减低,与正常对照比较有明显差异,且降低幅度与SLE脏器受累相关。比较miR-125b在T、B细胞及非T、B细胞表达量中的差异发现miR-125b在T细胞表达差异最为明显。
     3运用TargetScan等软件对miR-125b的靶基因进行了预测,根据软件评分及基因功能选择了Ets1、TNFAIP3和STAT3作为候选靶基因。构建了Ets1、TNFAIP3和STAT3的双荧光酶报告基因载体,体外实验证实miR-125b可与Ets1、TNFAIP3及STAT3相互作用,减弱报告基因的表达,推测Ets1、TNFAIP3和STAT3可能是1niR-125b的靶基因。
     结论
     该研究结果表明miRNA在SLE发病中发挥重要作用,miRNA表达信号谱可作为SLE诊断和病情评价重要生物标志物。1niR-125b通过作用于Etsl等靶基因影响T细胞功能参与SLE的致病机制,miR-125b可能成为SLE治疗新的药物干预靶点。
MicroRNAs(miRNAs) are small, singal-stranded noncoding RNAs, many of which have been highly conserved throughout evolution. Currently, miRNA is known to regulate cellular processes such as differentiation, cell cycle, apoptosis and immune functions. The known function of miRNAs is the post-transcriptional regulation of certain subsets of messenger RNAs(mRNAs) by binding to their 3'untranslated region(UTR) thus targeting them for degradation or translational repression. To date, the miRNA sequence database, miRbase, includes over 9000 predicted miRNA in numerous species of plants, animals, and viruses. For humans alone, miRBase lists over 1000 predicted miRNAs, and other bioinformatics predictions indicate that as much as one-third of all mRNAs may be regulated by miRNA. More than 100 different miRNAs are expressed by cells of the immune system. They have the potential to broadly influence the molecular pathways that control the development, and function of innate and adaptive immune response by regulating target mRNA expression. The latest research demonstrated that some miRNAs are closely correlated with occurrence, development and prognosis of some diseases, which can be adopted as diagnostic and prognostic index for disease. SLE is a prototypic autoimmune disease with a diverse array of clinical manifestations, which is characterized by the production of antibodies to components of the cell nucleus. The pathogenesis of SLE is poorly understood, and current therapies are based on nonspecific immunosuppression. To date, little is known about the SLE-specific miRNAs expression profile and the roles of miRNAs in SLE pathogenesis. To study SLE-related miRNAs, an important srarting point is to examine expression profile of miRNAs in PBMC. In this study, we developed a novel miRNA-specific microarray, screened a set of SLE-related miRNAs, and further predicted their targets by bioinformatics and valited it by dual-luciferase reporter transfection assay.
     Objective This study was undertaken to explore microRNA expression profile in peripheral blood cells of patients with SLE, and to study the potential biological functions of the associated miRNA in the pathogenesis of SLE.
     Methods In this study, a total of 58 patients with available clinical data and 26 normal controls were enrolled to study the role of miRNA in SLE.4 patients and 4 normal controls were used for miRNA microarray analysis to detecting the levels of 847 miRNAs in peripheral blood cells. The rest were used for qRT-PCR confirmation and fulfill miRNA functional study. Reporter gene assay was conducted to determine the biological function of miR-125b.
     Results We performed a miRNA profiling analysis to 4 SLE patients using the 847 human mature miRNAs and obtained a set of SLE-specific miRNAs, such as miR-125b, miR-326, miR-26a ect. Eleven miRNAs were up-regulated, twenty-six miRNAs were down-regulated. The difference of expression in these miRNAs suggests that a unique SLE-specific miRNA profiling exists. Further analysis showed that underexpression of miR-125b mainly in T cell negatively correlated with organ involvement. To further demonstrate the role of miR-125b, we predicted its putative target using TargetScan software and chosen several potential targets. Then we validated Etsl, TNFAIP3 and STAT3 were targets of miR-125b by dual-luciferase reporter transfection assay.
     Conclusion Our findings revealed that miRNA expression profile may serve as a new biomarker of SLE. Underexpression of miR-125b mainly in T cells contributed to SLE progression, by targeting the gene Ets1, TNFAIP3 and STAT3 which would not only elucidate the novel pathogenic machanism in SLE, but also lay a foundation for new drug development based on miR-125b.
引文
[I]Rahman A, Isenberg DA. Systemic lupus erythematosus[J]. N Engl J Med,2008,28, 358(9):929-939.
    [2]Ravirajan CT, Rahman MA, Papadaki L, et al. Genetic, structural and functional properties of an IgG DNA-binding mono-clonal antibody from a lupus patient with nephritis[J]. Eur J Immunol,1998,28(1):339-350.
    [3]蒋明,朱立平,林孝义,等.中华风湿病学[M].北京:华夏出版社,2004:931.
    [4]Valencia X, Yarboro C, Illei G, et al. Deficient CD4+CD25(high) T regulatory cell function in patients with active systemic lupus erythematosus[J]. J Immunol,2007, 178(4):2579-2588.
    [5]Sidiropoulos PI, Boumpas DT. Lessons learned from anti-CD40L treatment in systemic lupus erythematosus patients[J]. Lupus,2004,13(5):391-397.
    [6]Davidson A, Diamond B, Wofsy D, et al. Block and tackle:CTLA4Ig takes on lupus[J]. Lupus,2005,14(3):197-203.
    [7]Aringer M, Graninger WB, Steiner G, et al. Safety and efficacy of tumor necrosis factor alpha blockade in systemic lupus erythematosus:an open-label study[J]. Arthritis Rheum,2004,50(10):3161-3169.
    [8]Chambers SA, Isenberg D. Anti-B cell therapy (rituximab) in the treatment of autoimmune diseases[J]. Lupus,2005,14(3):210-462.
    [9]Ambros V. The functions of animal microRNAs[J]. Nature,2004,431 (7006): 350-355.
    [10]Ambros V. MicroRNA pathways in flies and worms:growth, death, fat, stress, and timing[J]. Cell,2003,113 (6):673-676.
    [11]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004,116 (2):281-297.
    [12]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complimentary to lin-14[J]. Cell,1993,75(5): 843-854.
    [13]Reinhart SJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature,2000,403(6772):901-906.
    [14]Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs[J]. Science,2001,294(5543):853-858.
    [15]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell,2005, 120(1):15-20.
    [16]Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs[J]. Nature,2005, 433(7027):769-773.
    [17]Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions[J]. Nat Genet,2005,37(5):495-500.
    [18]Baltimore D, Boldin MP, O'Connell RM, et al. MicroRNAs:new regulators of immune cell development and function[J]. Nature Immunol,2008,9 (8):839-845.
    [19]Lodish HF, Zhou B, Liu G, et al. Micromanagement of the immune system by microRNAs[J]. Nature Rev. Immunol,2008,8 (3):120-130.
    [20]Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers[J]. Nature,2005,435(7043):834-838.
    [21]Mi S, Lu J, Sun M, et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia[J]. Proc Natl Acad Sci USA, 2007,104(50):19971-19976.
    [22]Iorio M V, Ferracin M, Liu C G, et al. MicroRNA gene expression deregulation in human breast cancer[J]. Cancer Res,2005,65(16):7065-7070.
    [23]Winter J, Jung S, Keller S, et al. Many roads to maturity:microRNA biogenesis pathways and their regulation[J]. Nature Cell Biol,2009,11(3):228-234.
    [24]Miyoshi K, Tsukumo H, Nagami T, et al. Slicer function of Drosophila Argonautes and its involvement in RISC formation[J]. Genes Dev,2005, 19(22):2837-2848.
    [25]Georgantas RW, Hildreth R, Morisot S, et al. CD34+hematopoietic stem progenitor cell microRNA expression and function:a circuit diagram of differentiation control[J]. Proc Natl Acad. Sci,2007,104 (8):2750-2755
    [26]Gruber JJ, Zatechka DS, Sabin LR, et al. Ars2 links the nuclear cap-binding complex to RNA interference and cell proliferation[J]. Cell,2009,138(2):328-339.
    [27]Mansfield JH, Harfe BD, Nissen R, et al. MicroRNA-responsive sensor transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression[J]. Nature Genet,2004,36(10):1079-1083.
    [28]Shen WF, Hu YL, Uttarwar L, et al. MicroRNA-126 regulates HOXA9 by binding to the homeobox[J]. Mol. Cell. Biol,2008,28(14):4609-4619.
    [29]Felli N, Fontana L, Pelosi E, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation[J]. Proc Natl Acad Sci USA,2005,102(50):18081-18086.
    [30]O'Connell R. M, Chaudhuri AA, Rao DS, et al. Inositol phosphatase SHIP1 is a primary target of miR-155[J]. Proc Natl Acad Sci USA,2009,106(17):7113-7118.
    [31]Fukao T, Fukuda Y, Kiga K, et al. An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling[J]. Cell,2007, 129(3):617-631.
    [32]Johnnidis JB, Harris MH, Wheeler RT, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223[J]. Nature,2008, 451(7182):1125-1129.
    [33]Fontana L, Pelosi E, Greco P, et al. MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation[J]. Nature Cell Biol,2007,9(7):775-787.
    [34]O'Connell RM, Taganov KD, Boldin MP, et al. MicroRNA-155 is induced during the macrophage inflammatory response[J]. Proc Natl Acad Sci USA,2007, 104(5):1604-1609.
    [35]Tili E, Michaille JJ, Cimino A, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock[J]. J Immunol,2007,179(8):5082-5089.
    [36]Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155 for normal immune function[J]. Science,2007,316(5824):608-611.
    [37]Liu G, Friggeri A, Yang Y, et al. miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murinemacrophage inflammatory responses[J]. Proc Natl Acad Sci USA,2009,106(37):15819-15824.
    [38]Bazzoni F, Rossato M, Fabbri M, et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals[J]. Proc Natl Acad Sci,2009,106(13):5282-5287.
    [39]Hou J, Wang P, Lin L, et al. MicroRNA-146a feedback inhibits RIG-Ⅰ-dependent type Ⅰ IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2[J]. J Immunol,2009,183(3):2150-2158.
    [40]Cobb BS, Nesterova TB, Thompson E, et al. T cell lineage choice and differentiation in the absence of the RNase Ⅲ enzyme Dicer[J]. J Exp Med.2005, 201(9):1367-1373.
    [41]Muljo SA, Ansel KM, Kanellopoulou C, et al. Aberrant T cell differentiation in the absence of Dicer[J]. J Exp Med,2005,202(2):261-269.
    [42]Xiao C, Srinivasan L, Calado DP, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes [J]. Nat Immunol.2008,9(4):405-414.
    [43]Li QJ, Chau J, Ebert PJ, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection[J]. Cell,2007,129(1):147-161.
    [44]Wu H, Neilson JR, Kumar P, et al. miRNA profiling of naive, effector and memory CD8 T cells[J]. PLoS One.2007,2(10):e1020.
    [45]Thai TH, Calado DP, Casola S, et al. Regulation of the germinal center response bymicroRNA-155[J]. Science,2007,316(5824):604-608.
    [46]Du C, Liu C, Kang J, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis[J]. Nature Immunol,2009, 10(12):1252-1259.
    [47]Li QJ, Chau J, Ebert PJ, et al. miR-181 a is an intrinsic modulator of T cell sensitivity and selection[J]. Cell,2007,129(1):147-161.
    [48]Chong MM, Rasmussen JP, Rudensky AY et al. The RNAseⅢ enzyme Drosha is critical in T cells for preventing lethal inflammatory disease[J]. J Exp Med,2008, 205(9):2005-2017.
    [49]Liston A, Lu LF, O'Carroll D, et al. Dicer-dependent microRNA pathway safeguards regulatory T cell function[J]. J Exp Med,2008,205(9):1993-2004.
    [50]Zhou X, Jeker LT, Fife BT, et al. Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity[J]. J Exp Med,2008,205(9):1983-1991.
    [51]Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation[J]. Science,2004,303:83-86.
    [52]Koralov, S. B. et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage[J]. Cell,2008,132(5):860-874.
    [53]Ventura A, Young AG, Winslow MM, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters[J]. Cell, 2008,132(5):875-886.
    [54]Xiao C, Srinivasan L, Calado DP, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes[J]. Nature Immunol,2008,9(4):405-414.
    [55]Zhou B, Wang S, Mayr C, et al. miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely[J]. Proc Natl Acad Sci,2007,104(17):7080-7085.
    [56]Vigorito E, Perks KL, Abreu-Goodger C, et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells[J]. Immunity,2007, 27(6):847-859.
    [57]Dorsett Y, McBride KM, Jankovic M, et al. MicroRNA-155 suppresses activationinduced cytidine deaminase-mediated Myc-Igh translocation[J]. Immunity, 2008,28(5):630-638.
    [58]Stanczyk J, Pedrioli DM, Brentano F, et all. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis[J]. Arthritis Rheum,2008, 58(4):1001-1009.
    [59]Nakasa T, Miyaki S, Okubo A, et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue[J]. Arthritis Rheum,2008,58(5):1284-1292.
    [60]Pauley KM, Satoh M, Chan AL, et al. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients[J]. Arthritis Res Ther,2008,10(4):R101.
    [61]Dai Y, Huang YS, Tang M, et al. Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients[J]. Lupus,2007, 16(12):939-946.
    [62]Tang Y, Luo X, Cui H, et al. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins[J]. Arthritis Rheum,2009,60(4):1065-1075.
    [63]Cummins JM, He Y, Leary RJ, et al. The colorectal microRNAome[J]. Proc Natl Acad Sci USA,2006,103(10):3687-3692.
    [64]Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer[J]. Cancer Res,2005,65(16):7065-7070.
    [65]Yanaiham N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis[J]. Cancer Cell,2006,9(3):189-198.
    [66]Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets[J]. Proc Natl Acad Sci USA,2006, 103(7):2257-2261.
    [67]MaRie MD, Benz CC, Bowers J, et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies [J]. Mol Cancer,2006,5:24-28.
    [68]Roldo C, Missiaglia E, Hagan JP, et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior[J]. J Clin Oncol,2006,24(29):4677-4684.
    [69]Kato M, Zhang J, Wang M, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors[J]. Proc Natl Acad Sci USA,2007,104(9):3432-3437.
    [70]van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure[J]. Proc Natl Acad Sci USA,2006,103(48):18255-18260.
    [71]Calin GA, Ferracin M, Cimmino A, et al. A McrioRNA signature associated with prognosis and progession in chronic lymphocytic leukemia[J]. Proc Natl Acad Sci USA, 2005,353(17):1793-1801.
    [72]Landi MT, Zhao Y, Rotunno M, et al. MicroRNA expression differentiates histology and predicts survival of lung cancer[J]. Clin Cancer Res,2010,16(2):430-431
    [73]Sonkoly E, Wei T, Janson PC, et al. MicroRNA:novel regulators involved in the pathogenesis of psoriasis[J]? PLoS One.2007,2(7):e610.
    [74]Le MT, The C, Shyh-Chang N, et al. MicoRNA-125b is a novel negative regulator of p53. Genes Dev,2009,23(7):862-876.
    [75]Bousquet M, Quelen C, Rosati R, et al. Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2:11)(p21:q23)translocation[J]. J Exp Med,2008,205(11):2499-2306.
    [76]Shi XB, Xue L, Yang J. et al. An androgen-regulated miRNA suppresses Bakl expression and induces androgen-independent growth of prostate cancer cells[J]. Proc Natl Acad Sci USA,2007,104(50):19983-19988.
    [77]Ji J, Shi J, Budhu A, et al. MicroRNA expression, survival, and response to interferon in liver cancer[J]. N Engl J Med,361(15):1437-1447.
    [78]Xi Y, Shalgi R, Fodstad O, et al. Differentially regulated microRNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer[J]. Clin Cancer Res,2006,12(7 Pt 1):2014-2024.
    [79]Pauley KM, Satoh M, Chan AL, et al. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients[J]. Arthritis Res Ther,2008,10(4):R101.
    [80]Xia HF, He TZ, Liu CM, et al. MiR-125b expression affects the proliferation and apoptosis of human glioma cells by targeting Bmf[J]. Cell Physiol Biochem,2009, 23(4-6):347-358.
    [81]Mudd PA, Teague BN, Farris AD. Regulatory T cells and systemic lupus erythematosus[J]. Scand J Immunol,2006,64(3):211-218.
    [82]Valencia X, Yarboro C, Illei G, Lipsky PE. Deficient CD4+CD25(high) T regulatory cell function in patients with active systemic lupus erythematosus[J]. J Immunol,2007,178(4):2579-2588.
    [83]Nunn MF, Seeburg PH, Moscovici C, et al. Tripartite structure of the avian erythroblastosis virus E26 transforming gene[J]. Nature,1983,306(5941):391-395.
    [84]Sharrocks AD, Brown AL, Ling Y et al. The ETS-domain transcription factor family[J]. Int J Biochem Cell Biol,1997,29(12):1371-1387.
    [85]Naito S, Shimizu S, Matsuu M, et al. Ets-1 upregulates matrix metalloproteinase expression through extracellular matrix adhesion in vascular endothelial cells[J]. Biochem Biophys Res Commun,2002,291(1):130-138.
    [86]Tomita N, Morishita R, Taniyama Y, et al. Angiogenic property of hepatocyte growth factor is dependent on upregulation of essential transcription factor for angiogenesis, ets-1[J]. Circulation 2003,107(10):1411-1417.
    [87]Randi AM, Sperone A, Dryden NH, et al. Regulation of angiogenesis by ETS transcription factors[J]. Biochem Soc Trans,2009,37(pt6):1248-1253.
    [88]Oettgen P. The role of ets factor in tumor angiogenesis[J]. J Oncol,2010, May 4 [Epub ahead of print]
    [89]Bories JC, Willerford DM, Grevin D, et al. Increased T-cell apoptosis and terminal B-cell differentiation induced by inactivation of the Ets-1 proto-oncogene[J]. Nature, 1995,377(6550):635-638.
    [90]Muthusamy N, Barton K, Leiden J. M. Defective activation and survival of T cells lacking the Ets-1 transcription factor[J]. Nature,1995,377(6550):639-642.
    [91]Thomas RS, Tymms MJ, McKinlay LH, et al. ETS 1, NFkappaB and AP1 synergistically transactivate the human GM-CSF promoter[J]. Oncogene,1997, 14(23)2845-2855.
    [92]McKercher SR, Torbett BE, Anderson KL, et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities [J]. EMBO J,1996, 15(20):5647-5658.
    [93]McKinlay LH, Tymms MJ, Thomas RS, et al. The role of Ets-1 in mast cell granulocyte-macrophage colony-stimulating factor expression and activation[J]. J Immunol,1998,161(8):4098-4105.
    [94]Grenningloh R, Kang BY, Ho IC. Ets-1, a functional cofactor of T-bet, is essential for Thl inflammatory response[J]. J Exp Med,2005,201(4):615-626.
    [95]Han JW, Zheng HF, Cui Y, et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus[J]. Nat Genet.2009,41(11):1234-1237.
    [96]Sullivan KE, Piliero LM, Dharia T, et al.3'polymorphisms of ETS 1 are associated with different clinical phenotypes in SLE[J]. Hum Mutat,2000,16(1):49-53.
    [97]Coornaert B, Carpentier I, Beyaert R, et al. A20:central gatekeeper in inflammation and immunity[J]. J Biol Chem,2009,284(13):8217-8221.
    [98]Lee EG, Boone DL, Chai S, et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice[J]. Science,2000,289(5488): 2350-2235.
    [99]Breckpot K, Aerts-Toegaert C, Heirman C, et al. Attenuated expression of A20 markedly increases the efficacy of double-stranded RNA-activated dendritic cells as an anti-cancer vaccine[J]. J Immunol,2009,182(2):860-870.
    [100]Graham RR, Cotsapas C, Davies L, et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus[J]. Nat. Genet,2008,40(9): 1059-1061.
    [101]Musone SL, Taylor KE, Lu TT, et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus[J]. Nat. Genet, 2008,40(9):1062-1064.
    [102]Bates JS, Lessard CJ, Leon JM, et al. Meta-analysis and imputation identifies a 109 kb risk haplotype spanning TNFAIP3 associated with lupus nephritis and hematologic manifestations[J]. Genes Immun,2009,10(5):470-477.
    [103]Levy DE, Darnell JE Jr. Stats:transcriptional control and biological impact[J]. Nat Rev Mol Cell Biol,2002,3(9):651-662.
    [104]Schindler CW. Series introduction. JAK-STAT signaling in human disease[J]. J Clin Invest,2002,109(9):1133-1137.
    [105]Rivat C, Rodrigues S, Bruyneel E, et al. Implication of STAT3 signaling in human colonic cancer cells during intestinal trefoil factor 3(TFF3)-and vascular endothelial growth factor-mediated cellular invasion and tumor growth[J]. Cancer Res, 2005,65(1):195-202.
    [106]Shi CS, Kehrl JH. Pyk2 amplifies epidermal growth factor and c-Src-induced Stat3 activation[J]. J Biol Chem,2004,279(17):17224-17231.
    [107]Xu Y, Ikegami M, Wang Y, etal. Gene expression and biological processes influenced by deletion of Stat3 in pulmonary type II epithelial cells[J]. BMC Genomics, 2007,8:455.
    [108]Burdelya L, Kujawski M, Niu G, et al. Stat3 activity in melanoma cells affects migration of immune effector cells and nitric oxide-mediated antitumor effects[J]. J Immunol,2005,174(7):3925-3931.
    [109]Wang T, Niu G, Kortylewski M, et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med,2004,10(1):48-54. [110] Harada T, Kyttaris V, Li Y, et al. Increased expression of STAT3 in SLE T cells contributes to enhanced chemokine-mediated cell migration[J]. Autoimmunity,2007, 40(1):1-8.
    [111]Pramanik R, J(?)rgensen TN, Xin H, et al. Interleukin-6 induces expression of Ifi202, an interferon-inducible candidate gene for lupus susceptibility[J]. J Biol Chem, 2004,279(16):16121-16127.
    [1]Ambros V. The functions of animal microRNAs[J]. Nature,2004,431(7006): 350-355.
    [2]Ambros V. MicroRNA pathways in flies and worms:growth, death, fat, stress, and timing[J]. Cell,2003,113(6):673-676.
    [3]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004,116(2):281-297.
    [4]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complimentary to lin-14[J]. Cell,1993,75(5): 843-854.
    [5]Reinhart S J, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature,2000,403(6772):901-906.
    [6]Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs[J]. Science,2001,294(5543):853-858.
    [7]Baltimore D, Boldin MP, O'Connell RM, et al. MicroRNAs:new regulators of immune cell development and function[J]. Nature Immunol,2008,9(8):839-845.
    [8]Lodish HF, Zhou B, Liu G, et al. Micromanagement of the immune system by microRNAs[J]. Nature Rev. Immunol,2008,8(3):120-130.
    [9]Winter J, Jung S, Keller S, et al. Many roads to maturity:microRNA biogenesis pathways and their regulation[J]. Nature Cell Biol,2009,11(3):228-234.
    [10]Miyoshi K, Tsukumo H, Nagami T, et al. Slicer function of Drosophila Argonautes and its involvement in RISC formation[J]. Genes Dev,2005,19(23): 2837-2848.
    [11]Meister G, Landthaler M, Peters L, et al. Identification of novel argonaute-associated proteins[J]. Curr Biol,2005,15(23):2149-2155.
    [12]Georgantas RW, Hildreth R, Morisot S, et al. CD34+hematopoietic stem progenitor cell microRNA expression and function:a circuit diagram of differentiation control[J]. Proc Natl Acad. Sci USA,2007,104(8):2750-2755.
    [13]Gruber JJ, Zatechka DS, Sabin LR, et al. Ars2 links the nuclear cap-binding complex to RNA interference and cell proliferation[J]. Cell,2009,138(2):328-339.
    [14]Mansfield JH, Harfe BD, Nissen R, et al. MicroRNA-responsive sensor transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression[J]. Nature Genet,2004,36(10):1079-1083.
    [15]Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA[J]. Science,2004,304(5670):594-596.
    [16]Shen WF, Hu YL, Uttarwar L, et al. MicroRNA-126 regulates HOXA9 by binding to the homeobox[J]. Mol. Cell. Biol,2008,28(14):4609-4619.
    [17]Li Z, Lu J, Sun M, et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations[J]. Proc Natl Acad Sci USA,2008,105(40): 15535-15540.
    [18]Felli N, Fontana L, Pelosi E, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation[J]. Proc Natl Acad Sci USA,2005,102(50):18081-18086.
    [19]Velu CS, Baktula AM, Grimes HL. Gfi1 regulates miR-21 and miR-196b to control myelopoiesis[J]. Blood,2009,113(19):4720-4728.
    [20]Hock H, Hamblen MJ, Rooke HM, et al. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation[J]. Immunity,2003,18(1): 109-120.
    [21]O'Connell R. M, Chaudhuri AA, Rao DS, et al. Inositol phosphatase SHIP1 is a primary target of miR-155[J]. Proc Natl Acad Sci USA,2009,106(17):7113-7118.
    [22]Fukao T, Fukuda Y, Kiga K, et al. An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling[J]. Cell,2007,129(3): 617-631.
    [23]Johnnidis JB, Harris MH, Wheeler RT, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223[J]. Nature,2008, 451(7182):1125-1129.
    [24]Fontana L, Pelosi E, Greco P, et al. MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation[J]. Nature Cell Biol,2007,9(7):775-787.
    [25]Rosa A, Ballarino M, Sorrentino A, et al. The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation[J]. Proc Natl Acad Sci USA,2007,104(50):19849-19854.
    [26]O'Connell RM, Taganov KD, Boldin MP, et al. MicroRNA-155 is induced during the macrophage inflammatory response[J]. Proc Natl Acad Sci USA,2007,104(5): 1604-1609.
    [27]Taganov KD, Boldin MP, Chang KJ, et al. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses[J]. Proc Natl Acad Sci USA,2006,103(33):12481-12486.
    [29]Liu G, Friggeri A, Yang Y, et al. miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murinemacrophage inflammatory responses[J]. Proc Natl Acad Sci USA,2009,106(37):15819-15824.
    [30]Bazzoni F, Rossato M, Fabbri M, et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals[J]. Proc Natl Acad Sci USA,2009,106(13):5282-5287.
    [31]Tili E, Michaille JJ, Cimino A, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock[J]. J Immunol,2007,15;179(8):5082-5089.
    [32]Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155 for normal immune function[J]. Science,2007,316(5824):608-611.
    [33]Hou J, Wang P, Lin L, et al. MicroRNA-146a feedback inhibits RIG-Ⅰ-dependent type ⅠIFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2[J]. J Immunol,2009,183(3):2150-2158.
    [34]Sheedy FJ, Palsson-McDermott E, Hennessy EJ, et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21[J]. Nat Immunol,2010,11(2):141-147.
    [35]Ruggiero-T, Trabucchi M, De Santa F, et al. LPS induces KH-type splicing regulatory protein-dependent processing of microRNA-155 precursors in macrophages[J]. FASEB J,2009,2 (9):2898-2908.
    [36]Ceppi M, Pereira PM, Dunand-Sauthier I, et al. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells[J]. Proc Natl Acad Sci USA,2009,106(8):2735-2740.
    [37]Hashimi ST, Fulcher JA, Chang MH, et al. MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation [J]. Blood,2009,114(2):404-414.
    [38]Stern-Ginossar N, Gur C, Biton M, et al. Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D[J]. Nature Immunol, 2008,9(9):1065-1073.
    [39]Nachmani D, Stern-Ginossar N, Sarid R, et al. Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells[J]. Cell Host Microbe,2009,5(4):376-385.
    [40]Cobb BS, Nesterova TB, Thompson E, et al. T cell lineage choice and differentiation in the absence of the RNase Ⅲ enzyme Dicer[J]. J Exp Med.2005,201(9): 1367-1373.
    [41]Muljo SA, Ansel KM, Kanellopoulou C, et al. Aberrant T cell differentiation in the absence of Dicer[J]. J Exp Med,2005,202(2):261-269.
    [42]Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation[J]. Science,2004,303(5654):83-86.
    [43]Cobb BS, Hertweck A, Smith J, et al. A role for Dicer in immune regulation[J]. J Exp Med,2006,203(11):2519-2527.
    [44]Wu H, Neilson JR, Kumar P, et al. miRNA profiling of naive, effector and memory CD8 T cells[J]. PLoS One,2007,2(10):e1020.
    [45]Xiao C, Srinivasan L, Calado DP, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes [J]. Nat Immunol.2008, (4):405-414.
    [46]Li QJ, Chau J, Ebert PJ, et al. miR-181 a is an intrinsic modulator of T cell sensitivity and selection[J]. Cell,2007,129(1):147-161.
    [47]Thai TH, Calado DP, Casola S, et al. Regulation of the germinal center response by microRNA-155[J]. Science,2007,31 (5824):604-608.
    [48]Du C, Liu C, Kang J, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis[J]. Nature Immunol,2009, 10(12):1252-1259.
    [49]Li QJ, Chau J, Ebert PJ, et al. miR-181 a is an intrinsic modulator of T cell sensitivity and selection[J]. Cell,2007,129(1):147-161.
    [50]Chong MM, Rasmussen JP, Rudensky AY et al. The RNAseⅢ enzyme Drosha is critical in T cells for preventing lethal inflammatory disease[J]. J Exp Med,2008,205(9): 2005-2017.
    [51]Liston A, Lu LF, O'Carroll D, et al. Dicer-dependent microRNA pathway safeguards regulatory T cell function[J]. J Exp Med,2008,205(9):1993-2004.
    [52]Zhou X, Jeker LT, Fife BT, et al. Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity[J]. J Exp Med,2008,205(9):1983-1991.
    [53]Koralov, S. B. et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage[J]. Cell,2008,132(5):860-874.
    [54]Ventura A, Young AG, Winslow MM, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters[J]. Cell, 2008,132(5):875-886.
    [55]Xiao C, Srinivasan L, Calado DP, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes [J]. Nature Immunol,2008,9(4):405-414.
    [56]Zhou B, Wang S, Mayr C, et al. miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely[J]. Proc Natl Acad Sci USA,2007,104(17):7080-7085.
    [57]Vigorito E, Perks KL, Abreu-Goodger C, et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells[J]. Immunity,2007,27(6): 847-859.
    [58]Dorsett Y, McBride KM, Jankovic M, et al. MicroRNA-155 suppresses activationinduced cytidine deaminase-mediated Myc-Igh translocation[J]. Immunity, 2008,28(5):630-638.
    [59]Smolen JS, Aletaha D, Koeller M, et al. New therapies for treatment of rheumatoid arthritis[J]. Lancet,2007,370(9602):1861-1874.
    [60]Bresnihan B, varo-Gracia JM, Cobby M, et al. Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonis[J]. Arthritis Rheum,1998, 41(12):2196-2204.
    [61]Stanczyk J, Pedrioli DM, Brentano F, et all. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis [J]. Arthritis Rheum,2008, 58(4):1001-1009.
    [62]Nakasa T, Miyaki S, Okubo A, et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue[J]. Arthritis Rheum,2008,58(5):1284-1292.
    [63]Pauley KM, Satoh M, Chan AL, et al. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients[J]. Arthritis Res Ther,2008,10(4):R101.
    [64]Dai Y, Huang YS, Tang M, et al. Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients[J]. Lupus,2007,16(12): 939-946.
    [65]Tang Y, Luo X, Cui H, et al. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins[J]. Arthritis Rheum,2009,60(4):1065-1075.
    [66]Qian C, Yao D, Jiang T, et al. MicroRNA profile in peripheral blood T cells of patients with primary biliary cirrhosis[J]. Clin Sci,2008(Withdrawn)
    [67]Maurer B, Stanczyk J, Jungel A, et al. miR-29 is a key regulator of collagen expression in systemic sclerosis[J]. Arthritis Rheum,2010, Mar 3 [Epub ahead of print]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700