用户名: 密码: 验证码:
农业废物堆肥中微生物总DNA提取方法的研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
堆肥是利用自然界中广泛存在的微生物,在人工控制的条件下,将可生物降解的有机物转化为肥料的过程。然而,可培养微生物仅占自然界微生物的0.1%~10%,不能很好地反映自然环境中微生物多样性的原始状态。随着分子生物学和系统发育分析方法的发展,基于16S rDNA基因的分子生物学方法逐渐被用来分析复杂的生态系统。本文对农业废物垃圾进行堆肥处理,并采用聚合酶链式反应-变性梯度凝胶电泳(Polymerase Chain Reaction-Denature Gradient Gel Electrophoresis,PCR-DGGE)技术对堆肥过程中微生物群落与木质纤维素降解的关系进行了研究。
     首先在固态发酵培养条件下,研究了用于其微生物群落多样性及演替情况分析的微生物基因组提取方法。对比3种(溶壁酶法,超声波法,液氮研磨+CTAB法)可同时从固态发酵中提取细菌和真菌DNA的方法。使用紫外分光光度计测定DNA产量与纯度;使用细菌16S rDNA基因通用引物(341F和907R)和真菌18S rDNA基因通用引物(NU-SSU-0817和NU-SSU-119)对DNA进行PCR扩增;采用变性梯度凝胶电泳(DGGE)法对纯化后的PCR产物进行多样性分析。结果显示,三种方法得到的粗提和纯化DNA长度都约为23kb;细菌和真菌PCR产物长度分别约为586bp和422bp;DGGE分析表明3种方法提取的DNA反映的微生物多样性比较一致;但通过紫外分光光度计的测定表明:溶壁酶法提取固态发酵中微生物总DNA产量最高,超声波法次之,液氮研磨+CTAB法最差。所以综合以上各结果,溶壁酶法最优。
     采用筛选到的最佳提取DNA方法,从农业废物垃圾好氧堆肥样品中提取出堆肥混合菌群的总DNA,粗提DNA经过纯化后,采用GC-341F/907R引物进行PCR扩增16SrDNA基因段,用DGGE进行分离和鉴定PCR扩增产物,从而得出农业废物垃圾堆肥过程中微生物种群多样性的信息。DGGE图谱显示,堆肥初期有较多的微生物多样性,随着堆肥温度的升高,一些中温期的微生物被淘汰,高温期微生物多样性减少,同时噬热菌出现,并成为优势菌群。高温期过后,微生物多样性进一步锐减。从而表明堆肥的温度是影响堆体中微生物生长的重要因素,不同的温度,堆体具有适应这个温度的不同的优势菌种。同时,对几种特征堆肥参数进行了测定,结果显示,经过39d的堆肥,堆肥产物基本达到要求。而通过对木质纤维素降解以及各酶活(Lac、LiP、MnP)的测定,可以发现在微生物种群数增加阶段,纤维素、半纤维素降解速度和酶活量都有增加。而在微生物数递减阶段,木质纤维素的降解速度有所缓慢且酶活量有下降趋势。从而看出,微生物的种群数和木质纤维素的降解有一定的相关关系。从以上研究表明,将溶壁酶法用于研究堆肥过程中菌落的多样性、演替情况以及群落与生物降解关系是可行的。此研究对于堆肥菌剂的开发提供了很有意义的方法借鉴,有助于解决在菌剂开发中选择菌株缺乏依据的问题,还可以为其他环境体系的菌落研究提供参考。
Composting takes the advantage of natural microorganisms, under the manual control condition, it is a process which will transform biodegradable organic to fertilizer. However, the microbes can be cultured, only 1% to 10% of the microbes from natural habitats, so it can’t well reflect the microbial diversity in the natural environment of the original state. With the development of molecular biology and phylogenetic analysis, based on 16SrDNA gene molecular biology methods are gradually being used to analyze complex ecosystems. In this paper, composting used polymerase chain reaction - denaturing gradient gel electrophoresis (PCR-DGGE) technology to study the relationship between colonies and lignocellulose degradation during the composting process.
     Lyticase lysis, ultrasonic lysis and grinding lysis in liquid nitrogen with CTAB as genomic DNA extraction methods for bacteria and fungi were studied to analyze the diversity and succession of the microbes during solid-state fermentation. Quantity and purity of DNA were measured by ultraviolet spectrophotometer. PCR amplification was carried out with a eubacterial 16S rDNA targeted primer pair (341F and 907R) and a fungi 18S rDNA targeted primer pair (NU-SSU-0817 and NU-SSU-1196). The bacterial and fungal diversity during solid-state fermentation was analyzed by denaturing gradient gel electrophoresis (DGGE). The results showed that the rude and purified DNA fragments extracted during solid-state fermentation have a length of about 23 kb. The length of DNA fragments after bacterial and fungal PCR amplification is about 586 bp and 422 bp, respectively. DNA band profiles by DGGE analysis for either bacterial or fungal PCR products testify the similar microbial diversity for three DNA extract methods. The results by the ultraviolet spectrophotometer showed that lyticase lysis yielded the highest quantity of DNA, ultrasonic lysis followed and grinding lysis in liquid nitrogen with CTAB produced the lowest quantity of DNA. Therefor, Lyticase lysis was best.
     According to the screening method of DNA extraction, we choosed lyticase lysis by which the total DNA of the organic solid waste composting microorganisms was extracted. After purification, the total DNA was amplified with PCR using the GC-341F/907R primers to obtain the 16S rDNA genes. The PCR amplified products were separated and identified by DGGE,which could show the information of organic solid waste composting microorganisms. It showed that there was more microbial diversities in the initial stage of composting. Some mesothermal microorganisms were eliminated with the rising of the temperature, and the microbial diversities of high temperature stage decreased. The thermophilic bacterias emergence became to the preponderant microorganisms. After the high temperature stage, the diversity of microorganisms still dereased. The temperature of the composting was an important factor effecting the microorganisms of the pile. And the pile might have different preponderant microorganisms in different temperature. At the same time, several characteristics of composting parameters were measured. After 39 days compost, the results showed that the product of compost met the basic requirements. Measurement of the lignocellulose degradation as well as the enzyme activity of Lac, Lip, Mnp showed that when microbial populations increased, cellulose, hemicellulose degradation rate and volume of activity also increased. When the number of microbial decreased, the rate of lignocellulose degradation and enzyme activity would slow. So we could see that the number of microbial populations and lignocellulose degradation have a certain relationship.
     In conclusion, Lyticase lysis which was used to study diversity and succession of the microbes and the relationship between communities and biodegradation was feasible. These methods would be helpful for solving the problem of subjectivity about strains selecting, they could provide useful information for the researching of the environment systematic communities.
引文
[1]赵由才.生活垃圾资源化原理与技术.北京:化学工业出版社,2002,140
    [2]陈世和,张所明.城市垃圾堆肥原理与工艺.上海:复旦大学出版社,1990,112-160
    [3]罗宇煊,张甲耀,马瑛.有害废物堆肥技术及堆肥生态系统研究进展[J].上海环境科学,1999,18(10):478-480
    [4]李国学,张福锁.固体废物堆肥化与有机复混肥生产.北京:化学工业出版社,2000:98-132
    [5]瞿礼嘉,顾红雅,胡苹,等.现代生物技术导论.北京:高等教育出版社,1998:87-95.
    [6]席北斗,刘鸿亮,白庆中,等.堆肥中纤维素和木质素的生物降解研究现状.环境污染治理技术与设备,2002,3(3):19-23
    [7]陈坚.环境生物技术.北京:中国轻工业出版社,2000,42-67
    [8]曹健,郭德宪,曾实,汪晨辉.一株里氏木霉产纤维素酶的条件及酶系的优化.郑州工程学院学报,2003,24(1):10-15
    [9]王建龙,文湘华.现代环境生物技术.北京:清华大学出版社,2001:265-273
    [10]高培基,曲音波,汪天虹,等.微生物降解纤维素机制的分子生物学研究进展.纤维素科学与技术,1995,3(2):1-19
    [11]阎伯旭,高培基.纤维素酶分子结构与功能研究进展.生命科学,1995,7(5):22-25.
    [12] Amano Y,Kanda T.New Insights into Cellulose Degradation by Cellulases and Related Enzymes.Trends in Glycoscience and Glycotechnology,2002, 14:27-34
    [13]郁红艳,曾光明,胡天觉等.真菌降解木质素研究进展及在好氧堆肥中的研究展望.中国生物工程杂志,2003,23(10):57-61
    [14]蒋挺大.木质素.北京:化学工业出版社,2001,16-18
    [15] Tuomela M,Vikman M,Hatakka A,et al.Biodegradation of lignin in a compost environment:a review.Bioresource Technology,2000,72(2):169-183
    [16] Hernández M,Hernández-Coronado M J,Montiel M D,et al.Pyrolysis/gas chromato- graphy/mass spectrometry as a useful technique to evaluate the ligninolytic action of streptomycetes on wheat straw.Journal of Analytical and Applied Pyrolysis,2001,58-59:539-551
    [17] Falcón M A,Rodríguez A,Carnicero A,et al.Isolation of microorganisms withlignin transformation potential from soil of tenerife island.Soil Biology and Biochemistry,1995,27(2):121-126
    [18] Carol A C.Bacterial Associations with Decaying Wood: a Review.International Biodetertoration and Biodegradation,1996,37(1):101-107
    [19] Zacchi L,Burla G,Zuolong D,et al.Metabolism of cellulose by Phanerochaete chrysosporium in continuously agitated culture is associated with enhanced production of lignin peroxidase.Journal of Biotechnology,2000,78(2):185-192
    [20] Shingo K,Masanori A,Noriko O,et al.Degradation of a non-phenolic L-O-4 substructure and of polymeric lignin model compounds by laccase of Coriolus versicolor in the presence of 1-hydroxybenzotriazole. FEMS Microbiology Letters,1999,170(1):51-57
    [21]席北斗,刘鸿亮,孟伟,等.垃圾堆肥高效复合微生物菌剂的制备.环境科学研究,2003,16,(2):58-64
    [22] Reddy G V,Babu P R,Komaraiah P,et al.Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajorcaju).Process Biochemistry,2003,38(10):1457-1462
    [23] Tuomela M,Oivanen1 P,Hatakka A.Degradation of synthetic 14C-lignin by various white-rot fungi in soil.Soil Biology and Biochemistry,2002,34(11): 1613-1620
    [24]陈石根,周润琪.酶学.复旦大学出版社,2001,12-25
    [25] Kamoda S , Saburi Y . Structural and enzymatical comparison of lignostilbene-α,β-dioxygenase isozymes,I, II, and III, from Pseudomonas paucimobilis TMY1009. Bioscience and Biotechnology and Biochemical, 1993,57:931-934
    [26] Borneman W S,Hartley R D,Morrison W H,et al.Feruloyl and p-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation.Applied Microbiology Biotechnology,1990,33(3):345-351
    [27] Zhao J,De Koker T H,Janse B J H.Comparative studies of lignin peroxidases and manganese-dependent peroxidases produced by selected white rot fungi in solid media.FEMS Microbiology Letters,1996,145(3):393-399
    [28] Ejechi B O,Obuekwe C O,Ogbimi A O.Microchemical Studies of Wood Degradation by Brown Rot and White Rot Fungi in Two Tropical Timbers . International Biodeterioration and Biodegradation,1996,38(2) :119-122
    [29] Kenneth E H.Extracellular free radical biochemistry of ligninolytic fungi.New Journal of Chemistry,1996,20(2):195-198
    [30]张晶,黄民生,徐亚同.白腐真菌木质素降解酶的研究及应用进展.净水技术,2004,23(1):19-21
    [31] Pérez J,Muńoz-Dorado J,Dela R T,et al.Biodegradation and biological treatments of cellulose, hemicellulose and lignin:an overview.International microbiology,2002,5(2):53-63
    [32]刘尚旭,赖寒.木质素降解酶的分子生物学研究进展.重庆教育学院学报,2001,14(3):64-67
    [33] Cullen D.Recent advances on the molecular genetics of liniolytic fungi.Journal of Biotechnology,1997,53(3):273–289
    [34] Rowan A K,Snape J R,Fearnside D,et al.Composition and diversity of ammonia oxidising bacterial communities in waste water treatment reactions of different design treating identical waste water . FEMS Microbiological Ecology,2003,43:195-206
    [35]李艳霞,王敏健,王菊思,等.城市固体废弃物堆肥化处理的影响因素.土壤与环境,1999,8(1):61-65
    [36] Wei S,Jeanette M N,Bruce E M,et al.Effects of aeration and moisture during windrow composting on the nitrogen fertilizer values of dairy waste composts.Applied Soil Ecology,1999,11(1):17-28
    [37] Eliane D G D,Angelo S M M,Carlota de O R Y,et al.Effect of carbon: nitrogen ratio (C:N) and substrate source on glucose-6-phosphate dehydrogenase (G-6-PDH) production by recombinant Saccharomyces cerevisiae.Journal of Food Engineering,2006,75(1):96-103
    [38]陈世和.城市生活垃圾堆肥化处理的微生物特性研究.上海环境科学,1989,8(8):17-21
    [39] Amann R I,Ludwig W,Schleiffer K H.Phylogenetic identification and in situ detection of individual microbial cells without cultivation.Microbiological reviews,1995,59:143-146
    [40]张洪勋,王晓谊.微生物生态学研究方法进展.生态学报,2003,23:988-995
    [41] Zeng G M,Huang D L,Huang G H,et al.Composting of lead-contaminated solid waste with inocula of white-rot fungus . Bioresource Technology, 2007,98:320-326
    [42] Vita R C ,Kazuo M,Susumu A,et al.Succession and phylogenetic profile of eukaryotic communities in the composting process of rice straw estimated byPCR-DGGE analysis.Biology and fertility of soils,2004,40:334-344
    [43] Leckie S E.Methods of microbial community profiling and their application to forest soils.Forest Ecology and Management,2005,220(1):88-106
    [44] Muyzer G,De Waal E C,GUitterlinden A.Profiling of microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA . Applied Environmental Microbiology,1993,59:695-700
    [45] Dees,P M,Ghiorse W C.Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA.FEMS Microbiological Ecology,2001,35:207-216
    [46] LaMontagne M G,CMichel F, Holden P A,et al.Evaluation of extraction and purification methods forobtaining PCR-amplifiable DNA from compost formicrobial community analysis.Journal of Microbiological Methods,2002, 49:255-264
    [47] Tiquia S M,Ichida J M,Keener H M,et al.Bacterial community p rofiles on feathers during composting as determined by terminal restriction fragment length polymorphism analysis of 16S rDNA genes.Applied Microbiology and Biotechnology,2005,7:412-419
    [48] Wintzingerode V,Gbel F U B,Stackebrandt E.Determination of microbial diversity in environmental samples : pit-falls of PCR-based rRNA analysis.FEMS Microbiology Reviews,1997,21:213-229
    [49] Kowalchuk G A,Snaoumenko Z,Derikx P J L,et al.Molecular analysis of ammonia-oxidizing bacteria of theβsubdivision of the class Proteobacteria in compost and composted materials . Applied and Environmental Microbiology,1999,65:390-403
    [50] Howeler M,Ghiorse W C,Walker L P.A quantitative analysis of DNA extraction and purification from compost . Journal of Microbiological Methods,2003,54:37-45
    [51] Moeseneder M M , Arrieta J M , Muyzer G , et al . Optimization of terminal-restriction fragment lengthpolymorphism analysis for complex marine bacterio-plankton communities and comparison with denaturing gradient gel electrophoresis . Applied and Environmental Microbiology, 1999,65(8) :3518-3525
    [52] Hiraishi A,Iwasaki M,Shinjo H.Terminal restricton pattern analysis of 16S rRNA genes for the characterization of bacterial communities of activatedsludge.Journal of Bioscience and Bioengineering,2000,90(2):148-156.
    [53] Liu W T,Marsh T L,Cheng H,et al.Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA.Applied and Environmental Microbiology,1997,63:4516-4522
    [54] Clement B G,Kehl L E,DeBord K L,et al.Terminal restrictionfragment patterns,a rapid PCR-based method for the comparison of complex bacterial communities.Journal of Microbiological Methods,1998,31:135-142
    [55] Kaplan C W,Astaire J C,Sanders M E,et al.Christopher 16S ribosomal DNA terminal restriction fragment pattern analysis of bacterial communities in feces of rats fed Lactobacillus acidophilus NCFM.Applied and Environmental Microbiology,2001,67:1935-1939
    [56] Barkovskii A L,Fukui H.A simple method for differential isolation of freely dispersed and particle associated peat microorganisms . Journal of Microbiological Methods,2004,6:93-105
    [57] Lueders T,Friedrich M.Archaeal population dynamics during sequential reduction proceeded in rice field soil.Applied and Environmental Microbiology, 2000,66:2732-2742
    [58] Fisher S G,Lerman L S.DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels:correspondence with melting theory . Proceedings of the National Academy of Sciences of USA,1983,80:1579-583
    [59]吴卿,赵新华.新技术,新工艺,新材料在自来水管网的应用.北京:化学工业出版社,1988:25-36
    [60]罗海峰,齐鸿雁.池塘微生态研究.生态学报,2003,23(8):1570-1575
    [61]刘新春,吴成强.第五届微生物生态学术研讨会,2003年10月
    [62]殷峻,陈英旭.应用PCR-DGGE技术研究处理含氨废气的生物滤塔中微物多样性.环境科学,2002,23(5):62-66.
    [63] Hayashi K.PCR methods and applications.New York:karger,1991,1:1-34
    [64] [戚豫,唐炬,黄丽英.DNA单链构象多态性原理初探.基础医学与临床,1997,17(2):142-146.
    [65] Schwieger F , Tebbe C C . A new approach to utilize PCR-single- strand-conformation polymorphism for 16S rRNA . gene-based microbial community analysis.Applied and Environmental Microbiology,1998,64(12),4870-4876
    [66] Lee D H,Zo Y G,and Kim S J.Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism.Applied and Environmental Microbiology,1996,62:3112-3120
    [67] Schloss P D,Hay A G,D B Wilson,et al.Tracking temporal changes of bacterial community fingerprints during the initial stages of composting.FEMS Microbiology Ecology,2003,46:1-9
    [68] DeLong E F,Wickham G S,Pace N R.Phylogenetic stains:ribosomal RNA based probes for the identification of single microbial cells . Science, 1989,243(4896):5554-5563
    [69] Calli B,Mertoglu B,Inanc B,et al.Met hanogenic diversity in anaerobic bioreactors under extremely high ammonia levels.Enzyme and Microbialogical Technology,2005,37(4):448-455
    [70] Icgen B , Harrison S . Exposure to sulfide causes populations shifts in sulfate-reducing consortia.Research in Microbiology,2006,157(8):784-791
    [71] Ercolini D,Hill P J,Dodd C E R.Development of a fluorescence in situ hybridization method for cheese using a 16S rRNA probe.Microbiological Methods,2003,52(2):267-271
    [72] Zwirglmaier K,Ludwig W,Schleifer K H,et al.Recognition of individual genes in a single bacterial cell by fluorescence in situ hybridization - RING-FISH.Molecular Microbiology,2004,51(1):89-96
    [73] Ausubel F M,Brent R,Smit h J A,et al.Short protocols in molecular biology,4th ed.New Youk:John Wiley and Sons,Inc.1999,630-632
    [74] Ramsing N B,Kuhl M,Jorgensen B B.Dist ribution sulfatereducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligunucleotide probes and microelect rodes.Applied and Environmental Microbiology, 1993, 59(11):3840-3849
    [75] Eschenhagena M,Schupplerb M,Rêske I.Molecular characterization of t he microbial community structure two activated sludge systems for t he advanced treatment domestic effluents.Water Research,2003,37(13):3224-3232
    [76] Silyn R G,Lewis G.In situ analysis of Nitrosomonas spp. in wastewater treatment wetland biofilms.Water Research,2001,35(11):2731-2739
    [77] Neef A,Schaf er R,Beimfohr C,et al.Fluorescence based rRNA sensor systems for detection of whole cells Saccharomonos pora spp. and Thermoact inomyces spp. Biosensors and Bioelectronics,2003,18(526):565-569
    [78] Hiraishi A,Narihiro T,Yamanaka Y.Microbial community dynamics duringstart-up operation of flowerpotusing fed-batch reactors for composting of household biowaste.Environmental Microbiology,2003,5(9):765-776
    [79]程池,杨梅,李金霞等.Biolog微生物自动分析系统—细菌鉴定操作规程的研究.食品与发酵工业,2006,32(5):50-54
    [80] Grove J A,Kautola H,Javadpour S,et al.Assessment of changes in the microorganism community in a biofilter . Journal of Biochemical Engineering,2004,18(2):111-114
    [81]席劲瑛,胡洪营,姜健,等.生物过滤塔中微生物群落的代谢特性.环境科学,2005,26(4):165-170
    [82] Calbrix R,Laval K,Barray S.Analysis of the potential functional diversity of the bacterial community in soil: a reproducible procedure using sole-carbon- source utilization profiles.European Journal of Soil Biology, 2005, 41(1-2):11-20
    [83] Liao M,Chen C L,Huang C Y.Effect of heavy metals on soil microbial activity and diversity in a reclaimed mining wasteland of red soil area.Journal of Environmental Sciences,2005,17(5):832-837
    [84] Yao H Y,Xu J M,Huang C Y.Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal-polluted paddy soils.Geoderma,2003,115(2):139-148
    [85] Buyer J S,Roberts D P,Millner P,et al.Analysis of fungal communities by sole carbon source utilization profiles . Journal of Microbiological Methods,2001,45(1):53-60
    [86]郑华,欧阳志云,赵同谦,等.不同森林恢复类型对土壤生物学特性的影响.应用与环境生物学报,2006,12(1):36-43
    [87]叶央芳,闵航.代谢指纹评估苯噻草胺对水稻土微生物群落的短期影响.土壤学报,2006,43(2):287-294
    [88] Muhammad A,Wang H Z,Wu J J,et al.Changes in enzymes activity, substrate utilization pattern and diversity of soil microbial communities under cadmium pollution.Journal of Environmental Sciences,2005,17(5):802-807
    [89]李春格,李晓鸣,王敬国.大豆连作对土体和根际微生物群落功能的影响.生态学报,2006,26(4):1144-1150
    [90]张红,吕永龙,辛晓云等.杀虫剂类POPs对土壤中微生物群落多样性的影响.生态学报,2005,25(4):937-942
    [91]孔维栋,刘可星,廖宗文,等.不同腐熟程度有机物料对土壤微生物群落功能多样性的影响.生态学报,2005,25(9):2291-2296
    [92]刘爱民,黄为一.铜尾矿复垦后土壤微生物活性及其群落功能多样性研究.生态环境,2005,14(6):876-879
    [93] Minna L M,Heikki H.Microbiol functional activity during composting of chlorophenol-contaminated sawmill soil . Journal of Microbiological Methods,1997,30(1):21-32
    [94] Atkinson C F,Jones D D,Gauthier J J.Microbial activities during composting of pulp and paper-mill primary solids.World Journal of Microbiology and Biotechnology,1997,13(5):519-525
    [95] Insam H,Amor K,Renner M,et al.Changes in functional abilities of the microbial community during composting of manure. Microbial Ecology (Historical Archive),1996,31(1):77-87
    [96] Huang D L,Zeng G M,Jiang X Y,et al.Bioremediation of Pb-contaminated soil by incubating with Phanerochaete chrysosporium and straw.Journal of Hazardous Materials,2006,134(1-3):268-276
    [97] Gomez E,Ferreras L,Toresani S.Soil bacterial functional diversity as influenced by organic amendment application . Bioresource Technology, 2006,97(13):1484-1489
    [98] Claudio M,Heribert I.Community level physiological profiling as a tool to evaluate compost maturity: a kinetic approach.European Journal of Soil Biology,2003,39(2):141-148
    [99]冯宏,张新明,李华兴等.接种菌剂对堆肥微生物利用碳源能力的影响.华南农业大学学报,2005,26(4):19-22
    [100] Fang M,Wong J W C.Changes in Thermophilic Bacteria Population and Diversity during Composting of Coal Fly Ash and Sewage Sludge.Water, Air, and soil Polution,2000,124(3-4):333-343
    [101] Giroux H,Vidal P,Bouchard J,et al.Degradation of kraft indulin lignin by Streptomyces viridosporus and Streptomyces badius.Applied and Environment Microbiology,1988,54(12):3064-3070
    [102] Tang J C,Kanamori T,Inoue Y,et al.Changes in the microbial community structure during thermophilic composting ofmanure as detected by the quinone p rofile method.Process Biochemistry,2004,39:1999-2006.
    [103] Katayama A,Funasaka K,Fujie K.Changes in the respiratory quinone profile of a soil treated with pesticides.Biology and Fertility of Soils,2001,33(6):454-459
    [104] Katayama A,Hu H Y,Nozawa M,et al.Changes in the microbial communitystructure in soils treated with a mixture of glucose and peptone with reference to the respiratory quinone profile.Soil Science and Plant Nutrition,2002,48(6):841-846
    [105] Hu H Y,Fujie K,Nakagome H,et al.Quantitative analyses of the change in microbial diversity in a bioreactor for wastewater treatment based on respiratory quinones.Water Research,1999,33(15):3263-3270
    [106] Tang J C,Kanamori T,Inoue Y,et al.Changes in microbial community structure in thermophilic composting process of manure detected by quinone profile method.Process Biochemistry, 2004,39(12):1999-2006
    [107] Herrmann R F,Shann J F.Microbial community changes uring composting of municipal solid waste.Microbial Ecology,1997,33:78-85.
    [108] Klamer M,Baath E.Microbial community dynamics during composting of straw material studied using phospholipids fatty acid analysis . FEMS microbiology Ecology,1998,27:9-20
    [109] Vander G J S,Lei F.Microbial community structure dynamics during aerated and mixed composting.Transactions of the ASAE,2003,46(2):577-584
    [110] Stegera K,Jarvisa A,Smarsb S,et al.Comparison of signature lipid methods to determine microbial community structure in compost . Journal of Microbiological Methods,2003,55:371-382
    [111]张洪勋,王晓谊,齐鸿雁.微生物生态学研究方法进展.生态学报,2003,23(5):988-995
    [112]张汉波,段昌群,屈良鹄.非培养方法在土壤微生物生态学研究中的应用.生态学杂志,2003,22(5):131-136
    [113]郑华,欧阳志云,王效科,等.不同森林恢复类型对土壤微生物群落的影响.应用生态学报,2004,15(11):2019-2024
    [114]姚斌,汪海珍,徐建民等.除草剂对水稻土微生物的影响.环境科学学报,2004,24(2):349-354
    [115] Kozdrój J,Elsas V.Structural diversity of microbial communities in arable soils of a heavily industrialised area determined by PCR-DGGE fingerptinting and FAME profiling.Applied Soil Ecology,2001,17(1):31-42
    [116] Toyota K,Kuninaga S.Comparison of soil microbial community between soils amended with or without farmyard manure.Applied Soil Ecology,2006,33(1):39-48
    [117] Widmer F.Assessing soil biological characteristics:a comparison of bulk soil community DNA-, PLFA-, and BiologTM- analyses . Soil Biology andBiochemistry,2001,33(7-8):1029-1036
    [118] Graham M H,Haynes R J.Catabolic diversity of soil microbial communities under sugarcane and other land uses estimated by Biolog and substrate-induced respiration methods.Applied Soil Ecology,2005,29(2):155-164
    [119] Cullings K,Raleigh C,New M H,et al.Effects of Artificial Defoliation of Pines on the Structure and Physiology of the Soil Fungal Community of a Mixed Pine-Spruce Forest.Applied and Environmental Microbiology,2005, 71(4):1996-2000
    [120] Soderberg K H,Probanza A,Jumpponen A,et al.The microbial community in the rhizosphere determined by community-level physiological profiles (CLPP) and direct soil- and cfu-PLFA techniques . Applied Soil Ecology,2004,25(2):135-145
    [121] Chinalia F A,Killham K S.2,4-Dichlorophenoxyacetic acid (2, 4-D) biodegradation in river sediments of Northeast-Scotland and its effect on the microbial communities (PLFA and DGGE) . Chemosphere,2006,64(10) :1675-1683
    [122]王勐骋,杨永华,臧红兵.利用PLFA、CLPPs和ARDRA标记分析甲胺磷对土壤微生物群落的影响.生态学杂志,2006,25(6):640-645
    [123]徐海娟,梁文芷.白腐菌降解木素酶系及其作用机理.环境污染治理技术与设备,2000,1(3):51-54
    [124] Levin L,Papinutti L,Forchiassin F.Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes.Bioresource Technology,2004,94(2):169-176
    [125] Hernández M,Hernández-Coronado M J,Ball A S,et al.Degradation of alkali-lignin residues from solid-state fermentation of wheat straw by streptomycetes.Biodegradation,2001,12(4):219-223
    [126] Pandey A,Ashakumary L,Selvakumar P.Copra waste—a novel substrate for solid-state fermentation.Biores Technol,1995,51(3):217-220
    [127]吴其飞,黄达明,陆建明,等.固态发酵新技术与反应器的研究进展.饲料工业,2003,24(8):43-47
    [128]潘天玲,张东峰,赵昌盛,等.混菌固态发酵豆渣生产菌体蛋白的研究.化学与生物工程,2004(6):35-41
    [129]卢向阳,饶力群,彭丽莎,等.酒糟单细胞蛋白饲料生产技术研究.湖南农业大学学报(自然科学版),2001,27(4):317-320
    [130] Durand A,Vergoignan C,Desgrangfes C.Biomass estimation in solid statefermentation.Advances in solid fermentation.International Symposium on Solid State Ferment Process,1997,23-27
    [131]刘淑玲.利用椰皮瓤固体发酵生产纤维素酶.广西轻工业,1996(1):39-43
    [132]曹军卫,马辉文.微生物工程.北京:科学出版社,2002,262-266
    [133]廖春燕,郑裕国.固态发酵生物反应器.微生物学通报,2005,32(1):99-103
    [134]林学政,张玉臻,盛多红.苹果渣(基质)水活度对丝孢酵母固态发酵及酶合成的影响.食品与发酵工业,1996(4):42-45
    [135]戚以政.影响固态发酵速率的因素及其动力学.化学反应工程与工艺,1995,11(1):18-24
    [136] Lu M Y,Brooks J D,Maddox I S.Citric acid production by solid-state fermentation in a packed-bed reactor using Aspergillus niger.Enzyme and Microbial Technology,1997,21(6):392-397
    [137] Sangsurasak P,Mitchell D A.Validation of a model describing two-dimensional heat transfer during solid-state fermentation in packed bed bioreactors.Biotechnology and Bioengineering,1998,60(6):793-749
    [138] Frans J W,Johannes T,Arjen R.A simplified material and energy balance approach for process development and scale-up of Coniothyrium minitans conidia production by solid-state cultivation in a packed-bed reactor.Biotechnology and Bioengineering,1999,65(4):447-458
    [139] Frank-Jan N,Jaap O,Johannes T,et al.Improved model system for solid-substrate fermentation:effects of pH, nutrients and buffer on fungal growth rate.Process Biochemistry,1999,35(1-2):69-75
    [140] Stepanova E V,Koroleva O V,Vasilchenko L G,et al.Fungal decomposition of oat straw during liquid and solid-state fermentation.Applied Biochemistry Microbiology,2003,39(1):65-74
    [141] Zhang R F,Cao H,Cui ZH L,et al.Extraction and purification of soil microbial total DNA.Acta Microbiological Sinica,2003,43(2):276-282
    [142] Else M F, Jaran S O, Gunnar S. Application of sonication to release DNA from Bacillus cereus for quantitative detection by real-time PCR.Journal of Microbiological Methods,2003,55(1):1-10
    [143] Michael H,William C G,Larry P W.A quantitative analysis of DNA extraction and purification from compost . Journal of Microbiological Methods, 2003,54(1):37-45
    [144] Muyzer G,Brinkhoff T,Ulrich N,et al.Denaturing gradient gel electrophoresis (DGGE) in microbial ecology . Molecular Microbial EcologyManual,2004,2(1-2):743-769
    [145] James B,Jack H R.PCR primers that amplify fungal rRNA genes from environmental samples . Applied and Environmental Microbiology, 2000,66(10):4356-4360
    [146] Teske A,Wawer C,Muyzer G,et al.Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord , Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments . Applied and Environmental Microbiology,1996,62(4):1405-1415
    [147] Miller D N,Bryant J E,Madsen E L,et al.Evaluation and optimization of DNA extraction and purificationprocedures for soil and sediment samples.Applied and Environmental Microbiology,1999,65(11):4715-472
    [148] Yang Zh H,Xiao Y,Zeng G M,et al.Comparison of methods for total community DNA extraction and purification from compost . Applied Microbiology and Biotechnology,2007,74(4):918-925
    [149] More M I,Herrick J B,Silva M C,et al.Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment.Applied and Environmental Microbiology,1994,60(5):1572-158
    [150] Bhatti A U,Khan Q,Gurmanti A H,et al.Effect of organic manure and chemical amendments on soil properties and crop yield on a salt affected Entisol.Pedosphere,2005,15(1):46-51
    [151] Haruta S,Huang Z,Huang Z.Construction of a stable microbial community with high cellulose-degradation ability . Applied Microbiology and Biotechnology, 2002,59:529-534
    [152]王光玉,陈雷,宣世伟等.生活垃圾好氧堆肥微生物接种的初步研究.环境科学与技术,2005,28(2):20-21,50
    [153]国家环境保护总局污染控制司.城市固体废物管理与处理处置技术.北京:中国石化出版社.2001,243,246-247
    [154]许晓英,李季.复合微生物菌剂在污泥高温好氧堆肥中的应用.中国生态农业学报,2006,14(3):64-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700