BAC增强工艺中优势菌群特性及最优固定化条件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物活性炭作为深度处理工艺的一种有效形式对去除水中天然有机物有着重要的作用。天然有机物的去除一直是水处理中比较重要的一部分,同时也是传统给水工艺作用的主要部分。然而依靠活性炭自然形成的普通生物活性炭,其生物相较为复杂,生物降解的速率不高。所以通过人工强化技术投加优势菌群,采用人工固定化技术形成的生物增强活性炭,则具有高效、长效、运行稳定和出水无病原微生物等优点。
     以对原水的UV254和TOC降解率为筛选原则,从原水中筛选出9、10、14、30、37五株菌种,对其进行培养驯化得到试验所需的优势菌。对优势菌进行了形态学和生理生化初步鉴定,利用SHERLOCK?全自动微生物鉴定系统最终确定了9和10号菌株为醋酸钙不动细菌、30号菌株恶臭假单胞、14和37号菌株为短杆菌。研究了优势菌群的生物学特性包括:营养源研究;最优生长条件;优势菌群的比生长速率和世代时间;脱氢酶活性等。
     经过比较分析,采用吸附固定法将优势菌群固定在颗粒活性炭上。为了获得较好的固定化效果,寻求利用正交试验获得最优方案。通过研究微生物固定的一般过程和影响微生物固定的重要因素,确定出固定化正交试验的4个因素,利用摇床试验和文献分析最终确定各因素的各个水平。分别以固定在活性炭上的生物量和生物活性为评价指标获得了不同的优方案。以生物量为评价指标的优方案是:固定方式为循环4h,间歇2h、EBCT=15min、pH=3、菌液浓度为纯菌液。以细胞生物活性为固定化评价指标所得出的优方案是固定方式为循环4h,间歇2h、EBCT=60min、pH=7、菌液浓度为1%菌液。综合考虑两个指标,当固定方式为循环4h,间歇2h、空床接触时间60min、pH=3、菌液浓度为1%菌液时,生物量和生物活性两个指标都有较好的结果。
     对运行三个月BAC增强活性炭的上、中、下层表面进行扫描电镜观察,发现BAC增强活性炭表面不连续的分布着大量的优势菌。利用紫外-可见吸收光谱(UV-Vis)、TOC、GC-MS方法对进出水进行水质分析,BAC增强工艺对原水的处理效果比较理想。
BAC—an effective form of advanced treatment, plays an important role to remove natural organic matter from water. The removal of natural organic matter is not only a more important part of water treatment, but also a major part of traditional water supply. But relying on the common biological activated carbon formed naturally by activated carbon, the biological phase is more complex, biodegradable rate is not quick. Therefore, using the technique of dominant microorganisms added by artificially intensified technology and the intensed biological activated carbon formed by artificially immobilization technology has a highly efficient, long-term, stable and running water without the advantages of pathogenic microorganisms.
     Based on UV254 and degradation rate of TOC of water, selected 9, 10, 14, 30, 37 five species from the raw water, get the dominant bacteria needed in experiment by cultivation and acclimation. On the base of identification of the culture and physiology characters of the dominant bacteria, Finally , we determined 9th and 10th are bacteria fixed calcium acetate, 30th is Pseudomonas putida, 14th and 37th are Brevibacterium using SHERLOCK? Microbial Identification System. The biological characteristics of dominant microorganisms were studied, including nutrition source, optimal growth conditions, specific growth rate and generation time of dominant microorganisms, dehydrogenase activity and so on.
     According to analysis and comparison, the adsorption method was chose for the special stains immobilized on the surface of the GAC. Application of the orthogonal test method on optimal control was studied in the test for the better effect on immobilization. Four factors that influenced the microbe immobilization had been defined by jar test and references. The biomass and biological activity as two evaluating indicators was compared by the method of orthogonal test which concluded two optimum methods. When biomass as evaluating indicators, the optimal parameters of immobilization was as following: fixed mode with 4h circle running and 2h intermission, EBCT=15min, pH=3, pure microbe. When biological activity as evaluating indicators, the optimal parameters of immobilization was as following: fixed mode with 4h circle running and 2h intermission, EBCT=60min, pH=7, 1% microbe concentration. Considered both factors, the biomass and biological activity was better when the optimal parameters for the immobilization was fixed mode with 4h circle running and 2h intermission, EBCT=60min, pH=3, 1% microbe concentration.
     SEM observations about the surface of upper, middle and lower layer of IBAC run 3 months showed that a large number of dominant microorganisms were discontinuous distributed on the surface of IBAC. Analyzing water quality of influent and effluent using UV-Vis, TOC, GC-MS show that IBAC was more ideal to treat with the raw water.
引文
1杨鲁豫,王琳,王宝贞.我国水资源污染治理的技术策略.给水排水. 2001, 27(1): 94~101
    2 China Water Conservancy Delegation. The Present Status and Prospects of China Water Issues. The Second International Forum. 2000: 1~5
    3 Marq De Villers. Water the fate of our most precious. Boston, New York: Noughton Mifflin. Co..2000: 26~31
    4刘新英.我国的水资源状况及其对策环境科学动态. 1996, 12(1): 7~8
    5国家统计局.国民经济和社会发展统计公报. http://www.stars.gov.cn
    6袁志彬.城市水源污染状况及保护措施.油气环境保护.2001, 3: 22~25
    7国家环保总局.年中国环境状况公报. http://www.china.org.cn
    8 B Doppelt, M Scurlock, C F rissell, et al. Entering the Watshed. A New Approach to Save Americas River Ecosystems. Island Press. Washington. D.C, 1993
    9王占生,刘文君.微污染水源饮用水处理.北京:中国建筑工业出版社, 1999
    10 K. N. Donald. Evaluating Treatment Processes with The Ames Mutagenicity Assay. J. AWWA. 1980,81(9): 23~26
    11胡中华,吴海芳.活性炭纤维及其在水处理中的应用.环境污染与防治. 2003, 2(25): 13~16
    12罗红星,刘晓飞.活性炭结构特征对微生物的影响.中国给水排水. 2004,1(2): 21~25
    13丁驰,段蕾.臭氧生物活性炭工艺的运行稳定性研究.中国给水排水.2005, 12(2): 21~26
    14胡志光,昌晶.臭氧生物活性炭法在饮用水深度处理中的试验.华北电力大学学报. 2006,1(6): 33~39
    15薛旱,赵兴元.臭氧活性炭、纳滤联用制取优质饮用水的中试研究.东华大学学报. 2003, 29(3):13~15
    16于万波.臭氧一生物活性炭技术在微污染饮用水处理中的应用.环境技术. 2003,2(11): 13~16
    17杜韶华,何正浩.臭氧生物活性炭处理微污染水源水的上艺及其发展.水资源保护. 2005,21(2): 26~29
    18田禹.臭氧生物活性炭联用技术发展状况.哈尔滨工业大学学报. 1998, 30(2): 21~25
    19严熙世.生物活性炭处理污染原水的研究简介.中国给水排水.1985, 1(2): 59~61
    20林波.臭氧化法水处理技术的现状与展望.环境与开发. 1998, 13(4): 6~7
    21金相灿.有机化合物污染化学.清华大学出版社, 1990: 8~16
    22王占生,刘文君.微污染水源水饮用水处理.中国建筑工业出版社, 1999: 61~62
    23张金松.臭氧化-生物活性炭除污染工艺过程研究.哈尔滨建筑大学博士论文. 1995: 83~88
    24马放.固定化生物活性炭除微量有机物的微生物学机理及其净化效能研究.哈尔滨建筑大学博士论文. 1999: 98~103
    25 H. Dave, C. Ramakrishna, B. D. Bhatt, et al. Biodegradation of Slop Oil from a Petrochemical Industry and Bioreclamation of Slop Oil Contaminated Soil. World J Microbiol Biotechnol. 1995,(10): 653~656
    26 R. T. Lamar, M. W. Davis, D. M. Dietrich, et al. Treatment of a Pentachloro Phenol and Creosote-Contaminated Soil Using the Lignin-Degrading Fungus Phanerocaete Scordida: A Field Demonstration. Soil Biol Biochem. 1994,(26): 1603~1611
    27 Salvador Aldrett, S. James, Bonner, et al. Microbial Degradation of Crude Oil in Marine Environments Tested in a Flask Experiment, Wat. Res. 1997,31(11): 2840~2848
    28 Mauro Fabiano, Daniela Marrale, Cristina Misic. Bacteria and Organic Matter Dynamics During A Bioremediation Treatment of Organic-Rich Harbour Sediments. Marine Pollution Bulletin. 2003,(46):1164~1173
    29 Z. Babu, Fathepure, K. Vijai, et al. Bioaugmentation Potential of A Vinyl Chloride-Assimilating Mycobacterium sp. ,Isolated From A Chloroethene-Contaminated Aquifer. 2005,248(2):227~234
    30 Federico Aulenta, Annalisa Bianchi, Mauro Majone, et al. Assessment of Natural or Enhanced in Situ Bioremediation at a Chlorinated Solvent-Contaminated Aquifer in Italy: A Microcosm Study. Environment International. 2005,(31): 185~190
    31 K. Watanabe, M. Teramoto, S.Harayama.Stable Bioaujmentation of Activated Sludge with Foreign Catabolic Genes Harboured by an Indigenous Dominant Bacterium. Environ Microbiol. 2002,(4): 577~583
    32 N. Boon, E. M. Top, W. Verstraete,et al. Bioaugmentation as a Tool to Protect the Structure and Function of an Activated Sludge Microbial Community Against a 3-Chloroaniline Shock Load. Appl Environ Microbiol. 2003, 6(9): 1511~1520
    33 C. J. Vander Gast, A. S. Whiteley, I. P. Thompson. Temporal Dynamics and Degradation Activity of an Bacterial Inoculum for Treating Waste Metal-Working Fluid. Environ Microbiol. 2004, (6): 254~263
    34 E. Silva, A. M. Fialho, I. Sa-Correia, et a1.Combined Bioaugmentation and Biostimulation to Clean Up Soil Contaminated with High Concentrations of Atrazine. Environ Sci Technol.2004,(38): 632~637
    35 M. Eva Top, Dirk Springael, Nico Boon. Catabolic Mobile Genetic Elements and Their Potential Use in Bioaugmentation of Polluted Soils and Waters. FEMS Microbiology Ecology. 2002,(42): 199~208
    36冯玉杰.现代生物技术在环境工程中的应用.北京化学工业出版社, 2004: 144~145
    37 M.X. Loukidou, A.I. Zouboulis. Comparison of biological treatment processes using attached-growth biomass for sanitary landfill leachate treatment.Environmental Pollution. 2001,(111): 273~281
    38何文杰,李伟光,张晓键.安全饮用水保障技术.中国建筑工业出版社,2006: 456~479
    39王海,张甲耀,魏明宝.生物增强技术在生物修复中的应用.环境科学, 2003,26(12): 81~83
    40王琳,罗启芳.固定化微生物降解环境内分泌干扰物DBP.环境科学, 2003,19(11): 1302~1303
    41于鑫,张晓键,王占生.饮用水生物处理中生物量的脂磷法测定.城市给排水.2002,28(5): 1~5
    42 J. Z. Zhang, P. L. Bishop. Density, Porosity, and Pore Structure of Biofilms, Wat, Sci, Tech, 1994,28: 2267~2277
    43 R. Narasimmalu, M. Osamu, I. Norifumi, et a1. Variation in microbial biomass and community structure in sediments of eutrophic bays asdetermined by phospholipids ester-linked fatty acids. Appl Environ Microbiol, 1992,58(2): 562~571
    44 V .Lazarova, J.Manem.Biofilm characterization and activity analysis in water and wastewater treatment.Wat Res, 1995,29(10): 2227~2245
    45 R.H. Findlay, G.M. King, L. Walting. Efficacy of phospholipids analysis in determining microbial biomass in sediments. Appl Environ Microbiol, 1989, 55(11): 2888~2893
    46 J.Z. Wang, R.S.Summers, R. J. Miltner. Biofiltration performance:Part l, relationship to biomass. AWWA, 1995, 87(12): 55~63
    47 D.M. Moll, R. S. Summers,A .Breen. Microbial characterization of biological filters used for drinking water treatment. Appl Environ Microbiol, 1998, 64(7): 2755~2759
    48刘永淞.污水可生化性评价.中国给水排水,1995,11(5): 36~38
    49夏文香.可生化性试验与评价方法研究.上海环境科学,1999,18(1): 26~28
    50 W. E Inniss, C. I. Mayfield. Growth Rates of Psychrotrophic Sediment Microorganisms. Wat. Res. 1978, 12(4): 231~236
    51 J. L. Ingraham. Growth of Psychrophilic Bacteria. J. Bact. 1958,76(1):75~80
    52张兰英,刘娜,孙立波等.现代环境微生物技术.清华大学出版社, 2004
    53黄霞,俞毓敏,王蕾.固定化细胞技术在废水处理中的应用.环境科学. 1993, 14(1): 41~48
    54 R. J.Miltner , R. S.Summers, J.Wang, et a1. And Rise E. (1992)The response of biological filters to backwashing. AWWA-WQTC Proceedings Toronto, Canada.
    55 L.Chevallier, M. W. Welch, D.B. Smith. (1996).Full-Scale Studies of Factors Related to Regrowth in Dinding Water. Appl. Envion. Microbial. 62(7):2201~2202
    56刘雨,赵庆良,郑兴灿.生物膜法污水处理技术.中国建筑工业出版社, 2000
    57 Nigel, J.D. Graham. Removal of humic substances by oxidation /biofiltration processes a review. Wat. Sci. Tech. ,1999, 40(9): 141~148
    58 M .Scholz, R. J. Martin Ecological equilibrium on biological activated carbon. Wat. Sci. Tech. ,1997,31(12): 2959~2968.
    59 Grabinska-Loniew ska A, Perchuc M, Kornilow icz-Kowalska T .Bioccenosisof BACFs used for groundwater treatment. Water Research, 2004, 34: 1695~1706
    60王建龙.生物固定化技术与水污染控制.科学出版社, 2002
    61李云雁,胡传荣.试验设计与数据处理.化学工业出版社, 2005, 87~89
    62 T.A.Bellar. The Occurrence of Oraganhalids in Chlorination Drinking Water. J.Am.Water work Assoc., 1974, 66(12): 703~706

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700