茶树低温应答相关转录因子CsICE1和CsCBF1的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物遭受低温胁迫时,CBF转录因子通过与CRT/DRE顺式作用元件结合来激活下游一系列冷诱导基因的转录表达,从而提高植物的抗寒性。ICE1是CBF上游的主要激活因子。为了阐明茶树应答低温的分子基础和调控机理,从整体水平上提高茶树的抗寒性,并且为鉴定和选育茶树抗寒品种提供分子水平上的理论依据,本论文进行了以下研究:
     (1)根据一段与拟南芥ICE1基因同源性较高的茶树EST,采用RACE技术获得了茶树ICE1基因的cDNA全长,命名为CsICE1。该基因(1964bp)与其同系物一样都含有保守的bHLH(碱性螺旋-环-螺旋)结构域和C端区域。
     (2)根据GenBank上已有的序列信息,在茶树中克隆出一个CBF基因,命名为CsCBF1。该基因(1210bp)含有CBF转录因子家族典型的结构域:AP2和其两侧的保守特征序列。
     (3)通过实时荧光定量PCR和半定量RT-PCR检测CsICE1和CsCBF1在低温诱导条件下的表达模式,发现与拟南芥的ICE1和CBF表达模式相似。即:CsICE1在4℃处理后与20℃相比转录水平几乎没有变化;CsCBF1在常温下(20℃)不表达,4℃处理后表达量快速而明显大幅增加。
     (4)通过原核表达并纯化得到带有6个组氨酸标签的CsCBF1融合蛋白。
     (5)采用凝胶迁移分析技术(EMSA)证明了CsCBF1蛋白可以与CRT/DRE顺式作用元件特异性地结合。
     以上的研究结果表明:ICE1-CBF冷调控途径存在于茶树中,并且在茶树低温应答过程中起着关键作用。CsICE1和CsCBF1两个转录因子对提高茶树抗寒性起着重要的作用。
CBFs (C-repeat/dehydration-responsive element binding factors) can induce theexpression of a suite of cold-responsive genes to increase plant cold tolerance, and ICE1(Inducer of CBF expression) is a major activator for CBF. Our study is to elucidate themolecular basis and regulatory mechanisms of tea plant cold responses and enhance the teaplant cold tolerance. Besides, the studies provide with theory basis in molecular biologyabout identification and breeding for cold resisting varieties of tea.
     We isolated the full-length cDNAs of ICE1and CBF from Camellia sinensis,designated as CsICE1and CsCBF1, respectively. The deduced protein CsICE1contains ahighly conserved basic helix-loop-helix (bHLH) domain and C-terminal region ofICE1-like proteins. CsCBF1contains all conserved domains of CBFs in other plant speciesand can specifically bind to the C-repeat/dehydration-responsive element (CRT/DRE) asconfirmed by electrophoretic mobility shift assay. The transcription of CsICE1had noapparent alteration after chilling treatment (4℃). CsCBF1expression was not detected innormal temperature (20℃) but was induced immediately and significantly by lowtemperature (4℃).
     Our results suggest that ICE1-CBF cold-response pathway is conserved in tea plants.CsICE1and CsCBF1, two components of this pathway, play important roles in coldresponses in tea plants.
引文
[1] Thomashow M F. Molecular Basis of Plant Cold Acclimation: Insights Gained fromStudying the CBF Cold Response Pathway [J]. Plant Physiol.,2010,154(2):571-577.
    [2] Li F, Guo S Y, Zhao Y A, et al. Overexpression of a homopeptide repeat-containingbHLH protein gene (OrbHLH001) from Dongxiang wild rice confers freezing and salttolerance in transgenic Arabidopsis [J]. Plant Cell Rep.,2010,29(9):977-986.
    [3] Liu Y, Chen H, Zhuang D, et al. Characterization of a DRE-binding transcriptionfactor from Asparagus (Asparagus officinalis L.) and its overexpression inArabidopsis resulting in salt-and drought-resistant transgenic plants [J]. Int. J. PlantSci.,2010,171(1):12-23.
    [4] Benedict C, Skinner J S, Meng R, et al. The CBF1-dependent low temperaturesignalling pathway, regulon and increase in freeze tolerance are conserved in Populusspp.[J]. Plant, Cell&Environment,2006,29(7):1259-1272.
    [5] Welling A, Palva E T. Molecular control of cold acclimation in trees [J]. Physiol.Plantarum,2006,127(2):167-181.
    [6] Chinnusamy V, Zhu J, Zhu J K. Cold stress regulation of gene expression in plants [J].Trends Plant Sci.,2007,12(10):444-451.
    [7] Thomashow M F. Plant cold acclimation: freezing tolerance genes and regulatorymechanisms [J]. Annu. Rev. Plant Biol.,1999,50(1):571-599.
    [8] Viswanathan C, Zhu J K. Molecular genetic analysis of cold-regulated genetranscription [J]. Philosophical Transactions of the Royal Society of London. Series B:Biological Sciences,2002,357(1423):877-886.
    [9] Chinnusamy V, Schumaker K, Zhu J K. Molecular genetic perspectives on cross-talkand specificity in abiotic stress signalling in plants [J]. J. Exp. Bot.,2004,55(395):225-236.
    [10] Los D A, Murata N. Membrane fluidity and its roles in the perception ofenvironmental signals [J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2004,1666(1-2):142-157.
    [11] Sangwan V, Foulds I, Singh J, et al. Cold-activation of Brassica napus BN115promoter is mediated by structural changes in membranes and cytoskeleton, andrequires Ca2+influx [J]. The Plant Journal,2001,27(1):1-12.
    [12] Rvar B L, Sangwan V, Omann F, et al. Early steps in cold sensing by plant cells: therole of actin cytoskeleton and membrane fluidity [J]. The Plant Journal,2000,23(6):785-794.
    [13] Vaultier M N, Cantrel C, Vergnolle C, et al. Desaturase mutants reveal thatmembrane rigidification acts as a cold perception mechanism upstream of thediacylglycerol kinase pathway in Arabidopsis cells [J]. Febs Lett.,2006,580(17):4218-4223.
    [14] Blatt M R. Ca2+signalling and control of guard-cell volume in stomatal movements[J]. Curr. Opin. Plant Biol.,2000,3(3):196-204.
    [15] Knight H, Trewavas A J, Knight M R. Cold calcium signaling in Arabidopsisinvolves two cellular pools and a change in calcium signature after acclimation [J].Plant Cell,1996,8(3):489-503.
    [16] Monroy A F, Castonguay Y, Laberge S, et al. A new cold-induced Alfalfa gene isassociated with enhanced hardening at subzero temperature [J]. Plant Physiol.,1993,102(3):873-879.
    [17] T Htiharju S, Sangwan V, Monroy A F, et al. The induction of kin genes incold-acclimating Arabidopsis thaliana. Evidence of a role for calcium [J]. Planta,1997,203(4):442-447.
    [18] Klimecka M, Muszynska G. Structure and functions of plant calcium-dependentprotein kinases [J]. Acta Biochimica Polonica,2007,54(2):219-233.
    [19] Reddy V S, Reddy A S N. Proteomics of calcium-signaling components in plants [J].Phytochemistry,2004,65(12):1745-1776.
    [20] Hannah M A, Heyer A G, Hincha D K. A global survey of gene regulation duringcold acclimation in Arabidopsis thaliana [J]. PLoS Genetics,2005,1(2):179-196.
    [21] Lee B H, Henderson D A, Zhu J K. The Arabidopsis cold-responsive transcriptomeand its regulation by ICE1[J]. Plant Cell,2005,17(11):3155-3175.
    [22] Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks incellular responses and tolerance to dehydration and cold stresses [J]. Annu. Rev.Plant Biol.,2006,57:781-803.
    [23] Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of geneexpression in the drought and cold stress responses [J]. Curr. Opin. Plant Biol.,2003,6(5):410-417.
    [24] Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsisgene is involved in responsiveness to drought, low-temperature, or high-salt stress[J]. Plant Cell,1994,6(2):251-264.
    [25] Van Buskirk H A, Thomashow M F. Arabidopsis transcription factors regulatingcold acclimation [J]. Physiol. Plantarum,2006,126(1):72-80.
    [26] Thomashow M F. So what's new in the field of plant cold acclimation? Lots![J].Plant Physiol.,2001,125(1):89-93.
    [27]刘强,张贵友,陈受宜.植物转录因子的结构与调控作用[J].科学通报,2000,45(14):1465-1474.
    [28] Li Z, Thomas T L. PEI1, an Embr yo-specific zinc finger protein gene required forheart-stage embr yo formation in Arabidopsis [J]. Plant Cell,1998,10(3):383-398.
    [29] Huang H, Tudor M, Su T, et al. DNA binding properties of two Arabidopsis MADSdomain proteins: binding consensus and dimer formation [J]. Plant Cell,1996,8(1):81-94.
    [30] Aukerman M J, Schmidt R J, Burr B, et al. An arginine to lysine substitution in thebZIP domain of an opaque-2mutant in maize abolishes specific DNA binding.[J].Gene. Dev.,1991,5(2):310-320.
    [31]刘卫群,王永亮,郭红祥,等.烟草DREBP转录因子结合DRE元件的关键氨基酸[J].中国生物化学与分子生物学报,2006,22(2):111-116.
    [32]罗赛男,杨国顺,石雪晖,等.转录因子在植物抗逆性上的应用研究[J].湖南农业大学学报(自然科学版),2005,31(2):219-223.
    [33] Riechmann J L, Krizek B A, Meyerowitz E M. Dimerization specificity ofArabidopsis MADS domain homeotic proteins APETALA1, APETALA3,PISTILLATA, and AGAMOUS [J]. Proc. Natl. Acad. Sci. USA,1996,93(10):4793-4798.
    [34] Jans D A. Phosphorylation-mediated regulation of signal-dependent nuclear proteintransport: The“CcN motif”[J]. Membrane Protein Transport,1995,2:161-199.
    [35] Baker S S, Wilhelm K S, Thomashow M F. The5'-region of Arabidopsis thalianacor15a has cis-acting elements that confer cold-, drought-and ABA-regulated geneexpression [J]. Plant Mol. Biol.,1994,24(5):701-713.
    [36] Okamuro J K, Caster B, Villarroel R, et al. The AP2domain of APETALA2definesa large new family of DNA binding proteins in Arabidopsis [J]. Proc. Natl. Acad. Sci.USA,1997,94(13):7076-7081.
    [37] Weigel D. The APETALA2domain is related to a novel type of DNA bindingdomain [J]. Plant Cell,1995,7(4):388-389.
    [38] Riechmann J L, Meyerowitz E M. The AP2/EREBP family of plant transcriptionfactors [J]. Biol. Chem.,1998,379(6):633-646.
    [39] Wilson K, Long D, Swinburne J, et al. A Dissociation insertion causes asemidominant mutation that increases expression of TINY, an Arabidopsis generelated to APETALA2[J]. Plant Cell,1996,8(4):659-671.
    [40]秦红霞,宋玉霞,刘敬梅.植物DREB转录因子的研究进展及应用[J].生物技术通讯,2006,17(5):780-783.
    [41] Kizis D, Lumbreras V, Pagès M. Role of AP2/EREBP transcription factors in generegulation during abiotic stress [J]. Febs Lett.,2001,498(2):187-189.
    [42] Cao Z F, Li J, Chen F, et al. Effect of two conserved amino acid residues onDREB1A function [J]. Biochemistry (Moscow),2001,66(6):623-627.
    [43] Shen Y G, Zhang W K, He S J, et al. An EREBP/AP2-type protein in Triticumaestivum was a DRE-binding transcription factor induced by cold, dehydration andABA stress [J]. TAG Theoretical and Applied Genetics,2003,106(5):923-930.
    [44] Jaglo K R, Kleff S, Amundsen K L, et al. Components of the ArabidopsisC-repeat/dehydration-responsive element binding factor cold-response pathway areconserved in Brassica napus and other plant species [J]. Plant Physiol.,2001,127(3):910-917.
    [45] Seki M, Narusaka M, Abe H, et al. Monitoring the expression pattern of1300Arabidopsis genes under drought and cold stresses by using a full-length cDNAmicroarray [J]. Plant Cell,2001,13(1):61-72.
    [46] Fowler S, Thomashow M F. Arabidopsis transcriptome profiling indicates thatmultiple regulatory pathways are activated during cold acclimation in addition to theCBF cold response pathway [J]. Plant Cell,2002,14(8):1675-1690.
    [47] Welling A, Palva E T. Involvement of CBF transcription factors in winter hardinessin birch [J]. Plant Physiol.,2008,147(3):1199-1211.
    [48] Pellegrineschi A, Reynolds M, Pacheco M, et al. Stress-induced expression in wheatof the Arabidopsis thaliana DREB1A gene delays water stress symptoms undergreenhouse conditions [J]. Genome,2004,47(3):493-500.
    [49] Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezingtolerance by gene transfer of a single stress-inducible transcription factor [J]. Nat.Biotechnol.,1999,17(3):287-291.
    [50] Kasuga M, Miura S, Shinozaki K, et al. A combination of the Arabidopsis DREB1Agene and stress-inducible rd29A promoter improved drought-and low-temperaturestress tolerance in tobacco by gene transfer [J]. Plant Cell Physiol.,2004,45(3):346-350.
    [51] Hsieh T H, Lee J T, Yang P T, et al. Heterology expression of the ArabidopsisC-Repeat/dehydration response element binding factor1gene confers elevatedtolerance to chilling and oxidative stresses in transgenic Tomato [J]. Plant Physiol.,2002,129(3):1086-1094.
    [52] Lee J T, Prasad V, Yang P T, et al. Expression of Arabidopsis CBF1regulated by anABA/stress inducible promoter in transgenic tomato confers stress tolerance withoutaffecting yield [J]. Plant, Cell&Environment,2003,26(7):1181-1190.
    [53] Owens C L, Thomashow M F, Hancock J F, et al. CBF1orthologs in sour cherry andstrawberry and the heterologous expression of CBF1in strawberry [J]. J. Am. Soc.Hortic. Sci.,2002,127(4):489-494.
    [54] Oh S J, Song S I, Kim Y S, et al. Arabidopsis CBF3/DREB1A and ABF3intransgenic rice increased tolerance to abiotic stress without stunting growth [J]. PlantPhysiol.,2005,138(1):341-351.
    [55] Al-Abed D, Madasamy P, Talla R, et al. Genetic engineering of maize with theArabidopsis DREB1A/CBF3gene using split-seed explants [J]. Crop Sci.,2007,47(6):2390-2402.
    [56] Pino M T, Skinner J S, Park E J, et al. Use of a stress inducible promoter to driveectopic AtCBF expression improves potato freezing tolerance while minimizingnegative effects on tuber yield [J]. Plant Biotechnology Journal,2007,5(5):591-604.
    [57] Yang W, Liu X D, Chi X J, et al. Dwarf apple MbDREB1enhances plant toleranceto low temperature, drought, and salt stress via both ABA-dependent andABA-independent pathways [J]. Planta,2010,233(2):219-229.
    [58] Wisniewski M, Norelli J, Bassett C, et al. Ectopic expression of a novel peach(Prunus persica) CBF transcription factor in apple (Malus×domestica) results inshort-day induced dormancy and increased cold hardiness [J]. Planta,2011,233(5):971-983.
    [59] Navarro M, Ayax C, Martinez Y, et al. Two EguCBF1genes overexpressed inEucalyptus display a different impact on stress tolerance and plant development [J].Plant Biotechnology Journal,2011,9(1):50-63.
    [60] Kitashiba H, Ishizaka T, Isuzugawa K, et al. Expression of a sweet cherryDREB1/CBF ortholog in Arabidopsis confers salt and freezing tolerance [J]. J. PlantPhysiol.,2004,161(10):1171-1176.
    [61] Iba K. Acclimative response to temperature stress in higher plants: approaches ofgene engineering for temperature tolerance [J]. Annu. Rev. Plant Biol.,2002,53(1):225-245.
    [62] Chinnusamy V, Ohta M, Kanrar S, et al. ICE1: a regulator of cold-inducedtranscriptome and freezing tolerance in Arabidopsis [J]. Gene. Dev.,2003,17(8):1043-1054.
    [63] Badawi M, Reddy Y V, Agharbaoui Z, et al. Structure and functional analysis ofwheat ICE (inducer of CBF expression) genes [J]. Plant Cell Physiol.,2008,49(8):1237-1249.
    [64] Miura K, Jin J B, Lee J, et al. SIZ1-mediated sumoylation of ICE1controlsCBF3/DREB1A expression and freezing tolerance in Arabidopsis [J]. Plant Cell,2007,19(4):1403-1414.
    [65] Dong C H, Agarwal M, Zhang Y Y, et al. The negative regulator of plant coldresponses, HOS1, is a RING E3ligase that mediates the ubiquitination anddegradation of ICE1[J]. Proc. Natl. Acad. Sci. USA,2006,103(21):8281-8286.
    [66]房用,李秀芬,慕宗昭,等.茶树抗寒性研究进展[J].经济林研究,2004,22(2):69-72.
    [67]江福英,李延.植物低温胁迫及其抗性生理[J].福建农业学报,2002,17(3):190-195.
    [68]郭见早,袁洪刚.茶树抗寒单株筛选研究[J].茶叶,1995,21(1):34-38.
    [69]束际林.茶树叶片解剖结构鉴定的原理与技术[J].中国茶叶,1995,17(1):2-4.
    [70]张惠斌,刘星辉.龙眼叶片组织细胞结构特性与耐寒性的关系[J].园艺学报,1993,20(1):1-7.
    [71]黄建安.茶树保护性酶类与抗寒性的关系[J].茶叶科学,1990,10(1):35-40.
    [72]罗军武,唐和平.茶树不同抗寒性品种间保护酶类活性的差异[J].湖南农业大学学报:自然科学版,2001,27(2):94-96.
    [73]朱政,蒋家月,江昌俊,等.低温胁迫对茶树叶片SOD,可溶性蛋白和可溶性糖含量的影响[J].安徽农业大学学报,2011,38(1):24-26.
    [74]覃松林,陈兴琰,陈国本.茶树抗寒性及其同功酶特性的研究[J].茶叶科学,1988,8(1):33-36.
    [75]黄华涛,刘祖生,庄晚芳.茶树抗寒生理的研究——酶和细胞膜透性与茶树抗寒性[J].茶叶科学,1986,6(1):41-48.
    [76]邹中伟,房婉萍,张定,等.低温胁迫下茶树基因表达的差异分析[J].茶叶科学,2008,28(4):249-254.
    [77]陈林波,李叶云,房超,等.茶树冷诱导基因的AFLP筛选及其表达分析[J].西北植物学报,2011,31(1):1-7.
    [78] Wang L, Li X W, Zhao Q, et al. Identification of genes induced in response tolow-temperature treatment in tea leaves [J]. Plant Mol. Biol. Rep.,2009,27(3):257-265.
    [79] Li X W, Feng Z G, Yang H M, et al. A novel cold-regulated gene from Camelliasinensis, CsCOR1, enhances salt-and dehydration-tolerance in tobacco [J]. Biochem.Biophys. Res. Commun.,2010,394(2):354-359.
    [80] Puhakainen T, Li C, Boije-Malm M, et al. Short-day potentiation of lowtemperature-induced gene expression of a C-repeat-binding factor-controlled geneduring cold acclimation in silver birch [J]. Plant Physiol.,2004,136(4):4299-4307.
    [81] Sambrook J., Russell D. W.分子克隆实验指南[M].科学出版社,2002.
    [82] Pires N, Dolan L. Origin and diversification of basic-helix-loop-helix proteins inplants [J]. Mol. Biol. Evol.,2010,27(4):862-874.
    [83] Fursova O V, Pogorelko G V, Tarasov V A. Identification of ICE2, a gene involvedin cold acclimation which determines freezing tolerance in Arabidopsis thaliana [J].Gene,2009,429(1-2):98-103.
    [84] Sakuma Y, Liu Q, Dubouzet J G, et al. DNA-binding specificity of the ERF/AP2domain of Arabidopsis DREBs, transcription factors involved in dehydration-andcold-inducible gene expression [J]. Biochem. Biophys. Res. Commun.,2002,290(3):998-1009.
    [85] Allen M D, Yamasaki K, Ohme-Takagi M, et al. A novel mode of DNA recognitionby a β-sheet revealed by the solution structure of the GCC-box binding domain incomplex with DNA [J]. The EMBO Journal,1998,17(18):5484-5496.
    [86]陈暄,房婉萍,邹中伟,等.茶树冷胁迫诱导抗寒基因CBF的克隆与表达分析[J].茶叶科学,2009,29(1):53-59.
    [87] Shinwari Z K, Nakashima K, Miura S, et al. An Arabidopsis gene family encodingDRE/CRT binding proteins involved in low-temperature-responsive gene expression[J]. Biochem. Biophys. Res. Commun.,1998,250(1):161-170.
    [88] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-timequantitative PCR and the2Δ Δ CTmethod [J]. Methods,2001,25(4):402-408.
    [89]王瑞刚,王永平.外源蛋白表达系统利用及植物表达外源蛋白的特点与优势[J].生物学通报,2003,38(1):11-12.
    [90]江家政,范明.蛋白质技术乎册[M].科学出版社,2000.
    [91]卢圣栋.现代分子生物学实验技术[M].北京:中国协和大学出版社,2000.
    [92]李远华,江昌俊,杨顺利,等.茶树β-葡萄糖苷酶cDNA克隆和原核表达[J].农业生物技术学报,2004,12(6):625-629.
    [93]余有本,江昌俊,王朝霞,等.茶树咖啡碱合酶cDNA在大肠杆菌中的表达[J].南京农业大学学报,2004,27(4):105-109.
    [94] Kamiie K, Nomura Y, Kobayashi S, et al. Cloning and expression of Bombyx morisilk gland elongation factor1γ in Escherichia coli [J]. Biosci. Biotechnol.Biochem.,2002,66(3):558-565.
    [95] Schein C H, Noteborn M H M. Formation of soluble recombinant proteins inEscherichia coli is favored by lower growth temperature [J]. Nat. Biotechnol.,1988,6(3):291-294.
    [96] Hirel P H, Schmitter M J, Dessen P, et al. Extent of N-terminal methionine excisionfrom Escherichia coli proteins is governed by the side-chain length of thepenultimate amino acid [J]. Proc. Natl. Acad. Sci. USA,1989,86(21):8247-8251.
    [97] Tobias J W, Shrader T E, Rocap G, et al. The N-end rule in bacteria [J]. Science,1991,254(5036):1374-1382.
    [98] S Rensen M A, Kurland C G, Pedersen S. Codon usage determines translation rate inEscherichia coli [J]. J. Mol. Biol.,1989,207(2):365-377.
    [99] Zhang S, Zubay G, Goldman E. Low-usage codons in Escherichia coli, yeast, fruitfly and primates [J]. Gene,1991,105(1):61-72.
    [100] Chen G F T, Inouye M. Suppression of the negative effect of minor argininecodons on gene expression; preferential usage of minor codons within the first25codons of the Escherichia coli genes [J]. Nucleic Acids Res.,1990,18(6):1465-1474.
    [101] Brinkmann U, Mattes R E, Buckel P. High-level expression of recombinant genesin Escherichia coli is dependent on the availability of the dnaY gene product [J].Gene,1989,85(1):109-114.
    [102] Seidel H M, Pompliano D L, Knowles J R. Phosphonate biosynthesis: molecularcloning of the gene for phosphoenolpyruvate mutase from Tetrahymena pyriformisand overexpression of the gene product in Escherichia coli [J]. Biochemistry,1992,31(9):2598-2608.
    [103]刘忠渊,张富春,王芸,等.赤翅甲抗冻蛋白基因的原核表达及蛋白生物活性检测[J].昆虫学报,2005,48(2):179-183.
    [104]李轶杰,张富春,张钰,等.优化密码子提高草原兔尾鼠ZP3融合蛋白的原核表达[J].细胞与分子免疫学杂志,2005,21(6):700-703.
    [105]袁力勇,马雁冰,刘勇,等.人血纤维蛋白溶酶原K5环的基因合成,表达,纯化与活性鉴定[J].中国生物化学与分子生物学报,2001,17(1):14-17.
    [106]拉奇曼,刘进元.转录因子实用技术[M].清华大学出版社,2004.
    [107] Rodgers J T, Patel P, Hennes J L, et al. Use of biotin-labeled nucleic acids forprotein purification and agarose-based chemiluminescent electromobility shiftassays [J]. Anal. Biochem.,2000,277(2):254-259.
    [108] Jing D, Agnew J, Patton W F, et al. A sensitive two-color electrophoretic mobilityshift assay for detecting both nucleic acids and protein in gels [J]. Proteomics,2003,3(7):1172-1180.
    [109] Jing D, Beechem J M, Patton W F. The utility of a two-color fluorescenceelectrophoretic mobility shift assay procedure for the analysis of DNA replicationcomplexes [J]. Electrophoresis,2004,25(15):2439-2446.
    [110] Jiang C, Iu B, Singh J. Requirement of a CCGAC cis-acting element for coldinduction of the BN115gene from winter Brassica napus [J]. Plant Mol. Biol.,1996,30(3):679-684.
    [111] Zhao T J, Sun S, Liu Y, et al. Regulating the drought-responsive element(DRE)-mediated signaling pathway by synergic functions of trans-active andtrans-inactive DRE binding factors in Brassica napus [J]. J. Biol. Chem.,2006,281(16):10752-10759.
    [112] Huang B O, Jin L G, Liu J Y. Molecular cloning and functional characterization ofa DREB1/CBF-like gene (GhDREB1L) from cotton [J]. Science in China Series C:Life Sciences,2007,50(1):7-14.
    [113] Yang Y, Wu J, Zhu K, et al. Identification and characterization of twochrysanthemum (Dendronthema×moriforlium) DREB genes, belonging to theAP2/EREBP family [J]. Mol. Biol. Rep.,2009,36(1):71-81.
    [114] Zhang X, Fowler S G, Cheng H M, et al. Freezing-sensitive tomato has a functionalCBF cold response pathway, but a CBF regulon that differs from that offreezing-tolerant Arabidopsis [J]. Plant J.,2004,39(6):905-919.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700