基于单蛋白纳米胶囊的新型固定化酶体系的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酶是一类特殊且高效的生物催化剂。为了将其优势充分发挥,在过去的一百多年中,有关酶的固定化方法的研究和固定化体系的开发,受到人们的广泛关注。种类丰富、形式多样的固定化酶体系被开发出来,改善了游离酶容易失活和难以回收利用的不足,但却引入固定化过程中酶活性的过度损失和固定化酶容易从载体上脱落等问题。因此,迫切需要设计和开发稳定且高效的新型固定化酶体系。
     基于此研究背景,为制备应用性更好和整体性能更完善的固定化酶体系,本论文基于单蛋白纳米胶囊化技术平台,设计和制备了几种新型的固定化酶体系:
     1.选取有机磷水解酶,采用两步法制备了有机磷水解酶纳米胶囊(nOPH)。通过动态光散射(DLS)、透射电镜(TEM)、(?)胶电泳、红外光谱(FTIR)对其形貌和结构进行表征。结果显示,制备的nOPH是单蛋白纳米胶囊结构,成功实现了对有机磷水解酶的纳米胶囊化固定。通过对其催化活性、热稳定性、有机溶剂稳定性和储存稳定性进行测评,结果显示,nOPH比固定前具有更好的催化活性和稳定性。通过体外细胞毒性测试和体内动物预实验,对将其用于制备有机磷化合物解毒制剂的潜力进行评估,结果显示,nOPH具有低细胞毒性和明显的体内安全性和有效性,可以进一步开发制备有机磷水解化合物的解毒制剂。
     2.在成功制备nOPH的基础上,把单蛋白纳米胶囊固定化酶技术和有机载体固定化酶技术相结合,设计制备了一种新型复合固定化酶体系,nOPH/细菌纤维素复合体系(nOPH/BC)。采用荧光素标记的方法证实了nOPH和BC膜间通过稳定的共价键连接实现固定。对nOPH/BC的催化活性、热稳定性、循环使用稳定性和储存稳定性进行测评。结果显示,在nOPH/BC复合体系中,经过双重固定化的有机磷水解酶,其热稳定性得到明显的提高,比仅采用纳米胶囊固定化酶的稳定性更高;可以有效地被多次回收和循环使用;在室温条件下,可以以湿润或者干燥的状态,长时间稳定的储存。这种基于单蛋白纳米胶囊技术,与BC载体相结合,成功制备了综合性能增强、重复循环使用性好的nOPH/BC复合体系,为开发敏感度高、稳定性好、实用性强的有机磷化合物体外检测和防护体系提供了新的可能。
     3.把单蛋白纳米胶囊固定化酶技术和无机载体固定化酶技术相结合,通过两步固定的方法,成功设计和制备了一种新型复合固定化酶体系,nOPH/介孔硅复合材料应用体系(nOPH/MS)。通过对游离酶和固定化酶进行DLS、TEM、红外光谱、以及氮气吸附-脱附等温测试(BET)和脱附孔径测试(BJH),对nOPH/MS复合体系的形貌和结构进行了表征。还对游离酶、nOPH以及nOPH/MS复合体系中酶的活性、热稳定性、有机溶剂稳定性和循环使用稳定性进行了评价。结果显示,以单蛋白纳米胶囊为构建单元,成功制备了具有生物活性的双重固定化酶体系。在该体系中,OPH的动力学参数Km和Kcat均升高,催化活性得到提升;其热稳定性和有机溶剂稳定性得到显著提高,比仅采用纳米胶囊固定化酶的稳定性更高;nOPH/MS复合体系可被有效地回收和循环使用。这种具有生物活性的双重固定化酶体系的成功制备,不仅增强了OPH的应用性,还为其他蛋白质和酶的固定化研究提供了新平台。
     4.在单蛋白纳米胶囊技术的平台上,引入原位沉淀聚合的方法,设计并制备了一类具有温度响应性能的蛋白纳米胶囊(nBSA)和辣根过氧化物酶纳米胶囊(nHRP)。采用基质辅助激光解吸电离飞行时间质谱仪(MALDI-TOF MS)、TEM和DLS对BSA的修饰度,nBSA的形貌和结构,及其温度响应性能进行了表征。并用HeLa细胞对nBSA的体外安全性进行了初步评价。结果表明,通过改变NAS/BSA的比例,可在一定范围内实现对蛋白丙烯酰化程度的控制;通过调节NIPAM/BSA的比例,成功制备了粒径大小在7.4~17nm之间的nBSA,实现了对nBSA粒径的调控;制备了响应温度在33~41℃之间的nBSA;当环境温度高于响应温度时,nBSA出现粒径剧增的响应现象,其粒径大小较响应前增大16~33倍;细胞毒性实验结果显示,nBSA具有较低的细胞毒性。对nHRP进行表征结果显示:粒径大小为13.7nm单分散的nHRP;其在环境温度高于33℃时出现响应变化,其粒径可从13.7nm剧增到250nm左右,且具有可逆的响应性能;nHRP与游离HRP相比,其热稳定性明显提高;50℃时,将nHRP高速离心后,固定化酶可被多次有效地分离和回收。这种基于温度响应型蛋白纳米胶囊平台,整合酶的精细化固定、高效分离和回收于一体的新技术,为制备更经济的固定化酶体系提供了新思路。
     综合以上,本论文采用单蛋白纳米胶囊技术,成功设计和制备了几种新型固定化酶体系,并对各体系的综合性能以及其在不同领域的应用潜力进行了评估和探讨,为其他固定化酶体系的研究提供了新参考。
Enzyme is a class of special and highly efficient biocatalysts. To better utilize its specialty, in the past century, great effects were made to develop approaches and methods to immobilize enzymes. Immobilized systems of many different types of enzymes in versatile forms were invented to improve enzymatic activity and stability performance. However, new problems came along as well, such as excessive activity loss during immobilization process and enzyme linkage from the substrate.
     Herein, in order to prepare robust immobilized enzyme systems with enhanced capability, the design, preparation and evaluation of several enzyme immobilization systems based on the single-protein nanocapsule platform were conducted as follows.
     1. Organophosphorus hydrolase was chosen as the target enzyme in this study. Organophosphorus hydrolase nanocapsules (denoted as nOPH) were synthesized by using a simple two-step process. The formation of nOPH was confirmed with various characterization techniques. The morphology and structure of nOPH were characterized by dynamic light scattering (DLS), transmission electron microscope (TEM), agarose gel electrophoresis, and infrared spectroscopy. The results show a successful formation of nOPH. Proposed polymer shell is indeed constructed around each enzyme molecule forming single-protein nanocapsules, a new immobilized OPH system. The catalytic performance and durability study show nOPH with enhanced acidity and significantly improved stability against various denaturation factors, including elevated temperature, freeze-thaw cycles, organic solvents and long-term storage. The nOPH cytotoxicity study clearly suggests that nOPH exhibits low cytotoxicity. Besides, a preliminary in-vivo study demonstrates the great potentials of using nOPH as therapeutic and prophylactic agents against OP intoxication. The capability to fabricate nOPH with significantly enhanced activity and stability provide a novel platform for various applications, exemplified in the study by the development of organophosphate detoxification agents, decontamination agents, and native building blocks toward the fabrication of OPH nanocomposites.
     2. A bioactive composite was designed and fabricated by using nOPH as building blocks, a combination of protein nanocapsule technique and existing organic carrier. A novel robust nOPH/bacterial cellulose composite (denoted as nOPH/BC) was successfully synthesized and characterized. The formation of nOPH/BC was confirmed with fluorescein-isothiocyanate-labelling test, indicating there is a covalent linkage between nOPH and BC foam. The catalytic activity, thermal stability, storage stability, and recyclability of the prepared nOPH/BC were tested and evaluated. Results show that in the nOPH/BC system, double immobilized enzyme not only demonstrates good residual activity, but also displays improved thermal stability over nOPH. Moreover, the nOPH/BC composite performs good storage at room temperature in both dry foam form and swelling pad form and presents excellent recyclability. The successful combination of single-protein nanocapsulation and bacterial cellulose carrier, not only results a robust and recyclable nOPH/BC composite, but also demonstrates its great potential to develop sensitive and stable organophosphate decontamination, detoxification and protection systems.
     3. Another bioactive composite was designed and fabricated by using nOPH as building blocks. This bioactive nOPH/mesoporous silica (denoted as nOPH/MS) composite is a double immobilized enzyme system, which was prepared according to above simple two-step approach. The successful construction of nOPH was confirmed with DLS, TEM and FTIR, while the fabrication of nOPH/MS composite was confirmed by above characterizations and additional BET and BJH analysis. The catalyst activity overall durability of native OPH, nOPH and nOPH/MS composite were tested and compared. The study shows a successful construction of nOPH/MS composite. Enzyme immobilization in nOPH/MS composite leads to an increase value of both Michaelis constant (Km) and turnover number (Kcat), indicating an enhancement of enzymatic performance. Besides, strengthened thermal and solvent stability were also observed in nOPH/MS over nOPH. Furthermore, an excellent recyclability and reusability of the composite with well retained enzymatic activity was also proved by tests. This robust nOPH/MS composite built up from nOPH demonstrates an overall enhanced capability and applicability. Studies not only demonstrate an effective route towards the synthesis of bioactive composites that are highly active, stable and recyclable, but also provide an approach to design and fabricate double immobilized systems for other enzymes.
     4. A new class of thermal-responsive protein nanocapsules, thermo-responsive BSA nanocapsules (denoted as nBSA) and horseradish peroxidase nanocapsules (denoted as nHRP) were prepared separately via in-situ precipitation polymerization. The modification degree, morphology, structure, and thermo-responsive property of prepared nanocapsules were characterized by MALDI-TOF MS, TEM and DLS, while resazurin-based cytotoxicity assay was applied to study its cytotoxicity. The results show that a series of uniformed monodispersed nBSA were prepared. By adjusting the NIPAM/BSA ratio, different sized nBSA were synthesized, which have reversible thermo-responsive properties and response to different temperatures. With the increase of the NIPAM/BSA ratio from2to6, the particle size of nBSA increases from7.4to17nm, and at the same time, the responsive temperature of nBSA decreases between41and33℃. For each sized nBSA, when the environmental temperature is above the responsive one, its particle size increases dramatically (between16to33times) comparing to its size at lower temperature. The low cytotoxicity of nBSA, indicating its potential to be safely applied in vivo. Similarly, the modification degree, morphology and structure, thermo-responsive property study of prepared nHRP was conducted. Besides, its catalytic activity and thermal stability results show a mono-dispersed nHRP was prepared successfully, with a responsive temperature at33℃and a reversible response property. It also exhibits significantly improved thermal stability, which accordingly can be applied to separate and recycle nHRP at50℃with a well-retained activity, indicating a new delicate way to immobilize, separate and recycle enzymes. This is of great interest to build economical immobilization systems.
     In summary, novel enzyme immobilization systems were designed and fabricated base on single-protein nanocapsulation technique. Comprehensive performance of each system was evaluated, potential applications in various fields were proposed accordingly. This work presents itself as a new reference to the study of effective immobilized enzyme systems.
引文
[1]Smith A.L., Oxford dictionary of biochemistry and molecular biology, Oxford:Oxford University Press,1997.
    [2]Reginald H.G., and Grisham C.M., Biochemistry, New York:London: Saunders College Publishing Harcourt College Publishers,1995.
    [3]郑穗平,郭勇,潘力,酶学,北京:科学出版社,2009.
    [4]曹竹安,陈坚,生物反应工程原理,北京:清华大学出版社,2011.
    [5]Senyuva H.Z., and Gilbert J., Immunoaffinity column clean-up techiniques in food analysis:a review, Journal of Chromatography B,2010,878(2),115-132.
    [6]Huang S.M., Zhao H., Lee J.I., Reynolds K., Zhang L., Temple R., and Lesko L.J., Therapeutic protein-drug interactions and implications for drug development, Clinical Pharmacology and Therapeutics,2010,87(4),497-503.
    [7]Brownlee C., Herman C., and Moore K.J., Enzyme Expands Protein Drug Remodeling, Journal of the American Chemical Society,2012,134(21),8729-8729.
    [8]Vuignier K., Schappler J., Veuthey J.L., Carrupt P.A., and Martel S., Drug-protein binding:a critical review of analytical tools, Analytical and bioanalytical chemistry,2010,398(1),53-66.
    [9]Porcelli N., and Judd S., Chemical cleaning of potable water membranes:a review, Separation and Purification Technology,2010,71(2),137-143.
    [10]Sanchez S., and Demain A.L., Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance, Organic Process Research and Development,2010,15(1),224-230.
    [11]Anderson B., Treatment of agriculture runoff with enzyme and vegetation removes pesticides and associated toxicity, Outlooks on Pest Management, 2011,22(5),223-225.
    [12]Acosta-Martinez V., Mikha M.M., Sistani K.R., Stahlman P.W., Benjamin J.G., Vigil M.F., and Erickson R., Multi-location study of soil enzyme activities as affected by types and rates of manure application and tillage practices, Agriculture,2011,1(1),4-21.
    [13]Sethunathan N., Yoshida T. A Flavobacterium sp. that degrade diazinon and parathion. Canadian Journal of Microbiology,1973,19,873-875.
    [14]Munnecke D. M. Enzymatic hydrolysis of organophosphate insecticides, a possible pesticide disposal method. Applied and Environmental Microbiology,1976, 32,7-13.
    [15]Kwak Y., Rhee I.K., and Shin J.H., Expression pattern of recombinant organophosphorus hydrolase from flavobacterium sp.ATCC 27551 in Escherichia coli, Applied Microbiology and Biotechnology,2012,1-9.
    [16]Pandey J.P., Gorla P., Manavathi B., and Siddavattam D., mRNA secondary structure modulates in the translation of organophophate hydrolase (OPH) in E.Coli, Molecular Biology Reports,2009,36(3),449-454.
    [17]Wang X., Gao K., Wu P., Qin G.X., Liu T., and Guo X.J., Molecular cloning of a phosphotriesterase-related protein gene of silkworm and its expression analysis in the silkworm infected with bombyx mori cytoplasmic polyhedrosis virus, Agricultural Sciences,2011,2(4),406-412.
    [18]Chen S.H., Geng P., Xiao Y., and Hu M.Y., Bioremediation of β-cypermethrin and 3-phenoxybenzaldehyde contanminated soils using Streptomyces aureus HP-S-01,Applied Microbiology and Biotechnology,2012,94(2),505-515.
    [19]Chen S., Lai K., Li Y, Hu M., Zhang Y, and Zeng Y, Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01, Applied Microbiology and Biotechnology,2011, 90(4),1471-1483.
    [20]Caldwell S.R., Newcomb J.R., Schlecht K.A., Raushel F.M., Limits of diffusion in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta. Biochemistry,1991,30,7438-7444.
    [21]Omburo G.A., Kuo J.M., Mullins L.S., and Raushel F.M. Characterization of the zinc binding site of bacterial phosphotriesterase. The Journal of Biological Chemistry,1992,267,13278-13283.
    [22]Dumas D.P., Caldwell S.R., and Wild J.R. Biological detoxification of organophosphorus neurotoxins, Pennsylvania:Technomic Publishing Company,1998.
    [23]Omburo G.A., Kuo J.M., Mullins L.S., Raushel F.M., Journal of Biological Chemistry,1992,267,13278.
    [24]朱琦,有机磷水解酶纳米凝胶生物材料的研制和应用,上海交通大学,2011年.
    [25]Sergeeva V.S., Efrmenko E.N., Kazankov G.M., Varfolomeyev S.D., Double effect of organic amines (activation and inhibition) on the phosphotriesterase. Journal of Molecular Catalysis B:Enzymatic,2000,10,571-576.
    [26]Azevedo A.M., Martins V.C., Prazeres D.M.F., Vojinovic V., Cabral J.M.S., and Fonseca L.P., Horseradish peroxidase:a valuable tool in biotechnology, Biotechnology Annual Review,2003,9,199-247.
    [27]Veitch N.C., Horseradish peroxidase:a modern view of a classic enzyme, Phytochemistry,2004,65(3),249-259.
    [28]Lin T.Y., Wu C.H., and Brennan J.D., Entrapment of horseradish peroxidase in sugar-modified silica monoliths:Toward the development of a biocatalytic sensor, Biosensors and Bioelectronnics,2007,22(9),1861-1867.
    [29]Karim Z., Adnan R., and Husain Q., A P-cyclodextrin-chitosan complex as the immobilization matrix for horseradish peroxidase and its application for the removal of azo dyes from textile effluent, International Biodeterioration and Biodegradation,2012,72,10-17.
    [30]Greco O., Rossiter S., Kanthou C., Folkes L.K., Wardman P., Tozer G.M., and Dachs G.U., Horseradish peroxidase-mediated gene therapy:choice of prodrugs in oxic and anoxic tumor conditions1, Molecuar Cancer Therapeutics,2001,1(2), 151-160.
    [31]Campbell M., Humphries M.M, and Humphries P., Barrier modulation in drug delivery to the retina, Retinal Degeneration, Humana Press.2013,371-380.
    [32]Josephy P.D., Eling T., and Mason R.P., The horseradish peroxidase-catalyzed oxidation of 3,5,3,5'-tetramethylbenzidine, The Journal of Biological Chemistry,257(7),3669-3675.
    [33]Knowles J.R., Enzyme catalysis:not different, just better, Nature,1991,350, 121-124.
    [34]Jiu H., and Huang X., Preparation of porous titania sol-gel matrix for immobilization of horseradish peroxidase by a vapor deposition method, Analytical Chemistry,2002,74(14),3579-3583.
    [35]Lane S.M., Kuang Z.F., Yom J., Arifuzzaman S., Genzer J., Farmer B., Naik R., and Vaia R.A., Poly(2-hydroxyethyl methacrylate) for enzyme immobilization: impact on activity and stability of horseradish peroxidase, Biomacromolecules,2011, 12(5),1822-1830.
    [36]Wu X.J., Choi M.M.F., Spongiform Immobilization Architecture of Ionotropy Polymer Hydrogel Coentrapping Alcohol Oxidase and Horseradish Peroxidase with Octadecylsilica for Optical Biosensing Alcohol in Organic Solvent, Analytical Chemistry,2004,76 (15),4279-4285.
    [37]Luo X.L., Xu J.J., Zhang Q., Yang G.J., and Chen H.Y., Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly, Biosensors and Bioelectronics,2005,21(1),190-196.
    [38]Zhang F, Zheng B., Zhang J.L., Huang X.L., Liu H., Guo S.W., and Zhang J.Y., Horseradish peroxidase immobilized on grapheme oxide:physical properties and applications in phenolic compound removal, Journal of physical chemistry C,2010, 114(18),8469-8473.
    [39]Chen W., Richins R.D., Mulchandani P., Kaneva I., and Mulchandani A., Biodegradation of organophosphorus nerve agents by surface expressed organophosphorus hydrolase, Enzymes in Action, NATO Science Partnership Sub-Seriesl,2000,33,211-221.
    [40]Benning, M., Hong, S., Raushel, F., and Holden, H., The binding of substrate analogs to phosphotriesterase, Journal of Biological Chemistry,2000,275, 30556-30560.
    [41]Luckarift R.H., Spain C.J., Naik R.R., and Stone O.M., Enzyme immobilization in a biomimetic silica support, Nature Biotechnology,2004,22, 211-213.
    [42]Wang Y.J., and Frank C., Mesoporus silica spheres as supports for enzyme immobilization and encapsulation, Chemistry of Materials,2005,5,953-961.
    [43]Mulchandani A., Mulchandani P., Chen W., Wang J., and Chen L., Amperometric thick-film strip electrodes for monitoring organophoshate nerve agents based on immobilized organophosphorus hydrolase, Analytical Chemistry,1999, 71(1),2246-2249.
    [44]Cerdobbel A., Winter K.D., Desmet T., and Soetaert W., Sucrose phosphorylase as cross-linked enzyme aggregate:improved thermal stability for industrial applications, Biotechnology Journal,2010,5(11),1192-1197.
    [45]Lu J., Deng L., Nie K., Wang F., and Tan T., Stability of immobilized candida sp.99-125 lipase for biodiesel production, Chemical Engineering and Technology,2012,35(12),2120-2124.
    [46]Kirk O., Borchert T.V., Fuglsang C.C., Industrial enzyme applications, Current Opinion on Biotechnology,2002,13(4),345-351.
    [47]David A.E., Wang N.S., Yang V.C., and Yang A.J., Chemically surface modified gel (CSMG):an excellent enzyme-immobilization matrix for industrial processes, Journal of Biotechnology,2006,125(3),395-407.
    [48]曹林秋,载体固定化酶-原理、应用和设计,北京:化学工业出版社,2008.
    [49]Katzbauer B., Narodoslawsky M., and Moser A., Classification system for immobilization techniques, Bioprocess Engineering,1995,12,173-179.
    [50]Liese A., and Hilterhaus L., Evaluation of immobilized enzymes for industrial applications, Chemical Society Reviews,2013, DOI:10.1039/c3cs35511j.
    [51]Ispas C., Sokolov I., and Andreescu S., Enzyme-functionalized mesoporous silica for bioanalytical applications, Analytical and Bioanalytical Chemistry,2009, 393(2),543-554.
    [53]IUPAC Manual of symbols and terminology, Pure and Applied Chemistry, 1972,31,578-680.
    [53]Wang Y.J., and Caruso F., Mesoporous silica spheres as supports for enzyme immobilization and encapsulation, Chemistry of Materials,2005,17(5),953-961.
    [54]Messing R.A., Potential applications of molecular inclusion to beer processing, Brewers Digest,1971,46,60-63.
    [55]Chouyyok W., Panpranot J., Thanachayanant C., and Prichanont S., Effects of pH and pore characters of mesoporous silicas on horseradish peroxidase immobilization, Journal of Molecular Catalysis,2009,56(4),246-252.
    [56]宋锡瑾,王杰,分子筛固定氨基酰化酶I的研究,高校化学工程学报,2004,5(18),617-620.
    [57]Yuan P.X., Zhou Y., Chai Y.Q., and Ju H.X., Dendritic silver/silicon dioxide nanocomposite modified electrodes for electrochemical sensing of hydrogen peroxide, Electroanalysis,2008,20(17),1839-1844.
    [58]Yang S., Jia W.Z., Qian Q.Y., Zhou Y.G., and Xia X.H., Simple approach for efficient encapsulation of enzyme in silica matrix with retained bioactivity, Analytical Chemistry,2009,81(9),3478-3484.
    [59]胡燚,刘维明,邹彬,唐苏苏,黄和,介孔材料固定化酶,化学进展,2010,22(08),1656-1664.
    [60]Cao Z.X., Zhang J., Zeng J.L., Sun L.X., Xu F., Cao Z., Zhang L., and Yang D.W., Mesoporous silica hollow sphere (MSHS) for the bioelectrochemistry of horseradish peroxidase, Talanta,2009,77(3),943-947.
    [61]Volodkin D.V., Larionova N.I., and Sukhorukov G.B., Protein encapsulation via porous CaCO3 microparticles templating, Biomacromolecular,2004,5(5), 1962-1972.
    [62]Rosu R., Iwasaki Y., Shimizu N., Doisaki N., and Yamane T., Intensification of lipase performance in a transesterification reaction by immobilization on CaCO3 powder, Journal of Biotechnology,1998,66(1),51-59.
    [63]Ghamgui H., Miled N., Karra-Chaabouni M., Gargouri Y., Immobilization studies and biochemical properties of free and immobilized rhizopus oryzae lipase onto CaCO3:a comparative study, Biochem Eng J,2007,37(1),34-41.
    [64]黄岩,党海春,汪秀丽,碳酸钙固定化猪胰脂肪酶的制备及活性研究,化学研究与应用,2011,23(11),1550-1553.
    [65]丁兆堂,绿茶多酚纳米碳酸钙固定化酶定向转化及其产物的生物学活性研究,山东农业大学,2005年.
    [66]聂志强,候红萍,壳聚糖/碳酸钙杂化膜固定化糖化酶的研究,酿酒科技,2009,9(183),26-28.
    [67]Lu Z., Zhang J., Ma Y.Z., Song S.Y., and Gu W., Biomimetic mineralization of calcium carbonate/carboxymethlcellulose microspheres for lysozyme immobilization. Materials Science and Engineering:C,2012,32(7),1982-1987.
    [68]Li F., Feng Y., Wang Z., Yang L., Zhou L., Direct electrochemistry of horseradish peroxidase immobilized on the layered calcium carbonate-gold nanoparticles inorganic hybrid composite, Biosensors and Bioelectronics,2010,25, 2244-2248.
    [69]Peng J., Feng L.N., Zhang K., Li X.H., Jiang L.P., and Zhu J.J., Calcium carbonate-gold nanocluster hybrid spheres:synthesis and versatile application in immunoassays, Chemistry-A European Journal,2012,18(17),5261-5268.
    [70]Tosa T., Mori T., Fuse N., and Chibata I., Studies on continuous enzyme reactions Part V Kinetics and industrial application of aminoacylase column for continuous optical resolution of acyl-dl amino acids, Biotechnology and Bioengineering,1967,9,603-615.
    [71]Chaabouni M.K., Bouaziz I., Boufi S., Rego A.M.B., and Gargouri Y., Physical immobilization of rhizopus oryae lipase onto cellulose substrate:activity and stability studies, Colloids and Surfaces B:Biointerfaces,2008,66(2),168-177.
    [72]Risio S.D., and Yan N., Adsorption and inactivation behavior of horseradish peroxidase on cellylosic fiber surfaces, Journal of Colloid and Interface Science,2009, 338,410-419.
    [73]Richins R.D., Mulchandani A., and Chen W., Expression, immobilization, and enzymatic characterization of cellulose-binding domain-organophosphorus hydrolase fusion enzymes, Biotechnology and Bioengineering,2000,69(6),591-596.
    [74]Mansee A.H., Chen W., and Mulchandani A., Detoxification of the organophosphate nerve agent coumaphos using organophosphorus hydrolase immobilized on cellulose materials, Journal of Industrial Microbiology and Biotehcnology,2005,32(11-12),554-560.
    [75]钱军民,李旭祥,纤维素固定化葡萄糖氧化酶的研究,西安交通大学学报,2001,25(4),416-420.
    [76]Edwards J.V., Prevost N.T., Condon B., French A., and Wu Q.L., Immobilization of lysozyme-cellulose amide-linked conjugates on cellulose Ⅰ and Ⅱ cotton nanocrystalline preparations, Cellulose,2012,19(2),495-506.
    [77]Lam E., Male K.B., Chong J.H., Leung A.C.W., and Luong J.H.T., Application of functionalized and nanoparticle-modified nanocrystalline cellulose, Trends in Biotechnology,2012,30(5),283-290.
    [78]Incani V., Danumah C., and Boluk Y., Nanocomposites of nanocrystalline cellulose for enzyme immobilization, Cellulose,2013,20(1),191-200.
    [79]Iguchi M., Yamanaka S., and Budhiono A., Bacterial cellulose-a masterpiece of nature's arts, Journal of Materials Science,2000,35(2),261-270.
    [80]Wu S.C., and Lia Y.K., Application of bacterial cellulose pellets in enzyme immobilization, Journal of Molecular Catalysis B:Enzymatic,2008,54,103-108.
    [81]邹敏,细菌纤维素的制备及其应用于酶的固定化研究,东华大学,2010年.
    [82]Kean T., and Thanou M., Biodegradation, biodistribution and toxicity of chitosan, Advanced Drug Delivery Reviews,2010,62(1),3-11.
    [83]Dash M., Chiellini F., Ottenbrite R.M., and Chiellini E., Chitosan-a versatile semi-synthetic polymer in biomedical applications, Progress in Polymer Science, 2011,36,981-1014.
    [84]Jayakumar R., Menon D., Manzoor K., Nair S.V., and Tamura H., Biomedical applications of chitin and chitosan based nanomaterials-a short review, Carbohydrate Polymers,2010,82(2),227-232.
    [85]Amidi M., Mastrobattista E., Jiskoot W., and Hennink W.E., Chitosan-based delivery systems for protein therapeutic and antigens, Advanced Drug Delivery Reviews,2010,62(1),59-82.
    [86]Zhang B., Wang D.F., Li, H.Y., Xu Y., and Zhang L., Preparation and properties of chitosan-soybean trypsin inhibitor blend film with anti-aspergillus flavus activity, Industrial Crops and Products,2009,29(2),541-548.
    [87]Adriano W.S., Mendonca D.B., Rodrigues D.S., Mammarella E.J., and Giordano R.L.C., Improving the properties of chitosan as a support for the covalent multipoint immobilization of chymotrypsin, Biomacromolecules,2008,9(8), 2170-2179.
    [88]Wang R., Xia B., Li B.J., Peng S.L., Ding L.S., and Zhang S., Semi-permeable nanocapsules of konjac glucomannan-chitosan for enzyme immobilization, International Journal of Pharmaceutics,364(1),102-107.
    [89]蔡敬民,吴克,张洁,王涛,刘斌,潘仁瑞,脱乙酰壳聚糖固定化宇佐美曲霉木聚糖酶及固定化酶的性质和应用,中国生物化学与分子生物学报,2002,18(5),548-552.
    [90]Hoven V.P., Tangpasuthadol V., Angkitpaiboon Y., Vallapa N., and Kiatkamjornwong S., Surface-charged chitosan:preparation and protein adsorption, Carbohydrate Polymers,2007,68,44-53.
    [91]Zuza M.G., Obradovic B.M., and Knezevic-Jugovic Z.D., Hydrolysis of penicillin G by penicillin G acrylase immobilized on chitosan microbeads in different reactor systems, Chemical Engineering Technology,2011,34(10),1706-1714.
    [92]Jin X., Xi F., Lv D., Wu Q., and Lin X., The effect of the chitosan membrane properties on the enzyme adsorption and performance for the construction of horseradish peroxidase biosensors, Carbohydrate Polymers,2011,85(4),786-791.
    [93]Zhang B., Wang D.F., Li H.Y., Xu Y., Zhang Li, Preparation and properties of chitosan-soybean trypsin inhibitor blend film with anti-Aspergillus flavus activity, Industrial Crops and Products,2009,29(2-3),541-548.
    [94]张宾,汪东风,邓尚贵,林慧敏,唐艳,壳聚糖-胰蛋白酶抑制剂复合可实用性膜的制备及抗黄曲霉性,农业工程学报,2012,28(4),287-292.
    [95]Singh A.N., Singh S., Suthar N., and Dubey V.K., Glutaraldehyde-activated chitosan matrix for immobilization of a novel cysteine protease, procerain B., Journal of Agricultural and Food Chemistry,2011,59,6256-6262.
    [96]张延红,万海清,甲醛改性壳聚糖固定酪氨酸酶的工艺研究,西南科技大学学报,2007,22(1),25-29.
    [97]Marty J.J., Oppenheim R.C., and Speiser P., Nanoparticels-a new colloidal drug delivery system, Pharmaceutica Acta Helvetiae,1978,53(1),17-23.
    [98]Cantrill S., Nanocapsules:an inside job, Nature Nanotechnology,2007, doi:10.1038/nnano.2007.296.
    [99]Aboubakar M., Puisieux F., Couvreur P., Deyme M., and Vauthier C., Study of the mechanism of insulin encapsulation in poly(isobutylcyanoacrylate) nanocapsules obtained by interfacial polymerization. Journal of Biomedical Materials Research,1999,47(4):568-576.
    [100]Leroux J.C., Injectable nanocarriers for biodetoxification, Nature Nanotechnology,2007,2,679-684.
    [101]Wang Y., and Chang T.M.S., Nanobiotechnological nanocapsules containing polyhemoglobin-tyrosinase:effects on murine B16F10 melanoma cell proliferation and attachment, Journal of Skin Cancer,2012, doi:10.1155/2012/673291.
    [102]Peer D., Karp J.M., Hong S., Farokhzad O.C., Margalit R., and Langer R., Nanocarriers as an emerging platform for Cancer therapy, Nature Nanotechnology, 2007,2,751-760.
    [103]Brigger I., Dubernet C., and Couvreur P., Nanoparticles in cancer therapy and diagnosis, Advanced Drug Delivery Reviews,2012,64,24-36.
    [104]Kren B.T., Unger G.M., Sjeklocha L., Trossen A.A., Korman V., Diethelm-Okita B.M., Reding M.T., and Steer C.J., Nanocapsule-delivered Sleeping Beauty mediates therapeutic Factor VIII expression in liver sinusoidal endothelial cells of hemophilia a mice. The Journal of Clinical Investigation 2009,119(7), 2086-2099.
    [105]Kim E., Kim D., Jung H., Lee J., Paul S., Selvapalam N., Yang Y, Lim N., Park C.G., and Kim K., Facile, template-free synthesis of stimuli-responsive polymer nanocapsules for targeted drug delivery.2010,49(26),4405-4408.
    [106]Yan M., Ge J., Liu Z., and Ouyang P.K., Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability, Journal of the American Chemical Society,2006,128,11008-11009.
    [107]Yan M., Ge J., Dong W.G., Liu Z., and Ouyang P.K., Preparation and characterization of a temperature-sensitive sulfobetaine polymer-trypsin conjugate, Biochemical Engineering Journal,2006,30,48-54.
    [108]Ge J., Lu D.N., Wang J., Yan M., Lu Y.F., and Liu Z., Molecular fundamentals of enzyme nanogels, Journal of Physical Chemistry B.2008,112, 14319-14324.
    [109]Yan M., Du J.J., Gu Z., Liang M., Hu Y.F., Zhang W.J., Priceman S., Wu L., Zhou Z.H., Liu Z., Segura T., Tang Y, and Lu Y.F.. A novel intracellular protein delivery platform based on single-protein nanocapsules, Nature Nanotechnology, 2010,5,48-53.
    [110]Gu Z., Biswas A., Zhao M., and Tang Y, Tailoring nanocarriers for intracellular protein delivery, Chemical Society Reviews,2011,40(7),3638-3655.
    [111]Du J.J., Yu C.M., Pan D.C., Li J.M., Chen W., Yan M., Segura T., and Lu Y.F., Quantum-dot decorated robust transductable bioluminescent nanocapsules, Journal of the American Chemical Society,2010,132,12780-12781.
    [112]Gu Z., Yan M., Hu B.L., Joo K., Biswas A., Huang Y, Lu Y.F., Wang P., and Tang Y, Protein nanocapsule waved with enzymatically degradable polymeric network, Nano Letters,2009,9(12),4533-4538.
    [114]Wen J., Anderson S.M., Du J.J., Yan M., Wang J., Shen M.Q., Lu Y.F., Segura T., Controlled protein delivery based on enzyme-responsive nanocapsules, Advanced Materials,2011,23,4549-4553.
    [115]Liu Y., Du J.J., Yan M., Lau M.Y., Hu J., Han H., Yang O.O., Liang S., Wei W., Wang H., Li J.M., Zhu X.Y, Shi L.Q., Chen W., Ji C., Lu Y.F., Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication, Nature Nanotechnology,2013,8,187-192.
    [116]Cao L., Immobilized enzymes:science or art? Current Opinion in Chemical Biology,2005,9,217-226.
    [1]Donarski W.J., Dumans D.P., Heitmeyer D.P., Lewis V.E., and Raushel F.M., Structure-activity relationships in the hydrolysis of substrates by the phosphotriesterase from pseudomonas diminuta, Biochemistry,1989,28,4650-4655.
    [2]Purves D., Augustine G.A., Fitzpatrick D., Hall W., LaMantia A.S., McNamara J.O., and White L., Neuroscience, Sunderland, MA:Sinauer Associates, 2008,4th edition.
    [3]Russell A.J., Berberich J.A., Drevon G.F., and Koepsel R.R., Biomaterials for mediation of chemical and biological warfare agents, Annual Review of Biomedical Engineering,2003,5,1-27.
    [4]Dumas D.P., Caldwell S.R., Wild J.R., and Raushel F.M., Purification and properties of the phosphotriesterase from pseudomonas, Journal of Biological Chemistry,1989,264,19659-19665.
    [5]Yang H., Carr P.D., McLoughlin S.Y., Liu J.W., Home I., Qiu X., Jeffries C. M., Russell R.J., Oakeshott J.G., and Ollis D.L., Evolution of an organophophate-degrading enzyme:a comparison of natural and directed evolution, Protein Engineering Design and Selection,2003,16,135-145.
    [6]Hill C.M., Li W.S., Thoden J.B., Holden H.M., and Raushel F.M., Enhanced degradation of chemical warfare agents through molecular engineering of the phosphotriesterase active site, Journal of the American Chemical Society,2003, 125(30),8990-8991.
    [7]Cai J., Liu S.L., Feng J., Kimura S., Wada M., Kuga S., and Zhang L., Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel, Angewandte Chemie International Edition,2012,51(9),2076-2079.
    [8]LeJeune K.E., and Russell A.J., Covalent binding of a nerve agent hydrolyzing enzyme within polyurethane foams, Biotechnology and Bioengineering, 1996,51(4),450-457.
    [9]Andreopoulos F.M., Roberts M.J., Bentley M.D., Harris J.M., Beckman E.J., and Russell A.J., Photoimmobilization of organophosphorus hydrolase within a PEG-based hydrogel, Biotechnology and Bioengineering,1999,65(5),579-588.
    [10]Lee Y.W., Stanish I., Rastogi V., Cheng T.C., and Singh A., Sustained enzyme activity of organophosphorus hydrolase in polymer encased multilayer assemblies, Langmuir,2003,19(4),1330-1336.
    [11]Ramanathan M., Luckarift H. R., Sarsenova A., Wild J.R., Ramanculov E.K., Olsen E.V., and Simonian A.L., Lysozyme-mediated formation of protein-silica nano-composites for biosensing applications, Colloids and Surfaces B:Biointerfaces, 2009,73(1),58-64.
    [12]Mulchandani A., Chen W., Mulchandani P., Wang J., and Rogers K.R., Biosensors for direct determination of organophosphate pesticides, Biosensors and Bioelectronics,2001,16(4-5),225-230.
    [13]Patil A.J., Muthusamy E., and Mann S., Synthesis and self-assembly of organocaly-wrapped biomolecules, Angewandte Chemie International Edition,2004, 43(37),4928-4933.
    [14]Pedrosa V.A., Paliwal S., Balasubramanian S., Nepal D., Davis V., Wild J., Ramanculov E., and Simonian A., Enhanced stability of enzyme organophosphate hydrolase interface on the carbon nanotubes, Colloids and Surfaces B:Biointerfaces, 2010,77(1),69-74.
    [15]Omburo G.A., Kuo J.M., Mullins L.S., and Raushel F.M., Characterization of the zinc binding site of bacterial phosphotriesterase, Journal of Biological Chemistry,1992,267:13278-13283.
    [16]Smith P.K., Krohn R.I., and Germanson G.T., Protein determination using bichinconic acid, Analytical Biochemistry,1985,150(1),76-85.
    [17]Petrikovics I., Papahadjopoulos D., Hong K., Cheng T.C., Baskin S.I., Jiang J., Jaszberenyi J.C., Logue B.A., Szilasi M., McGuinn W.D., and Way J.L., Comparing therapeutic and prophylactic protection against the lethal effect of paraoxon, Toxicological Sciences,2004,77(2),258-262.
    [18]Benning M.M., Kuo J.M., Raushel F.M., and Holden H.M., Three-dimensional structure of phosphotriesterase:an enzyme capable of detoxifying organophosphate nerve agents, Biochemistry,1994,33,15001-15007.
    [19]Yan M, Du J.J., Gu Z., Liang M., Hu Y.F., Zhang W.J., Priceman S., Wu L., Zhou Z.H., Liu Z., Segura T., Tang Y., and Lu Y.F.. A novel intracellular protein delivery platform based on single-protein nanocapsules, Nature Nanotechnology, 2010,5,48-53.
    [20]Smith B., Infrared spectral interpretation:a systematic approach, CRC Press LLC, Florida, United States of America.1999,198.
    [21]Sharma R.K., Das S., and Maitra A., Enzymes in the cavity of hollow silica nanoparticles, Journal of Colloid and Interface Science 2005,284(1),358-361.
    [22]Yan M., Ge J., Liu Z. and Ouyang P.K., Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability, Journal of the American Chemical Society,2006,128(34),11008-11009.
    [23]Horta A., Molina M.J., Gomez-Anton M.R., and Pierola I.F., The pH inside a swollen polyelectrolyte gel:poly (N-vinylimidazole), The Journal of Physical Chemistry B,2008,112(33),10123-10129.
    [24]Gorman L.A.S., and Dordick J.S., Organic solvents strip water off enzymes, Biotechnology and Bioengineering,1992,39(4),392-397.
    [1]Butler L.G., Enzyme immobilization by adsorption on hydrophobic derivatives of cellulose and other hydrophilic materials, Archives of Biochemistry and Biophysics,1975,171(2),645-650.
    [2]Hirsh S.L., Bilek M.M.M., Nosworthy N.J., Kondyurin A., Remedios C.G., and McKenzie D.R., A comparison of covalent immobilization and physical adsorption of a cellulose enzyme mixture, Langmuir,2010,26(17),14380-4388.
    [3]Bagheri M., Rodriguez H., Swatloski P.R., Spear K.S., Daly T.D., and Rogers D.R., Ionic liquid-based preparation of cellulose-dendrimer films as solid supports for enzyme immobilization, Biomacrmolecules,2008,9(1) 381-387.
    [4]Zhang Y.C., and Ji C., Electro-induced covalent cross-kinking of chitosan and formation of chitosan hydrogel films:its application as an enzyme immobilization matrix for use in a phenol sensor, Analytical Chemistry,2010,82(12),5275-5281.
    [5]赵昆,张良,沈才洪,胡承,细菌纤维素微球固定化淀粉酶的研究,四川大学学报(自然科学版),2011,48(1),213-218.
    [6]Lguchi M., Yamanaka S., and Budhiono A., Bacterial cellulose-a masterpiece of nature's arts, Journal of Materials Science,2000,35(2),261-270.
    [7]Jayakumar R., Prabaharan M., Nair S.V., Tokura S., Tamura H., and Selvamurugan N. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications, Progress in Materials Science,2010,56(7), 675-709.
    [8]Maneerung T., Tokura S., and Rujiravanit R., Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing, Carbohydrate Polymers,2008,71(1),43-51.
    [9]Kato T, Machida H, Tabuchi M. Application of bacterial bellulose to biomedical and cosmetic ingredient. Cellulose Communications,2007,14(4),154.
    [10]Nogi M., and Yano H., Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry, Advanced Materials,2008,20(10),1849-1852.
    [11]Krajewska B., Application of chitin-and chitosan-based materials for enzyme immobilizations:a review, Enzyme and Microbial Technology,2004,35(2), 126-139.
    [12]Sheldon R.A., Enzyme immobilization:the quest for optimum performance, Advanced Synthesis and Catalysis,2007,349(8-9),1289-1307.
    [13]曹黎明,陈欢林,酶的定向固定化方法及其对酶生物活性的影响,中国生物工程杂志,2003,23(1),22-29.
    [1]Luckarift H.R., Spain J.C., Naik R.R., and Stone M.O., Enzyme immobilization in a biomimetic silica support, Nature Biotechnology,2004,22, 211-213.
    [2]Wang Y.J., and Caruso F., Mesoporous silica spheres as supports for enzyme immobilization and encapsulation, Chemistry of Materials,2005,17(5),953-961.
    [3]Schuleit M, and Luisi P.L., Enzyme immobilization in silica-hardened organogels, Biotechnology and Bioengineering,2001,72(2),249-253.
    [4]Kim J.K., Park J.K., and Kim H.K., Synthesis and characterization of nanoporous silica support for enzyme immobilization, Colloids and Surface A: Physicochemical and Engineering Aspects,2004,241(1-3):113-117.
    [5]Boubbou K.E., Schofield D.A., and Landry C.C., Enhanced enzymatic activity of OPH in ammonium-functionalized mesoporous silica:surface modification and pore effects, Journal of Physical Chemistry C,2012,116(33),17501-17506.
    [6]Yan M., Du J.J., Gu Z., Liang M., Hu Y.F., Zhang W.J., Priceman S., Wu L.L., Zhou Z.H., Liu Z., Segura T., Tang Y., and Lu Y.F., A novel intracellular protein delivery platform based on single-protein nanocapsules, Nature Nanotechnology, 2010,5,49-53.
    [7]Benning M.M., Kuo J.M., Raushel F.M., and Holden H.M., Three-dimensional structure of phosphotriesterase:an enzyme capable of detoxifying organophosphate never agents, Biochemistry,1994,33(50),15001-15007.
    [8]Han Yu, Lee S.S., and Ying J.Y., Pressure-driven enzyme entrAPMent in siliceous mesocellular foam, Chemistry of Materials,2006,18(3),643-649.
    [9]Zhu Y.F., Shen W.H., Dong X.P., and Shi J. L., Immobilization of hemoglobin on stable mesoporous multilamellar silica vesicles and their activity and stability, Journal of Materials Research,2005,20(10),2682-2690.
    [10]Chen B.W., Lei C.H., Shin Y.S., and Liu J. Probing mechanisms for enzymatic activity enhancement of organophosphorus hydrolase in functionalized mesoporous silica, Biochemical and Biophysical Research Communications,2009, 390(4),1177-1181.
    [11]Smith B., Infrared spectral interpretation:a systematic approach, CRC Press LLC, Boca Raton, FLUSA,1999,198.
    [12]Ugwumba I.N., Ozawa K., Xu Z.Q., Ely F., Foo J.L., Herlt A.J., Coppin C., Brown S., Taylor M.C.; Ollis, D. L., Mander L.N., Schenk G., Dixon, N.E., Otting, G., Oakeshott J. G., and Jackson C. J., Improving a natural enzyme activity through incorporation of unnatural amino acids, Journal of the American Chemical Society, 2011,133(2),326-333.
    [13]Yan M., Ge J., Liu Z., and Ouyang P.K., Encapsulation of single enzyme in nanogel with enchanced biocatalytic activity and stability, Journal of the American Chemical Society,2006,128,11008-11009.
    [14]Gorman L.A.S., and Dordick J.S., Organic solvents strip water off enzymes, Biotechnology and Bioengineering,1992,39(4),392-397.
    [1]Heskins M., and Guillet J.E., Solution properties of poly(N-isopropylacrylamide), Journal of Macromolecular Science:Part A-Chemistry, 1968,2(8),1441-1455.
    [2]Tiktopulo E.I., Bychkova V.E., Ricka J., and Ptitsyn O.B., Cooperativity of the coil-globule transition in a homopolymer:microcalorimetric study of poly(N-isopropylacrylamide), Macromolecules,1994,27,2879-2882.
    [3]Schild H.G., Poly(N-isopropylacrylamide):experiment, theory and application, Progress in Polymer Science,1992,17,163-249.
    [4]Ghugare S.V., Mozetic P., and Paradossi G., Temperature-sensitive poly(vinyl alcohol)/poly(methacrylate-co-N-isopropyl acrylamide) microgels for doxorubicin delivery, Biomacromolecules,2009,10(6),1589-1596.
    [5]罗巧芳,关英,张拥军,铅离子敏感N-异丙基丙烯酰胺共聚物微凝胶的制备,高分子学报,2010,6,793-796.
    [6]费正东,万灵书,钟明强,徐志康,丙烯腈-N-异丙基丙烯酰胺接枝共聚物的合成及其对聚丙烯腈分离膜的改性,高分子学报,2012,4,404-409.
    [7]Zhang K., and Wu X.Y., Temperature and pH-responsive polymeric composite membranes for controlled delivery of proteins and peptides, Biomaterials, 2004,25(22).5281-5291.
    [8]Zhu X., DeGraaf J., Winnik F.M., and Leckband D., pH-dependent mucoadhesion of a poly (N-isopropylacrylamide) copolymer reveals design rules for drug delivery, Langmuir,2004,20(24),10648-10656.
    [9]Annaka M., Matsuura T., Kasai M., Nakahira T., Hara Y., and Okano T., Preparation of comb-type N-isopropylacrylamide hydrogel beads and their application for size-selective separation media, Biomacromolecules,2003,4(2),395-403.
    [10]刘峰,卓仁禧,温度及pH敏感水凝胶的合成及其在生物大分子控制释放中的应用,高分子材料科学与工程,1998,14(2),54-57.
    [11]Shim W.S., Kim J.H., Kim K., Kim Y.S., Park R.W., Kim I.S., Kwon I.C., and Lee D.S., pH-and temperature-sensitive, injectable, biodegradable block copolymer hydrogels as carriers for paclitaxel, International Journal of Pharmaceutics, 2007,331(1),11-18.
    [12]张幼维,江明,赵炯心,汪佳烨,原位聚合法制备具有温敏PNIPAM壳的核-壳结构,高分子学报,2007,(2),136-142.
    [13]Smith M.H., and Lyon L.A., Tunable encapsulation of proteins within charged microgels, Macromolecules,2011,44(20),8154-8160.
    [14]Johansson C., Gernandt J., Bradley M., Vincent B., and Hansson P., Interaction between lysozyme and colloidal poly(NIPAM-co-acrylic acid) microgels, Journal of Colloid and Interface Science,2010,347,241-251.
    [15]Cavalieri F., Postma A., Lee L., and Caruso F., Assembly and functionalization of DNA-polymer microcapsules, ACS Nano,2009,3(1),234-240.
    [16]Zhu Y., Tong W.J., Gao C.Y., and Mohwald H., Fabirication of bovine serum albumin microcapsules by desolvation and destroyable cross-linking, Journal of Materials Chemistry,2008,18,1153-1158.
    [17]Xie L.L., Tong W.J., Yu D.H., Xu J.Q., Li J., and Gao C.Y., Bovine serum albumin nanoparticles modified with multilayers and aptamers for pH-responsive and targeted anti-cancer drug delivery, Journal of Materials Chemistry,2012,22, 6053-6060.
    [18]Xie L.L., Tong W.J., Xu J.Q., and Gao C.Y., Multilayers and poly(allylamine hydrochloride)-graft-poly(ethylene glycol) modified bovine serum albumin nanoparticles:improved stability and pH-responsive drug delivery, Chinese Journal of Polymer Science,2012,30,719-726.
    [19]Yan M., Du J.J., Gu Z., Liang M., Hu Y.F., Zhang W.J., Priceman S., Wu L., Zhou Z.H., Liu Z., Segura T., Tang Y, and Lu Y.F.. A novel intracellular protein delivery platform based on single-protein nanocapsules, Nature Nanotechnology, 2010,5,48-53.
    [20]Schmaljohann D., Thermo-and pH-responsive polymers in drug delivery, Advanced Drug Delivery Reviews.2006,58 (15),1655-1670.
    [21]Schomberg D., Salzmann M., and Stephan D., Enzyme Handbook 7, EC 1.11.1.7,1993,1-6.
    [22]Berglund G.I., Carlsson G.H., Hajdu J., Smith A.T., Szoke H., and Henriksen A., The catalytic pathway of horseradish peroxidase at high resolution, Nature,2002,417,463-468.
    [23]Dilgimen A.S., Mustafaeva Z., Demchenko M., Kaneko T., Osada Y, and Mustafaev M., Water-soluble covalent conjugates of bovine serum albumin with anionic poly(N-isopropyl-acrylamide) and their immunogenicity, Biomaterials,2001, 22,2382-2392.
    [24]Liao W., Zhang Y.J., Guan Y, and Zhu X.X., Gelation kinetics of thermosensitive PNIPAM microgels dispersions, Macromolecular Chemistry and Physics,2011,212,2052-2060.
    [25]Wadajkar A.S., Koppolu B., Rahimi M., and Nguyen K.T., Cytotoxic evaluation of N-isopropylacrylamide monomers and temperature-sensitive poly(N-isopropylacrylamide) nanoparticles, Journal of Nanoparticle Research,2009, 11(6),1375-1382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700